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Abstract
In this paper we show how a Functional Mockup Unit (FMU) may be used for the realization
of an Extended Luenberger Observer (ELO), which may be considered the deterministic ver-
sion of an Extended Kalman Filter (EKF). The ELO has advantages over an EKF in some
situations, such as lower computational burden and improved convergence. Nonlinear ob-
servers, such as those that make use of changes of coordinates to linearize, or approximately
linearize the estimate error, are continuoustime dynamical systems that use so-called output
injection to modify the dynamics of a model. Output injection provides a similar feedback
effect as the correction step of an EKF. However, nonlinear output injection is a slightly FMU
different use case because the ELO is a continuous time object. It is realized by feedback
around a modelsharing type of continuous time FMU, in contrast with the algorithmic re-
alization of a discrete-time EKF, which uses the co-simulation form of FMU. We illustrate
the design and realization of an ELO for a building HVAC example, in which we estimate
unmeasured heat flows and unmeasured boundary conditions for use in a building “digital
twin.” We also make some remarks about model reduction and the challenges in realizing a
conventional EKF for these types of models.
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Abstract
In this paper we show how a Functional Mockup Unit
(FMU) may be used for the realization of an Extended
Luenberger Observer (ELO), which may be considered
the deterministic version of an Extended Kalman Filter
(EKF). The ELO has advantages over an EKF in some
situations, such as lower computational burden and im-
proved convergence. Nonlinear observers, such as those
that make use of changes of coordinates to linearize, or
approximately linearize the estimate error, are continuous-
time dynamical systems that use so-called output injection
to modify the dynamics of a model. Output injection pro-
vides a similar feedback effect as the correction step of
an EKF. However, nonlinear output injection is a slightly
FMU different use case because the ELO is a continuous
time object. It is realized by feedback around a model-
sharing type of continuous time FMU, in contrast with the
algorithmic realization of a discrete-time EKF, which uses
the co-simulation form of FMU. We illustrate the design
and realization of an ELO for a building HVAC example,
in which we estimate unmeasured heat flows and unmea-
sured boundary conditions for use in a building “digital
twin.” We also make some remarks about model reduc-
tion and the challenges in realizing a conventional EKF
for these types of models.
Keywords: Estimation, Buildings, HVAC, FMI, FMU

1 Introduction
State estimation is one of the important use cases for the
Functional Mockup Interface (FMI). For example, states
of a nonlinear continuous-time model can be estimated
from discrete-time measurements of the input and output
of a plant using a continuous-discrete Extended Kalman
Filter (EKF), realized using the co-simulation form of a
Functional Mockup Unit (FMU) of the plant (Brembeck
et al., 2014, 2011). Fundamentally, the EKF, and its vari-
ous extensions estimate the state in a two-step process. In
the prediction step, the EKF computes the predicted state
estimate using a discretized plant model. Then in the cor-
rection step, the covariance and gain are computed as a
function of the predicted state estimate, and the predicted
state estimate state is corrected. The discrete-time pre-
diction model is then initialized using the corrected state,
and the process is repeated. Importantly, the two steps are
coupled in a causal manner: The prediction step at time

(k + 1) depends only upon the correction step at time k,
and the correction step at time k depends only on the pre-
diction step at time k. This fact allows an FMU to be used
in an algorithm to estimate the state in the prediction step,
since it can be initialized using the corrected state estimate
from the previous correction step.

An observer is an alternative technology for estimation
of the plant states and parameters. An observer is a de-
terministic, continuous-time dynamical system that takes
as input the measured input and measured output of the
plant, and produces as its output an estimate of the state
of the plant. It is similar to the Kalman filter, but based on
deterministic assumptions and mathematics. Fundamen-
tally, the concept of output injection is used to stabilize
the observer error dynamics, which govern the difference
between the estimated state and the plant state. Output
Injection means that a signal is injected (added) to the
derivative of the observer state vector as stabilizing feed-
back. Because of this, it is the continuous-time dynamics
of the plant with output injection that needs to be sim-
ulated. There are not separate prediction and correction
steps.

