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Abstract

In order for machines interacting with the real world to have conversations with users about
the objects and events around them, they need to understand dynamic audiovisual scenes.
The recent revolution of neural network models allows us to combine various modules into
a single end-to-end differentiable network. As a result, Audio Visual Scene-Aware Dialog
(AVSD) systems for real-world applications can be developed by integrating state-of-the-art
technologies from multiple research areas, including end-to-end dialog technologies, visual
question answering (VQA) technologies, and video description technologies. In this paper,
we introduce a new data set of dialogs about videos of human behaviors, as well as an end-to-
end Audio Visual Scene-Aware Dialog (AVSD) model, trained using this new data set, that
generates responses in a dialog about a video. By using features that were developed for
multimodal attention-based video description, our system improves the quality of generated
dialog about dynamic video scenes.
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ABSTRACT

In order for machines interacting with the real world to have con-
versations with users about the objects and events around them, they
need to understand dynamic audiovisual scenes. The recent revolu-
tion of neural network models allows us to combine various modules
into a single end-to-end differentiable network. As a result, Audio
Visual Scene-Aware Dialog (AVSD) systems for real-world applica-
tions can be developed by integrating state-of-the-art technologies
from multiple research areas, including end-to-end dialog technolo-
gies, visual question answering (VQA) technologies, and video de-
scription technologies. In this paper, we introduce a new data set of
dialogs about videos of human behaviors, as well as an end-to-end
Audio Visual Scene-Aware Dialog (AVSD) model, trained using this
new data set, that generates responses in a dialog about a video. By
using features that were developed for multimodal attention-based
video description, our system improves the quality of generated dia-
log about dynamic video scenes.

Index Terms— Audio visual scene-aware dialog, Visual QA,
Video description, End-to-end modeling

1. INTRODUCTION

Recently, end-to-end approaches have been shown to better handle
flexible conversations between the user and the system by training
the model on large conversational data sets [1,2]. However, current
dialog systems cannot understand dynamic scenes captured using
multimodal sensor-based input such as vision and non-speech audio.
As a result, machines using such dialog systems cannot have a con-
versation about what’s going on in their surroundings. To develop
machines that can carry on a conversation about objects and events
taking place around the machines or the users, dynamic scene-aware
dialog technology is essential. To interact with humans about au-
diovisual information, systems need to understand both audiovisual
scenes and natural language inputs. The recent revolution of neural
network models allows us to combine various modules into a sin-
gle end-to-end differentiable network. Thus, we can simultaneously
input visual features and user utterances into an encoder-decoder-
based system whose outputs are natural-language responses.

Using this end-to-end framework, visual question answering
(VQA) has been intensively researched in the field of computer vi-
sion [3-6]. to generate answers to questions about an imaged scene.
As a further step towards conversational visual Al, the new task
of visual dialog was introduced [7], in which an AI agent holds a
meaningful dialog with humans about a static image using natural,
conversational language [8]. While VQA and visual dialog take
significant steps towards human-machine interaction, they only con-
sider a single static image. In contrast, many real-world scenarios
involve dynamic scenes that will require a system to understand the
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content and temporal dynamics of a scene, such as that contained
in video data. To capture the semantics of dynamic scenes, recent
research has focused on video description. The state of the art in
video description uses a multimodal attention mechanism that se-
lectively attends to different input modalities (feature types), such
spatiotemporal motion features and audio features, in addition to
temporal attention [9]. This framework allows us to build scene
aware dialog systems using multimodal information, such as au-
dio and visual features, by combining end-to-end dialog and video
description technologies.

In this paper, we propose a new research target: a dialog sys-
tem that can discuss dynamic scenes with humans. This goal lies at
the intersection of multiple avenues of research in natural language
processing, computer vision, and audio processing. To advance this
goal, we introduce a new model that incorporates technologies for
multimodal attention-based video description into an end-to-end dia-
log system. We also introduce a new data set of human dialogs about
videos. We are making our data set, code, and model publicly avail-
able for a new Audio Visual Scene-Aware Dialog (AVSD) Challenge
at the 7th Dialog System Technology Challenge (DSTC7) [10].

