MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Using Baumgarte’s Method for Index Reduction in Modelica

Bortoff, S.A.
TR2018-204 March 15, 2019

Abstract

We show by example how Baumgarte’s method can be used in a Modelica model to reduce
the differential algebraic equation index prior to compilation. This has advantages for some
constrained mechanical systems especially those with closed-chain kinematics, including im-
proved initialization and enabling model-based control system design. We derive models for
a simple pendulum, a delta robot and for elevator cable sway as case studies. The models
are used for simulation and also for dynamic analysis and to design and realize feedback
controllers.

International Modelica Conference

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright (© Mitsubishi Electric Research Laboratories, Inc., 2019
201 Broadway, Cambridge, Massachusetts 02139

Using Baumgarte’s Method for Index Reduction in Modelica

Scott A. Bortoff!

'Mitsubishi Electric Research Laboratories, Cambridge, MA, USA, bortoff@merl.com

Abstract

We show by example how Baumgarte’s method can be
used in a Modelica model to reduce the differential alge-
braic equation index prior to compilation. This has advan-
tages for some constrained mechanical systems especially
those with closed-chain kinematics, including improved
initialization and enabling model-based control system de-
sign. We derive models for a simple pendulum, a delta
robot and for elevator cable sway as case studies. The
models are used for simulation and also for dynamic anal-
ysis and to design and realize feedback controllers.

Keywords: DAE, index reduction, robotics, control

1 Introduction

Modeling and simulation of some types of constrained
mechanical systems, such as closed kinematic chains, can
be challenging in the Modelica language. One reason is
because component-oriented modeling for such systems
results in a set of high-index differential algebraic equa-
tions (DAEs). Modelica compliers, such as Dymola, use
the method of “dummy derivatives” (Mattsson and Soder-
lind, 1993; Bachmann, 2006; Cellier, 2006) to reduce the
index for very good and fundamental reasons. However,
for closed chains it has some disadvantages, and there are
other methods (Bauchau and Laulusa, 2007), which have
advantages especially for consistent initialization and use
cases beside simulation, such as control system design.

In this paper we show, by example, how Baumgarte’s
method of index reduction (Baumgarte, 1972, 1983) can
be used in Modelica to reduce the index of a constrained
mechanical system prior to compilation. Our primary ex-
ample is a delta robot, for which we derive a singularity-
free, index 1 DAE. No automatic index reduction is done
at compile time, and no dynamic state selection is required
at simulation time. We find that the method is amenable
to Modelica’s object oriented modeling paradigm, and re-
sults in simulation code that can be, at least anecdotally,
faster. We construct several components of a feedback
controller directly from the index-1 system model, and
show how consistent initial conditions can be computed in
this formulation. We provide a second example, elevator
cable sway, in which the method is vital to simulation and
feedback control system design. Interestingly, the method
can model certain types of time-varying constraints such
as loss-of contact or constraint breaking.

Baumgarte’s method should be considered as a viable
alternative - not a general replacement - to the automatic

index reduction algorithms that are built into Modelica
compilers. It is appropriate for certain situations in which
these algorithms either fail to reduce the index, or re-
sult in complex and therefore slow, simulation code. The
method has been criticized in the numerical analysis lit-
erature (Bauchau and Laulusa, 2007), primarily because
selection of values for its parameters, described later, is
problem-dependent, and because it results in a system of
equations that is of dimension larger than the number of
degrees of freedom in the problem. As a result, a simu-
lation can “drift,” meaning that the algebraic constraint is
not enforced exactly during a simulation. For some use
cases, this could be disastrous and the method should not
be used. However, for our applications, we find these criti-
cisms to be inconsequential. The method’s two parameters
are easy to tune, and the drift is on the order of the solver
tolerance, so it can be reduced by reducing the solver tol-
erance. The drift vanishes when the mechanical system is
at rest.