In this paper we show how an instantiation of a model-
exchange type of FMU can be used with the Dymola tool
to realize output injection, enabling design and implemen-
tation of linear and nonlinear state observers and specifi-
cally the Extended Luenberger Observer (ELO). Our spe-
cific interest is to estimate unmeasured performance vari-
ables of a building and HVAC system as a part of a
building “digital twin.” Toward this end we have con-
sidered several alternative methods to estimate the per-
formance variables, including various flavors of the EKF.
However, these may prove too computationally burden-
some for our application because the number of states can
be large (hundreds), the number of measurements can be
large (tens to hundreds), and the EKF can be computa-
tionally challenging because of the covariance update, al-
though there are many techniques such as model reduction
and square root filtering that are available to improve its
computational efficiency. More importantly, an EKF can
fail to converge, or in some cases, cause the model to fail
at run time, at least for our building HVAC applications.
Convergence failures are caused by some of the character-
istics of the model that we consider in this paper, which
are not unusual for this field of application. The model
is stiff (with time constants ranging from milliseconds to



several weeks — eight orders of magnitude), and is nu-
merically ill-conditioned (with states varying 8-9 orders
of magnitude because of the choice of units). Thus the Ja-
cobian may not accurately predict the state over the fixed
and usually large EKF sample time, causing it to diverge.
Moreover, the model itself contains state constraints, such
as a non-negative limit on mass concentrations, which can
be violated at run time because of the EKF correction step,
causing a run-time error.

On the other hand, the ELO is relatively simple and
light-weight computationally. In its simplest form, it uses
a constant feedback gain matrix that is computed at de-
sign time from the steady-state solution of a Ricatti equa-
tion, and therefore avoids the real-time covariance update
and computation of the system Jacobian that is necessary
for the EKF. Further, it may offer improved stability and
performance advantages over the EKF (and similar filters)
for certain applications because it makes use of implicit
variable-step solvers for the continuous-time model.

This paper is organized as follows. In Section 2, we re-
view the basics of the Extended Luenberger Observer. In
Section 3, we construct an ELO for a case-study building
and HVAC system and show some simulation results. We
show how the FMU is used to allow for the output injec-
tion. Finally in Section 4 we conclude by making some
observations on potential improvements of FMI to better
enable realization of estimators of different types.

2 Background
Following (Zeitz, 1987), consider the nonlinear system

ẋ = f (x,u,d) (1a)
y = h(x) (1b)
z = g(x) (1c)

where x ∈ Rn is the state, u ∈ Rm is the control input, as-
sumed measured, d ∈ Rq is a disturbance measurement,
assumed measured, y ∈ Rr is the measured output, and
z ∈ Rp is the performance output, assumed unmeasured.
Our objective is to estimate the performance output z. The
Extended Luenberger Observer is the system

˙̂x = f (x̂,u,d)+K(y− ŷ) (2a)
ŷ = h(x̂) (2b)
ẑ = g(x̂) (2c)

where x̂ ∈ Rn is the state estimate, ẑ ∈ Rq is the perfor-
mance output estimate, and K is the observer gain. Sys-
tem (2) is a copy of the original system, with the vector
K(y− ŷ), which is called output injection, added to the
state equations.

The state estimate error x̃ = x− x̂ is then governed by
the system

˙̃x = f (x,u,d)− f (x̂,u,d)−K(y− ŷ) (3a)
ỹ = h(x)−h(x̂) (3b)
z̃ = g(x)−g(x̂). (3c)

We linearize (3) about an equilibrium x̄ in a neighborhood
of x, defining

F =
∂ f
∂x
|x=x̄ , H =

∂h
∂x
|x=x̄ , and G =

∂g
∂x
|x=x̄ , (4)

so that the linearized error dynamics, neglecting higher-
order terms, are

˙̃x = (F−KH)x̃ (5a)
ỹ = Hx̃ (5b)
z̃ = Gx̃ (5c)

There exists an observer gain K to make the origin of (5a)
locally exponentially stable if the pair (F,H) is detectable.

There are many methods for the design of the observer
gain K e.g. (Luenberger, 1971; Chen, 1984; Friedland,
1986). In fact, more generally we can consider nonlin-
ear changes of state coordinates z = Φ(x,u,d), nonlinear
changes of the output coordinates ξ = Γ(y), and nonlin-
ear output injection K(y) as in (Krener and Isidori, 1983;
Krenner and Respondek, 1985; Hou and Pugh, 1999). Re-
search on methods for computing these remains an ac-
tive area of research e,g, (Boutat et al., 2009; Tami et al.,
2013). Here we will simply linearize the system (1) about
an equilibrium and compute the gain K that minimizes the
quadratic cost

J = min
∫

∞

0
z̃T Qz̃+ ỹT Rỹdτ (6)

by solving the steady-state Algebraic Riccati Equation

0 = AP+PAT −PHT R−1HT P+Φ
T QΦ, (7)

from which the observer gain is K = (R−1HP)T .