2. AUDIO VISUAL SCENE-AWARE DIALOG DATA SET

For this Audio Visual Scene-Aware Dialog (AVSD) data set, we col-
lected text-based conversations about short videos from the Cha-
rades [11] video description data set, as described in [12]. In the
AVSD track of the Dialog System Technology Challenges 7th edi-
tion (DSTC7)', the target is to generate human responses in dialogs
using Natural Language Generation (NLG) technologies [10]. In
AVSD data collection, two humans, a questioner and an answerer,
had a discussion about the events in a video. The answerer, who had
already watched the video, answered questions asked by the ques-
tioner. The questioner was not allowed to watch the video, but was
shown the first, middle, and last frames of the video (three static im-
ages) to provide some fundamental grounding in the scene. After
10 rounds of Question (by the questioner) and Answer (by the an-
swerer), the questioner was required to write a description summa-
rizing the events in the video. Currently, we have collected dialogs
for most of the Charades training set and all of the validation set,
which form the prototype data set described in Table 1. The final
data set for the AVSD track of DSTC7 will include the entire Cha-
rades data set. In this experiment, we split the official validation
set for the Charades challenge in half, using the two halves as our
validation and test sets.

"http://workshop.colips.org/dstc7/index.html
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Fig. 1. The distributions of word 4-grams in the questions (left) and answers (middle) of the prototype data set of the AVSD, and the average
length (right) of the sentences of the VQA and the prototype data set of the AVSD. The actions were mainly asked by the questioners. There
are some questions regarding audio information. Half of the answers are Yes/No. The questions and answers of AVSD mainly consists of 5
to 8 words and longer than those of VQA. More descriptive sentences were generated for AVSD.

Table 1. Audio Visual Scene-aware Dialog data set on Charades

training validation test
#dialogs 6,172 732 733
#turns 123,480 14,680 14,660
#words 1,163,969 138,314 138,790

3. AUDIO VISUAL SCENE-AWARE DIALOG SYSTEM
We built an end-to-end dialog system that can generate answers in
response to user questions about events in a video sequence. Our ar-
chitecture is similar to the Hierarchical Recurrent Encoder in Das et
al. [7]. The question, visual features, and the dialog history are fed
into corresponding LSTM-based encoders to build up a context em-
bedding, and then the outputs of the encoders are fed into a LSTM-
based decoder to generate an answer. The history consists of encod-
ings of QA pairs. We feed multimodal attention-based video features
into the LSTM encoder instead of single static image features. Fig.

2 shows the architecture of our audio visual scene-aware dialog sys-
tem.

3.1. End-to-End Conversation Modeling

This section explains the neural conversation model of [1], which
is designed as a sequence-to-sequence mapping process using re-
current neural networks (RNNs). Let X and Y be input and out-
put sequences, respectively. The model is used to compute poste-
rior probability distribution P(Y|X). For conversation modeling,
X corresponds to the sequence of previous sentences in a conversa-
tion, and Y is the system response sentence we want to generate. In
our model, both X and Y are sequences of words. X contains all
of the previous turns of the conversation, concatenated in sequence,
separated by markers that indicate to the model not only that a new
turn has started, but which speaker said that sentence. The most
likely hypothesis of Y is obtained as

Y = arg max P(Y|X) (1)
Y|
—arg}g}gj)i Hlp(ymlyla"'aym*hX% (2)

where V* denotes a set of sequences of zero or more words in system
vocabulary V.