2 Toy Pendulum Example

Consider the equations of motion of a simple pendulum
expressed in Cartesian coordinates,

X =vi (la)
B =w (1b)
My = —2xA (lo)
Mvy = —2xA —g (1d)
0=nh(x)=x3+x3-L° (le)

where M is the pendulum bob mass, L is the rod length,
g is the acceleration due to gravity, x = [x; xp]7 is the
position in Cartesian coordinates of the pendulum bob,
v = [v;)T is the velocity, and A is the Lagrange multi-
plier which corresponds to the tension in the rod required
to maintain the constraint 2(x) = 0 in (le). System (1) is
an index-3 DAE in variables x, v and A. Modelica code
for the pendulum is (Fritzon, 2015)

Z2
z

Figure 1. Pendulum.

der (x1) = vl;

der (x2) = v2;

M x der(vl) = -2.0 x x1 x= lambda;

M % der(v2) = -2.0 * x2 x lambda - M * g;
h = x17"2 + x272 - L"2;

h = 0.0;

When this is compiled by Dymola, for example, the index
is reduced using the method of “dummy derivatives,” re-
sulting in a system with two differential states and three
algebraic states. However, for any single choice of dif-
ferential states, there exists a kinematic configuration in
which the solver Jacobian becomes singular. This means
that at least two representations are required to cover the
complete configuration space, and the solver switches be-
tween them. Figure 2 shows the Message window after
compiling this model, indicating that two sets of two dy-
namics states were selected.

Dymola Messages === @ .

Syntax Error Translation

[0 0 Errors I _ﬂ 2 Warnings I i) 11 Messages]

Dialog Error Simulation

Clear

i) Translation of myPendulum 1:
1) The DAE has & scalar unknowns and & scalar equations.
J'X The initial conditions are not fully specified.
Dymola has selected default initial conditions.
(1) Statistics
1) selected continuous time states
1) Dynamically selected continuous time states
There are 2 sets of dynamic state selection.
From set 1 there is 1 state to be selected from:
xl
x2

From set 2 there is 1 state to be selected from:
vl
v2

(1) Finished
1) Warnings were issued
1) Finished

Figure 2. Message Window showing two sets of two dynamic
states for the method of “dummy derivatives.”

Baumgarte’s method replaces (1e) with a linear combi-
nation of its first two derivatives,

H' (x,v,A) + ol (x,v) + oph(x) =0, ()
where o; > 0 for i = 0,1, and s* + a5 + o is Hurwitz
(all roots in the open left-half plane). Values for ¢; are
tuned depending on the specific problem. Large values
have smaller drift, but result in a stiff system. We find
that placing the roots at locations that are on the order of
the system time constant is sufficient. The resulting sys-
tem (1a)-(1d) and (2) is an index-1 DAE that has the same
solution as (1), which is shown below, and can be numer-
ically integrated with an index-1 solver such as DASSL.
Modelica code for the pendulum reduced via Baumgarte’s
method is

der (x1) = vl;
der (x2) = v2;
M * der(vl) =
M * der (v2) =

-2.0 * x1 * lambda;
-2.0 * x2 * lambda - M * g;

hO = x172 + x2"2 - L"2;

hl = der (h0);

h2 = der (hl);

0.0 = h2 + alphal » hl + alphaO x hO;

where we take advantage of Modelica’s automatic differ-
entiation. Figure 3 shows the message window for Baum-
garte’s method. We see that four static states are selected.

Dymola Messages

Syntax Error Translation [Dialog Error I Simulation |

[0 0 Errors I _ﬁ 2 Warnings I 1) 10 Messages]

= e =X

Clear

i) Translation of myPendulum3:
i) The DAE has 8 scalar unknowns and 8 scalar equations.

_ﬂ The initial conditions are not fully specified.
Dymola has selected default initial conditions.

(1) Statistics
4 (i) selected continuous time states
1) Statically selected continuous time states
x1

x2
x3
x4

i) Finished
j) Warnings were issued
i) Finished

Figure 3. Message Window showing one set of four dynamic
states for Baumgarte’s method.