3 Building “Digital Twin” Case Study
In this section we design an ELO to estimate unmeasured
performance outputs in a commercial building HVAC sys-
tem. The primary purpose of the observer is to estimate
heat flows through the walls, ceiling and floor, and also
to estimate the unmeasured heat loads, denoted q, in the
occupied space. These estimates can be used to better un-
derstand building performance and improve human com-
fort and energy efficiency.

The building, diagrammed in Figure 1, is the top floor
of a medium-sized commercial office building, with open
floor plan for office work. We model the floor as a single
room with four outside walls, a floor and a ceiling. Above
the ceiling is a small plenum space that separates the ceil-
ing from the roof. The walls are made up of between one
and four layers of building materials. Windows are on
the South and West facing facades. The air conditioning
system is a chilled water plant, with fan coils for cool-
ing. Outside air ventilation is provided by a constant speed
ventilation fan, and the outside air passes through an En-
ergy Recovery Ventilation Unit (ERV) for pre-cooling in
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Figure 1. Building with plenum.

the summer season, but is otherwise not treated. For pur-
poses of design, we assume there are three measurements
available on a one minute sampling interval: The room
temperature Tr, the plenum temperature Tp, and the return
water temperature Tw. We also assume that the weather
variables are measured hourly. These include the outside
air temperature, humidity, wind speed, direct and indirect
solar radiation in visible and infra red radiation, cloud con-
ditions, and the atmospheric pressure. The room tempera-
ture Tr is compared to a reference set-point, and the error
is fed back through Proportional-Integral (PI) feedback to
actuate the valve in the fan coil.

The system is modeled using the Modelica buildings
library (Wetter et al., 2014) as two rooms: one represent-
ing the working space, and the second representing the
plenum, as shown in Figure 2. The outside walls have four
layers, and the windows are double-paned glass. Orfices
are put between the plenum and room to represent airflow
between them, although its velocity is very close to zero
nominally. A cooling coil is connected to a variable speed
chilled water pump to provide variable capacity cooling.
An Energy Recovery Ventilator (ERV) is included to pre-
cool the outside ventilation air, which is provided at a fixed
rate. All of the model components are taken from the
Modelica buildings library. Typical Meteorological Year
(TMY) weather for Tokyo is used in all simulations. The
complete model has 85 states, three measured outputs, one
input (the water pump speed), and eleven disturbance in-
puts corresponding to the eleven weather variables used in
the building library. A PID controller from the Modelica
Standard Library is added to the model later for feedback
to regulate the room temperature to a desired set-point.

We now step through the design and implementation
steps, beginning with model augmentation, which is done
in order to estimate unmeasured model inputs, then model
linearization, order reduction, feedback gain design, and
FMU realization.

3.1 Model Augmentation
After constructing the nominal model, it must be modified
for use as an estimator. Normally the heat load q is consid-
ered an input to the model. (Actually, there are three dif-

ferent types of heat load: Radiative, Sensible and Latent.
Here we assume all of the heat load is sensible.) However,
in order to estimate q from the available measured outputs,
we augment the model to include q as a state. We assume
that the heat load is constant, and then add the equation

q̇ = 0 (8)

to the Modelica model. This is done by adding an inte-
grator to the model as the heat load, with its input set to
zero. This will allow us to estimate the heat load with zero
steady-state error if it is constant, and a small tracking er-
ror if it is time-varying.

Mathematically, the building and HVAC model is

ẋ = f (x,u,d,q) (9a)
q̇ = 0 (9b)
y = h(x) (9c)
z = g(x) (9d)

where z is the heat flow through the surfaces of interest
(floor, walls, ceiling, and window), y is the three measure-
ments, x is the 85-dimensional state vector, d represents
the measured weather inputs into the model, and u is the
water valve control input. The model used for estimator
design does not include the PI feedback controller, which
is added later for simulations.