Let X be word sequence z1,...,x7r and Y be word sequence

Y1, -..,ym. The encoder network is used to obtain hidden states h
fort =1,...,T as:

hy = LSTM (l't, ht—l; eenc) B (3)

where hy is initialized with a zero vector. LSTM(-) is a LSTM func-
tion with parameter set Ocpec.
The decoder network is used to compute probabilities

Plym|yty .-y ym—1,X) form=1,..., M as:
So = hT (4)
S$m = LSTM (ym—h Sm—1; edec) (5)
P(ylyi,- -, Yym—1,X) = softmax(Wo5m + bo), 6)

where yo is set to <eos>, a special symbol representing the end
of sequence. s, is the mth decoder state. 64 is a set of decoder
parameters, and W, and b, are a matrix and a vector. In this model,
the initial decoder state so is given by the final encoder state hr as
in Eq. (4), and the probability is estimated from each state s,,,. To
efficiently find Y in Eq. (1), we use a beam search technique since
it is computationally intractable to consider all possible Y.

In the scene-aware dialog scenario, a scene context vector in-
cluding audio and visual features is also fed to the decoder. We
modify the LSTM in Egs. (4)—(6) as

Sn0=0 @)
Sn,m = LSTM ([y:;,mflvgﬂn Sn,m—1; edeC) ) (8)
P(yalyn,i,---sYnm—1,X) = softmax(Wospn,m + bo), (9)

where g, is the concatenation of question encoding gﬁf”, audio-

visual encoding gﬁfw) and history encoding ggh) for generating the
nth answer A, = Yn.1,...,Yn,|v,|- Note that unlike Eq. (4), we
feed all contextual information to the LSTM at every prediction step.
This architecture is more flexible since the dimensions of encoder
and decoder states can be different.

gn’ is encoded by another LSTM for the nth question, and

g%h) is encoded with hierarchical LSTMs, where one LSTM encodes
each question-answer pair and then the other LSTM summarizes the
question-answer encodings into g%h). The audio-visual encoding is
obtained by multi-modal attention described in the next section.
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Fig. 2. Our multimodal attention-based audio visual scene-aware
dialog (AVSD) system

3.2. Multimodal Attention-Based Video Features

To predict a word sequence in video description, prior work [13]
extracted content vectors from image features of VGG-16 and spa-
tiotemporal motion features of C3D, and combined them into one
vector in the fusion layer as:

K
g\ = tanh (Z dk,n> , (10

k=1
where
R R (11

and ¢y, is a context vector obtained using the kth input modality.
We call this approach Naive Fusion, in which multimodal feature
vectors are combined using projection matrices Wy, for K different
modalities (input sequences zx1,...,xrr fork =1,..., K).

To fuse multimodal information, prior work [9] proposed a
method extends the attention mechanism. We call this fusion ap-
proach multimodal attention. to predict the word sequence in video
description. The number of modalities indicating the number of
sequences of input feature vectors is denoted by K.

The following equation shows an approach to perform the
attention-based feature fusion:

K
g% = tanh <Z Bk,ndk,n> : (12)

k=1

A similar mechanism for temporal attention is applied to obtain
the multimodal attention weights S »:

explv
Bk,n = 174 p( k,n)

% (13)
anl exp(Vi,n)

where

Vgyn = Wg tanh(WBg»Ezq) + VBrcr,n + bBr). (14)

Here the multimodal attention weights are determined by question
encoding gy(f’) and the context vector of each modality ¢y, as well as
temporal attention weights in each modality. Wg and Vpy, are ma-
trices, wp and bpy, are vectors, and vy, 5, is a scalar. The multimodal
attention weights can change according to the question encoding and
the feature vectors (shown in Fig. 2). This enables the decoder net-
work to attend to a different set of features and/or modalities when
predicting each subsequent word in the description. Naive fusion
can be considered a special case of Attentional fusion, in which all
modality attention weights, S », are constantly 1.

4. EXPERIMENTS FOR VIDEO DESCRIPTION
To select the best video features for the audio visual scene-aware di-
alog system, we first evaluate the performance of video description
using multimodal attention-based video features in this paper. We
evaluated our proposed feature fusion using the MSVD [14], MSR-
VTT [15], and Charades [11] video data sets. Details of textual de-
scriptions are summarized in Table 2.

Table 2. Sizes of textual descriptions in MSVD (YouTube2Text),
MSR-VTT and Charades. DSCP: Description.