Simulation of this model is about 5x faster than the first
system for the same simulation parameters, but it is less
accurate. Figure 4 shows the constraint 4(x) for a portion
of the simulation. Baumgarte’s method drifts away from
h(x) = 0 by an amount on the same order as the solver
tolerance (1e-4). On the other hand, the method of dummy
derivative implicitly enforces i(x) = 0 for all time, which
is one reason why it is used in compilers.

—— hd

4E-4+ n

%m;%wﬁ ‘ L
PaaVilvan
1 YV I

~4E-4-]

T T T T T T T T T T T T T
355 360 365 370

Figure 4. Constraint h(x) for the pendulum example, Baum-
garte’s method.

It is useful to understand the geometric structure of
the index-1 system (la)-(1d) and (2). Define zo = h(x)
and z; = h'(x,v). Following (Isidori, 1989), define & =
[z0 z1]T € R? to be the “linear” part. Then there exist coor-
dinates 1) € R? which are functions of x and v (after elimi-
nating A through algebraic manipulation) so that (1a)-(1d)
and (2) can be written locally in so-called Zero Dynamics

Normal Form (Isidori, 1989),

n:f(nvg)
£ =AE,

where the two eigenvalues of A are located at the roots of

(3a)
(3b)

s+ ays+op =0, “4)
and the two-dimensional zero dynamics
n=/(n0) (&)

are the dynamics of the pendulum. In other words, we
simulate a four-dimensional system with state [x v]” € R?,
but there is an attractive two-dimensional manifold in R?,
defined by & = 0, on which the pendulum dynamics exist
and evolve according to (5). The &-dynamics are expo-
nentially stable, and once they converge to 0, do not affect
x or v. This has two important implications. First, we
may initialize the system at a state [xo vo]” € R* nearby
& =0, and the state it will converge exponentially to the
constraint manifold & = 0. This can be useful to compute
consistent initial conditions by starting with an inconsis-
tent initial condition and simulating the system until the
exponentially stable part has converged. Second, if we lin-
earize (1a)-(1b) and (2), we expect two pole-zero cancella-
tions at the roots to (4). In a control design situation, these
modes are exponentially stable, and are uncontrollable
and unobservable, and may therefore be removed with a
Hankel-norm model truncation (Skogestad and Postleth-
waite, 2005) because their corresponding Hankel singular
value is zero. The resulting reduced-order model is two-
dimensional (because we started with a system of dimen-
sion four, and removed the two modes) and is equivalent
to a linearization obtained otherwise, e.g., if we reduced
the index using the method of dummy derivatives and then
linearized it.

2.1 Breaking Pendulum

One advantage that Baumgarte’s method offers is simula-
tion of breaking constraints, which is an example of multi-
mode modeling (Elmgqvist et al., 2017). Consider the situ-
ation in which the pendulum rod will fracture if its tension
exceeds a threshold. This situation is difficult to model
using conventional methods, because the index changes
from 3 to O when the rod breaks. It can be modeled with
Baumgarte’s method because the number of equations and
variables remains constant before and after the break.

der (x1) = x3;
der (x2) = x4;
M * der (x3) = rhsX;
M % der (x4) = rhsY;
if lambda < lambdaMax then
rhsX = -2.0 * x1 * lambda;
rhsY = -2.0 * x2 x lambda - M * g;
0.0 = h2 + alphal * hl + alpha0O % hO;
else

rhsX = 0.0;

rhsY = -M * g;
lambda = lambdaMax + epsilon;
end if;
hO = x172 + x272 - L"2;
hl = der (hO0);
h2 der (hl);

(Note that the value of 1ambda should be zero after the
break, but we set it to an arbitrary lambdaMax+epsilon
to avoid switching back after the break.) Figure 5 shows
the result of a simulation.