3.2 Linearization
We then simulate model for approximately one million
seconds (about 1 week). This is necessary because the
slowest observable mode in the model has a time constant
of approximately eight hours, which comes from the con-
crete building materials in the walls. For the linearization,
we zero the radiative effects of the weather, and assume
the outdoor temperature and humidity are constants repre-
senting typical weather in the summer. This is not ideal,
since the radiative effects are dominant. However, it is ef-
fective for this particular application. The linearization is
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Figure 2. Modelica model.



represented as

ẋ = Ax+Bu (10a)
y =Cx (10b)

3.3 Observer Gain Design
We design the observer gain K ∈ R86×3 as outlined in the
previous section, with a penalty Q ∈ R86×68 on the esti-
mated states, and R ∈ R3×3 penalizing the measurements.
For simplicity, these are set to be diagonal matrices. How-
ever, we find that a solution to the Riccati equation (7) for
the linearized model and any such values of Q and R does
not exist! We must analyze the linearized model (10), and
then modify and reduce it in order to properly design the
feedback gain K.

Computing the spectrum of A, we find a total of three
states have eigenvalues at exactly zero, one state has an
eigenvalue at almost zero, but corresponding to a time
constant of several months, and the remainder have real
negative parts with time constants ranging from 12ms to
7hours, as expected. (It may surprise the reader to see
such fast modes in a model of an HVAC system. These
are due to heat flow in the metal heat exchanger.) One of
the three zero eigenvalues corresponds to the integrator,
which can be verified by computing the left eigenvalues
of A and showing that the integrator state corresponds ex-
actly with the corresponding left eigenvector. (This means
that the integrator state is affected by none of the other
states, but it does affect other states, and is, in fact, ob-
servable.) The other two states with exactly zero eigen-
value correspond to “physical” states that are introduced
into the orfice equations in the model, which can be seen
by inspecting the following code taken from the Modelica
buildings library.

Real mExc(quantity="Mass", final unit="kg")
"Air mass exchanged (for purpose of

error control only)";
initial equation
mExc=0;

equation
if forceErrorControlOnFlow then
der(mExc) = port_a.m_flow;

else
der(mExc) = 0;

end if;

We see that the state mExc is introduced for er-
ror control, and has its derivative set to zero if
forceErrorControlOnFlow=false. This state
has no effect on a simulation, but it is included in the
linearization. Inspection of the corresponding rows of
B and C verify that this state is neither controllable nor
observable, and is obviously not stable. Its presence in
the model therefore causes the Riccati equation solver to
fail. We therefore symbolically remove the two states
mExc, corresponding to the two orfices in our model, from
the linearization by removing the corresponding rows and
columns. Note that this is not a numerical calculation.
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Figure 3. Observer block diagram.

Then in the estimator, we simply initialize these states at
zero and they are effectively ignored.

The other eigenvalue near zero has an eigenvector that
is nearly aligned with the potential energy state of the
plenum air. However it is not an exact alignment, so we
cannot say that the physical state is exactly this slow state.
Its presence in the model causes the Riccati solver to fail
for some values of Q and R. We therefore remove it from
the linear model by modal decomposition, resulting in an
83-dimensional reduced model, which is detectable from
our three measurements (because it is exponentially sta-
ble). This reduced model is used to design a reduced-order
feedback gain Kr, and the full order gain is computed by
using a value of zero for the three states that were removed
and expanding back to the original 86-dimensional sys-
tem.

3.4 FMU Realization
A block diagram of the observer is shown in Figure 3.
This shows the structure of the inputs and outputs to the
observer. It takes as input the control input u, the measured
disturbances d, and the output injection vector w, which is
the feedback signal K(y− ŷ). The output injection vector
w is added to the dynamic equations. This diagram shows
the augmented state to include the unmeasured heat loads
q.

An FMU makes realization of the observer possible, be-
cause it is essentially a DLL for the right-hand side of the
ordinary differential equation, and once loaded into a tool
like Dymola, can be manipulated to allow for the output
injection. Figure 4 shows the Modelica model that adds
the output injection vector w to the right-hand side of the
differential equation that is defined by the FMU. Essen-
tially we declare the real input vector w and add each com-
ponent to the lines that define the der( · ). We have
created Python scripts to automate the process of editing
the Modelica file. We then instantiate the modified FMU,
wrap the feedback gain around it, and declare inputs and
outputs to drive the new model with data. Note that the or-
der of the states in the linearization is often different than
the order of states in the FMU. So as a practical matter,



Figure 4. Modification of FMI in Dymola.

we typically re-order the states of the linearization so that
it corresponds to that in the FMU.