Data set #Clips | #DSCP | PDSCP 1 yyyopq | Vocabulary
per clip size
MSVD 1,970 | 80,839 4100 | 8.00 13,010
MSR-VTT | 10,000 | 200,000 2000 | 9.28 29,322
Charades 9,848 | 16,140 1.64 | 13.04 2,582

The quality of the automatically generated sentences was eval-
uated with objective measures to compare the similarity between
the generated sentences and the ground truth sentences. We used
the evaluation code for MS COCO caption generation® for objective
evaluation of system outputs, which is a publicly available tool sup-
porting various automated metrics for natural language generation
such as BLEU, METEOR, ROUGE_L, and CIDEr.

4.1. Audio and Video Processing

In our previous work on multimodal attention for video descrip-
tion [9] [16], we used two different types of audio features: con-
catenated mel-frequency cepstral coefficient (MFCC) features, and
SoundNet [17] features. In this paper, we also evaluate features ex-
tracted using a new state-of-the-art model, Audio Set VGGish [18].
In this paper, we applied the VGGish model which was trained to
predict an ontology of more than 600 audio event classes from only
the audio tracks of 2 million human-labeled 10-second YouTube
video soundtracks [18]. In this work, we overlap frames of input
to the VGGish network by 50%, meaning an Audio Set VGGish fea-
ture vector is output every 0.48 seconds.

To understand visual context, the pretrained VGG-16 [19] and
the pretrained C3D [20] models were used to generate features for
object recognition and short-term spatiotemporal activity. In this ex-
periment, we also adopted the state-of-the-art I3D features [21], spa-
tiotemporal features that were developed for action recognition. The
13D model inflates the 2D filters and pooling kernels in the Inception
V3 network along their temporal dimension, building 3D spatiotem-
poral ones. We used the output from the "Mixed_5¢” layer of the
13D network to be used as video features. In the experiments in

’https://github.com/tylin/coco-caption



Table 3. Video description evaluation results on the MSVD
(YouTube2Text), MSR-VTT Subset [9] and Charades.

MSVD (YouTube2Text) Full data set
Modalities (feature types) Evaluation metric

Image |Spatiotemporal| Audio |[BLEU4|METEOR |CIDEr
VGG-16 C3D 0.524 | 0.320 |0.688
VGG-16 C3D MFCC || 0.539 0.322 | 0.674

13D (rgb-flow) 0.525 0.330 | 0.742
MFCC || 0.527 0.325 |0.702
13D (rgb-flow) | SoundNet || 0.529 0319 |0.719
VGGish || 0.554 | 0.332 |0.743

MSR-VTT Subset
Modalities (feature types)

Evaluation metric

Image |Spatiotemporal| Audio |[BLEU4|METEOR |CIDEr
VGG-16 C3D MFCC || 0.397 | 0.255 |0.400
13D (rgb-flow) 0.347 0.241 | 0.349
MFCC || 0.364 | 0.253 |0.393
13D (rgb-flow) | SoundNet || 0.366 | 0.246 | 0.387
VGGish || 0.390 | 0.263 | 0.417
Charades data set
Modalities (feature types) Evaluation metric

Image |Spatiotemporal| Audio |[BLEU4|METEOR |CIDEr
13D (rgb-flow) 0.094 | 0.149 ]0.236
MFCC || 0.098 0.156 | 0.268

13D (rgb-flow) | SoundNet - - -
VGGish || 0.100 | 0.157 | 0.270

this paper, we treated I3D-rgb (I3D features computed on a stack of
16 video frame images) and I3D-flow (I3D features computed on a
stack of 16 frames of optical flow fields) as two separate modalities
that are input to our multimodal attention model. To emphasize this,
we refer to I3D in the results tables as I3D (rgb-flow). We used the
same encoder-decoder network used in [9].