-0.8

-0.9r
£
>
11
12 :
06 04 02
7
36
Qo
£
Sst
4 ‘ ‘ ‘ ‘
0 2 4 6 8 10
Time (s)
Figure 5. Simulation of breaking pendulum, in (x,y)-

coordinates (top), and the Lagrange multiplier (bottom) .

3 Delta Robot Model

Next we use the same method to derive a model of a delta
robot (Clavel, 1990) pictured in Figure 6, consisting of
three symmetric arms constrained kinematically by uni-
versal joints at the end effector. Each arm consists of a
proximal link, rigidly attached to a servomotor shaft at the
proximal end, and a pair of parallel distal links that are at-
tached to the proximal link via a pair of universal joints.
The six distal links are attached to the end effector by uni-
versal joints such that the pair of arm distal links remain
parallel, and the orientation of the end effector is invariant.

Delta robots are closed-chain mechanisms. Unlike the
kinematics of serial chain robots (Spong and Vidyasagar,
2004), the forward kinematics of the delta robot (the
function from actuated joint angles to the location of
the end effector) cannot be expressed analytically (Mer-
let and Gosselin, 2008), making formulation of dynamic
(and inverse dynamic) equations of motion more difficult
(Guglielmetti, 1994; St. and C., 2003; Merlet and Gos-
selin, 2008; Brinker et al., 2015).

We derive the robot dynamics as in (Bortoff, 2018) first
by defining the dynamics for each independent arm, as-
suming it is unconstrained, and then adding the holonomic
coupling constraint representing the end effector. The
resulting index-3 DAE is stabilized using Baumgarte’s
method, giving an index-1 DAE.

Proximal
Link 3

Proximal
Link 1

Distal Link 3

Distal Link 1

End Effector

Figure 6. Delta robot.

End
Z2 Effector

A /
Base

/v~_¢73 -

Proximal
Link

o

Gravity

Direction Distal

Link

lo — Iz + 11 cosqy + 2 cos g

1 sin ¢ + 2 sin g2 cos g3

=3

X3 I sin gs sin g3

Figure 7. Delta robot arm coordinates with end effector location
X3 indicated.

3.1 Arm Dynamics

In deriving the dynamics of each arm, we can lump to-
gether the two distal links into a single effective link. Re-
ferring to Figures 6-7 in which the fixed “world” frame has
axes labeled [x1,x2,x3], let ¢ = [@1, ¢, ¢3]” be the general-
ized angular position for the arm, defined as follows. The
servomotor angle is @, which is the rotation of the prox-
imal link about the x;-axis, measured with respect to the
xp-axis. The universal joint position is represented with
¢, representing the rotation about the xj-axis measured
with respect to the x,-axis, and ¢3 representing the rota-
tion about the x,-axis measured with respect to the x; —x3
plane. Note that, in these coordinates, the universal joint
has a singularity at ¢, = 0. However, this is outside the
range of motion of the robot once the three arms are kine-
matically constrained by the end effector.

Assuming that the distal links are thin rods, i.e., neglect-
ing the inertia of the distal link about its longitudinal axis,
the kinetic energy of each arm, including 1/3 the mass of

Arm 2

7 Distal
Link 2

q23

Proximal)
Link2 " / Arm 1
Distal Link 1

Base — :'J
rqlii’ To

Distal

Link 3 Proximal Link 1

Arm 3 W—.'J.TA
A Proximal
. Link 3
(33

X1

Figure 8. Delta robot coordinates, bottom view, looking up.

the end effector, is

. 1 1 1
T(9,¢) = Emlchlxcl + imzchzxd + 6’"3ch35%3

3002+ (502264 63) . ©

where the position of the center of mass of the proximal
link is

0.0
leycos(r) |,
I sin(@y)

the position of the center of mass of the distal link is

lcz Sin(¢2) sin(¢3)
A COS(¢1) +ZCZCOS(¢2))
I sin(¢1) + L2 sin(¢2) cos(¢3)

the position of the center of mass of the end effector is

lz sin(¢2)sin(¢3)
lo— 13 +11cos(91) + Ll cos(¢2)
Iy sin(¢y) + I sin(¢) cos(@3),

the velocities X1, X and X.3 are computed by the chain
rule to be functions of ¢, ¢ and the parameters are listed in
Table 1. Note that the forward kinematics of the arm are
defined as y(¢) in (9). The gravitational potential energy
of each arm is

vig) =

(N

Xel =

®)