3.5 Simulation Results
To test the observer, we first simulate it using data gener-
ated from the original model. For both systems, we de-
sign a PI feedback controller to regulate the room tem-
perature. We then simulate the data-generating model for
Tokyo weather during the last week of June. We drive
this model with an “actual" heat load as an input, as-
sumed to be zero until 8:00am when the workday starts
and it ramps up continuously to 4kW over one hour. (Of
course, the observer estimates this value.). We sample the
weather hourly, and the three temperature measurements
on a one minute clock, which is the typical sampling rate
for these applications. We then apply this data to the mod-
ified FMU, which also includes the same feedback con-
troller.

Some of the results are shown in Figure 5 and 6. In
Figure 5 we see that the ambient, plenum and water re-
turn temperatures have good information content, while
the regulated room temperature remains relatively con-
stant and therefore provides little information to the ob-
server. The plot also shows the estimated heat flows. The
flow through the ceiling is dominant, while that through
the south and west walls is relatively small. Heat flow
through the west wall is larger in the early evening, due
to solar radiation. The heat flow through the ceiling peaks
about six hours after the solar radiation peak, because of
the large amount of heat storage in the concrete above the
plenum. The plot at bottom shows the estimated and “ac-
tual” heat load. The observer is able to estimate the heat
load with little lag, and with zero steady-state error as ex-

pected. Figure 6 shows a close-up of the estimated and
actual heat loads. The observer is able to estimate the heat
load with some small lag and zero steady-state accuracy
when the actual load achieves its constant value at 9:00am.

4 Conclusions
In this work we have used FMU to realize an Extended
Luenberger Observer for a building HVAC application.
The approach is an alternative to an Extended Kalman Fil-
ter, and may offer some advantage in some applications,
such as improved convergence and reduced computational
complexity. The observer is constructed by augmenting
the model dynamics to allow for estimation of boundary
conditions, which is the heat load input to the model, lin-
earizing, reducing and designing a feedback gain to sta-
bilize the observer error dynamics, and then realizing the
feedback using output injection by modifying the FMU.
Some initial simulation results are provided as a simple
proof of concept.

There are several extensions to this work and we expect
to publish alternative formulations and experimental vali-
dation in the future. The most obvious is to compare the
performance to an Extended Kalman Filter and its vari-
ants. The design of the EKF is made possible by features
of FMI that allow for computation of the system Jacobian,
starting and time stepping of the model, and setting of the
model initial conditions which is done in the correction
step.

To date we have experienced quite a few challenges
with the EKF for this application. First, we find that the
correction step, which modifies the state, can push the
model outside its domain of validity. Often the states
are corrected in a manner that causes a state to violate
one of its limits. Mass fractions of water are particu-
larly troublesome. Although we might consider using
dry air models, the performance of the HVAC system is
strongly affected by humidity, and neglecting this physics
is not desirable. Is it possible to derive Modelica models
that extend regions of validity, into perhaps non-physical
domains? Modelers should think about this possibility,
since the models themselves are useful for things beyond
forward time-domain simulations. Of course, it may be
possible to modify the EKF itself, preventing the correc-
tion step from violating constraints. Indeed, a key reason
to consider Moving Horizon Estimators is that the con-
straints in the model may be enforced.

A second difficulty we have experienced with the EKF
is divergence, which may be caused by the stiffness and
poor conditioning of the model itself. We find that of-
ten the very slow states can be perturbed in the correction
step, causing very slow convergence or simply poor per-
formance. It may be possible to avoid some of this by
projection or resetting some of the states, although some
of the states of interest, e.g. some heat flows, depend on
the slow dynamics in the model. On the other hand, the
ELO seems more robust. This may be because it is using



the implicit variable-step DASSL solver.
We remark that a more thorough analysis of the slow

modes in these models is necessary. Often their presence
in a linearized model can cause conventional Hankel-norm
model truncation to fail. This is because these modes
are very slow, with eigenvalues very close to zero. The
Hankel-norm truncation begins by computing a spectral
decomposition, and only removes those modes with suf-
ficiently small Hankel singular value, and that are suf-
ficiently stable i.e., have a sufficiently negative eigen-
value. Such a truncation will keep these slow modes in
the model, even if they are very weakly controllable and
observable. Therefore, they must be removed from the
linearization before the Hankel-norm truncation is done.
Although these modes can apparently be removed in a
spectral decomposition of the linearization at design time,
there is no guarantee that the resulting reduced order
model will result in a correct estimator or controller de-
sign, and the modes are still present in the simulation
model. There are open questions such as how these should
be initialized in an estimator. The precise cause of these
slow modes needs further investigation.
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