4.2. Results and Discussion
Table 3 shows the I3D spatiotemporal features outperformed the
combination of VGG-16 image features and C3D spatiotemporal
features. We believe this is because I3D features already include
enough image information for the video description task, since they
use the more powerful Inception-V3 network architecture and were
trained on the larger (and cleaner) Kinectics [22] data set. As a re-
sult, I3D has demonstrated state-of-the-art performance for the task
of human action recognition in video sequences [21]. Further, the
Inception-V3 architecture has significantly fewer network parame-
ters than the VGG-16 network, making it more efficient. In terms of
audio features, the Audio Set VGGish model provided the best per-
formance. First, the VGGish model was trained on more data, and
had audio specific labels, whereas SoundNet used pre-trained image
classification networks to provide labels for training the audio net-
work. Second, the large Audio Set ontology used to train VGGish
likely provides the ability to learn features more relevant to text de-
scriptions than the broad scene/object labels used by SoundNet.
Since it is intractable to enumerate all possible word sequences
in vocabulary V, we usually limit them to the n-best hypotheses gen-
erated by the system. Although in theory the distribution P(Y”|X)
should be the true distribution, we instead estimate it using the
encoder-decoder model.

5. EXPERIMENTS FOR AVSD

In this paper, we extended an end-to-end dialog system to scene-
aware dialog with multimodal fusion, as described in Section 3 and

Table 4. AVSD System response generation evaluation results with
objective measures. Note that [3D-rgb and I3D-flow have different
attention weights separately. In this experiment, we tested the 733
dialogs by comparing with one groundtruth. The AVSD challenge at
DSTC7 compared one response in each dialog with 5 groundtruths
for the full set of 1,710 dialogs [10].

Attentional
Input features fusion BLEU4 METEOR ROUGE_L CIDEr
QA - 0.065 0.101 0257  0.595
QA + Captions - 0.073 0.109 0.271 0.705
QA + VGG16 - 0.067 0.102 0259  0.618
QA + 13D no 0.073 0.109 0269  0.680
QA +13D yes 0.077 0.110 0274  0.724
QA +I3D + VGGish no 0.075 0.110 0275  0.701
QA + 13D + VGGish yes 0.078 0.113 0.277  0.727

shown in Fig. 2. The decision of which video and audio features to
extract was based on the results in Section 4. We evaluated our pro-
posed system using the AVSD data set on Charades that we collected
(see Table 1 for details of the data set size). We compared the perfor-
mance between models trained from various combinations of the QA
text, visual features, and audio features. In addition, we tested the
efficacy of our multimodal attention mechanism for dialog response
generation. We employed an ADAM optimizer [23] with the cross-
entropy criterion and iterated the training process up to 20 epochs.
For each of the encoder-decoder model types, we selected the model
with the lowest perplexity on the expanded development set. We
used LSTMs with parameter values #layer=2 and #cells=128 to en-
code dialog history and question sentences. Video features were pro-
jected to 256-dimensional feature space before modality fusion. The
decoder LSTM also had a structure with #layer=2 and #cells=128.

5.1. Evaluation Results

Table 4 evaluates the performance of our models at generating re-
sponse sentences using objective measures. We investigated differ-
ent input features including question-answering dialog history plus
last question (QA), human-annotated captions (Captions), video fea-
tures of VGG16 or 13D rgb+flow features (I3D), and audio features
(VGGish). We tested these both with and without our multimodal
attention (Attentional fusion). All of the objective metrics show that
the attentional fusion of I3D and VGGish outperformed other combi-
nation of modalities. These results on the Audio Visual Scene-aware
Dialog task are entirely consitent with our results from the video
description task (Section 4 and Table 3)

6. CONCLUSION

In this paper, we propose a new research target: a dialog system
that can discuss dynamic scenes with humans. This task lies at the
intersection of multiple avenues of research in natural language pro-
cessing, computer vision, and audio processing. To advance this
goal, we introduce a new model that incorporates technologies for
multimodal attention-based video description into an end-to-end di-
alog system. We also introduce a new data set of human dialogs
about videos. Our experiments demonstrate that using multimodal
features that were developed for multimodal attention-based video
description enhances the quality of generated dialog about dynamic
scenes. Future work includes (1) finding additional features that can
make the word distributions in the audiovisual semantic vector space
more distinguishable and (2) applying open-domain language mod-
els to video description.
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