X2 =

Xe3 = W(¢) = 9 (9)

—g((leymy + 1y (ma +m3/3)) sin(¢r)
+ (lczmz + lzm3/3) sin(¢2) COS((])3) ,(10)

where gravity points along the positive x3 axis and 1/3 of
the mass of the end effector is included in each arm. The
Lagrangian

L(9.9)=T(9,9)—-V(9)

is used to define the arm equations of motion with La-
grange’s equation,

1D

doL JL

Table 1. Delta robot parameter definitions.

Symbol | Description (Units)
lo Base radius (m)
Iy Length of proximal link (m)

153 Length of distal link (m)
I3 Width of end effector (m)

I Distance to proximal link center of mass (m)

lo Distance to distal link center of mass (m)

my Mass of proximal link (kg)

my Mass of distal mass (kg)

ms3 Mass of end effector (kg)

Ji Rotational inertia, proximal link (kg - m?)

J Rotational inertia, distal link (kg - m?)
giving

m(9)¢ +c(¢,0)+g(¢) = bu, (13)
where m is the 3 x 3 inertia matrix, c is the 3 x 1 vector
of Coriolis and centripetal torques, g is the 3 x 1 vector
of torques due to gravity, b = [1,0,0]” and u is the ser-
vomotor torque. Expressions for m, ¢ and g are given in
Appendix 1.

3.2 Robot Lagrangian Dynamics

Each of the three arms is identical except for a 120° ro-
tation about the z-axis. To represent the dynamics of the
full robot, we sum the unconstrained Lagrangians for each
arm (11), and augment the result with the holonomic con-
straints that equate the x.3 positions of the end effectors of
each arm (9) in the world coordinates. Lagrange’s equa-
tion gives the constrained dynamical equations.

Referring to Figure 8, define ¢; € R3for1 <i<3,to
be the generalized angular position of each of the three
arms, replacing the ¢-notation used in Section 3.1. Define
g = [q1,92,43]" € R® and the unconstrained Lagrangian
as

Lu(q7Q) = L(qlaq.l) +L(q27q2) +L(q37q3)7

and form the augmented robot Lagrangian as

La(9.9) = Lu(9.4) + A" h(q), (14)
where the constraint 4(g) : R® — R® is
_ | vlg1)—R(27/3) w(q2) 1
"= g -ri-22/3) W) | Y
the rotation matrix
cos(B) —sin(B) O
R.(6)= | sin(@) cos(6) O |, (16)
0 0 1

v is defined in (9), and A € RO is a vector of Lagrange
multipliers. Then the Lagrangian equations of motion for
the robot are

doL, oL, .,
i9q g A" H(q)+ Bu A7)
h(g) = 0, (18)

where

Hig) = 252,

Defining v = ¢, (17)-(18) can be written as a set of 24
first-order DAEs of Index 3 (Brenan et al., 1996; Kunkel
and Mehrmann, 2006), in the variables g € R?, v e R? and
A € RO,

qg = v (19)
M(q)v+C(q,v)+G(q) = ATH(q)+Bu (20)
h(g) = 0, 1)
where
M(q) = diag(m(q1),m(q2),m(q3)) € R”,
C(q,v) = diag(c(qi,v1),c(q2,v2),¢(g3,v3)) € R?,
G(g) = diag(g(q1).8(42),8(q3)) €R’,

B = diag(h,b,b) € R,

Equations (19) - (21) are a complete dynamic model of the
delta robot, but index reduction is necessary for simulation
and application of modern control theory.

3.3 Robot Hamiltonian Dynamics

For some applications such as port-Hamiltonian analysis
(van der Schaft, 2013) it is useful to have a Hamiltonian
model of the robot. This is derived in similar fashion by
defining the momentum vector p € R® and the Hamilto-
nian H = T 4V for each arm, augmenting the constraint
(15) by the Lagrange multiplier A and solving the Hamil-
tonian equations, resulting in

M(q)qg = p (22)
p = ;vaA;;Q)v—G(q)—I—Bu+HT(q)k(23)
h(q) = 0, (24)

where the partial derivatives of M need to be computed
symbolically. This formulation has about the same com-
putational complexity as (19)-(21), results in similar nu-
merical solutions using the same type of solver, but could
be used with a symplectic solver for speedup.

3.4 Index Reduction

Following the same approach from Section 2, the con-
straint (21) is replaced with a linear combination of its first
two derivatives with respect to time. Define

20 = hiq) (25)
a = = 81;(") g (26)
q
n = z21=H(q)q+H(qM '(q) (A"H(q)
and replace (21) or (24) with
22+ 0121 + 0pzo =0, (28)

where s% 4+ a5 + o is a Hurwitz polynomial (all roots in
the open left-half plane). The model (19)-(20) and (28) or
(22)-(23) and (28), is an index 1 DAE with 18 differential
equations, 6 algebraic equations and 24 states ¢, v and A,
or ¢, p and A, respectively.

It is interesting to express the dynamics in Zero Dynam-
ics Normal Form, as we did for the pendulum. Following
(Isidori, 1989), we define & = [z9 z1]7 € R'? to be the “lin-
ear” part. Then there exist coordinates 7 € R® which are
functions of ¢, v and u (after algebraically eliminating 1)
so that (19)-(20) and (28) can be written locally in Zero
Dynamics Normal Form (Isidori, 1989),

(29a)
(29b)

77 :f(rhéﬂ’t)
£ =AE,

where the 12 eigenvalues of A are located at the roots of
(28), and the 6-dimensional zero dynamics

1= f(n,0,u) (30)

are the dynamics of the robot. In other words, there is
a 6-dimensional manifold defined by & = 0 on which the
robot dynamics exist and evolve according to (30). The
&-dynamics are exponentially stable, are not controllable
from u, and once they converge to 0, do not affect g or v.
This means that if we linearize (19)-(20) and (28), we ex-
pect to see 12 poles and zeros at the roots to (28), and these
dynamics are neither controllable nor observable. They
are easily removed using a Hankel-norm model truncation.
The resulting reduced-order model is six dimensional and
equivalent to a linearization obtained otherwise.

In practice, expressions for z; and zp in (26)-(27) are
computed automatically using the der (-) operator. Also,
because the model is an index 1 DAE (instead of an in-
dex 0 ODE), it is not necessary to compute the inverse of
the inertia matrix for either the Lagrangian or Hamiltonian
formulations. Further, it is not necessary to compute 7 or
f in (29a)-(29b). Deriving these expressions is done to
understand the geometric structure and properties.

The primary disadvantages of Baumgarte’s method are
that 24 equations in 24 variables are produced, instead of
the minimal six (although A can be removed by algebraic
manipulation, leaving 18 implicit first-order differential
equations in 18 differential variables), and that numerical
solutions to (19)-(20) and (28) will drift off the constraint
manifold 2 = 0 when the system is in motion. However,
for this application we find the drift to be small, is com-
putable for monitoring purposes, and controllable in the
sense that it is reduced by reducing the solver tolerance.
Moreover, simulation times for (19)-(20) and (28) are an
order-of-magnitude faster than the model that results from
index reduction by the dummy derivative method, despite
the fact that we require three times more equations and
dynamic states, due to the simplicity of the equations.

o le s

D2 B-¢»s@HEEL w -2

S

ERICE e » s

Figure 9. Screenshot of the Modelica deltaRobot library (left)
and an a gravity-compensating PID feedback controller (right),
showing the use of forward and inverse kinematics, gravity com-
pensation and PID. The library contains models of the kinemat-
ics at the lowest level, arms, and robots at its highest level. We
also have a package of controller components and a growing li-
brary of tasks, such as assembling Lego.

4 Modelica Library

We have created a Modelica library including models of
the delta robot, various control algorithms that are de-
rived from the model, and assembly tasks such as stacking
blocks and assembling Lego bricks. A screen shot of the
library is shown in Figure 9. For the delta robot models,
the library is organized as a hierarchy, with partial models
of the kinetics and parameters at the lowest level, extended
into full models of the arms at the intermediate level, and
models of the full robot at the highest level. We provide
partial code listings of these components in the Appendix.
At a higher level, multiple robots can be declared, and
constraints among them defined in a manner analogous to
what we have done for the arms. This allows for analysis
of cooperative control using the same mathematics and ap-
proach. We remark that this is difficult using the Modelica
standard library, because constraint forces acting on dif-
ferent parts of the end effector, for example, are difficult
to introduce. The Lagrangian approach provides a natu-
ral way for additional constraint forces to be introduced,
making this formulation more natural and effective when
developing force and assembly control algorithms.

In the subsections that follow, we describe some of the
control system blocks that we have constructed from the
DAE model, each of which is realized as a functions using
algorithm blocks.

4.1 Forward Kinematics

The forward kinematics function takes as input the three
joint measurements at the servos and computes the other
six joint angles (which are unactuated and unmeasured),

and the location of the end effector in world coordinates.
The robot Jacobian is also computed. The forward kine-
matics are one-to-one but not onto, and defined implicitly
by (15), which needs to be solved numerically. Specif-
ically, partition ¢ into measured and unmeasured states
by defining y = [¢11,421,931]" to represent the measured
joint angles, and x = [g12,4¢13,922,923,¢32,433)" to repre-
sent the unmeasured joint angles, and rearrange the vari-
ables of & so that (15) can be written

h(x,y) = 0. 31)
This is solved for x using Newton’s method
dh
5, W) - (et —xe) = —h(x,), (32)

which typically converges to 7 decimal places of accuracy
in 2-3 iterations since it can be initialized close to its solu-
tion in a real-time application. Each iteration requires the
solution to a 6-dimensional set of linear equations. With
the solution (x,y), the end effector location is computed
using ¥ in (9), and the robot Jacobian is also computed.

4.2 Inverse Kinematics

The inverse kinematics takes as input a location of the end
effector w € R? and computes values for the joint angles
g € R®. This is not one-to-one: there is not a unique so-
lution for all values of w. The inverse kinematics defined
implicitly by the nine equations

W(g) —w=0 (33)
for i = 1,2,3. This is solved using Newton’s method with
some logic for choosing the desirable solutions. Each
Newton iteration involves computing the solution to three
3-dimensional linear systems of equations, making the
complexity less than the forward kinematics.

4.3 Gravity Compensation

One popular control scheme is to cancel the effect of grav-
ity on the manipulator with an inner loop, and then close
an outer feedback loop with a PD or PID compensator.
The gravity compensating feedback is computed as the so-
lution to the 9-dimensional set of linear equations

B

where in any real-time application g is computed via the
forward kinematics from the joint measurements y. A
closed-loop model including a delta robot, gravity com-
pensation and using forward and inverse kinematics is
shown in Figure 9.

]wBHW@L:wa (34)

4.4 Feedback Linearization

A feedback linearizing control law can be defined as fol-
lows. Let

wi = y(q1) (35)

denote the location of the end effector. Symbolically dif-
ferentiate this twice

(36)
(37

Wi =dy(q1)vi
dy(q1)vi +dy(q1)v1.

w2

%)

Solving (20) for v and substituting the result into (37)
gives

Wy = ou(q)+Blg)-u
from which the control law

1
u=——(—alq) —kyw; —kowr +wy)

B(q)

renders the system linear from w, to w;. Expressions for
o and B can be computed automatically. They require in-
version of the 9 x 9 inertia matrix M, which is not difficult
because it is block diagonal.

S Linear Control Design and Analysis

The model (19)-(20), (28) and control functions described
in the previous section, realized in the deltaRobot Model-
ica library, enable dynamic analysis and model-based de-
sign of new control algorithms for various tasks related to
pick-and-place and robotic assembly. Here we show some
results of an example dynamic analysis. We compute the
linearization of the delta robot using values for parame-
ters that are measured from a delta robot in our labora-
tory, at the equilibria g;; = Orad, meaning that the proxi-
mal links are all horizontal. A pole-zero plot is shown in
Figure 10. First, notice that there are 12 pole-zero can-
cellations at s = —5 corresponding to the dynamics of
(29a), as expected. These do not affect the input-output
behavior and can be eliminated from the linear system
by a Hankel norm truncation. Perhaps surprisingly, this
configuration is open-loop unstable. Note that this con-
figurations is well within the reachable workspace. (The
unstable root crosses into the right-half plane at an angle
of approximately ¢;; = 22°, for our robot.) This kind of
instability is a common characteristic of robotic manipu-
lators, and has important consequences. For example, sta-
bilizing feedback gains have lower limits (Skogestad and
Postlethwaite, 2005). In some applications such as fine
force control, it is common practice to reduce feedback
gains to maintain stability during contact. But the lower
bound means that this practice has has limits, which are
not obvious without a model-based analysis.

6 Elevator Cable Sway

Modeling elevator cable sway is another example where
we have applied Baumgarte’s method. The system is di-
agrammed in Figure 11. The traveling cable, which sup-
plies power and signals to the car, is attached to the bot-
tom of the car at one end, and the inside of the elevator
shaft at the other. The cable experiences horizontal mo-
tion (“sway”) when the car moves or when the building

Eigenvalues (x) and invariant zeros (o)

Imaginary part

& T T T T T T T T T T T

Real part

Figure 10. Pole-zero plot of the delta robot in equilibrium with
g1 = Orad for the three proximal links. There are 12 pole-zero
pairs at s = —5 corresponding to the dynamics of (28). The plot
shows four poles at approximately s = —2 + j, one at s = —6.5,
and an unstable pole at s = 5.2.

sways due to wind or earthquake. Because it can be dam-
aged by striking the wall, we design a feedback controller
attenuate the cable sway by moving the car.

The system can be modeled as a constrained chain of
rigid links with springs and dampers between each link
(Tomaszewski and Pieranski, 2005),

g=v (38a)
M(q)v+C(g)v* +Dv+G(q)
+Kq+al(q)ic+b(q)iy=AH"(q) (38b)
h(g) =0 (38¢)
where
hg)=[£— Xy Isin(qe) 5—X3 cos(gr) |, (39)

g € RV is the vector of link angles, v € R" is the vector
of angular velocities, M, C, D, K and G are the inertia,
centripetal, damping and gravity matrices, respectively, 7
and 7, are the x and y acceleration of the frame marked
“Q,” respectively, A € R? is the Lagrange multiplier vec-
tor, i = O represents the constraint of the chain attached to
the wall at locations ¥ and y, and N is the number of links,
typically N = 100.

Equation (38) is a DAE of index 3, and we reduce the
index exactly as we did earlier, replacing the constraint &
with a linear combination of its first two derivatives. The
resulting index-1 model is then used for simulation and
feedback control design. The details are omitted for space
reasons, and we present the results of one particular feed-
back controller which takes as input a single measurement
of horizontal cable displacement, filters the measurement
through a lead compensator which is designed using a fre-
quency response computed from the model, and applies
the output to the car motion controller. In Figure 12 we

(]

- —
r .
y
I Time-Varying

r Boundary
I Y conditions

'

CAR

Link 1 l
q1
Link 2 l

q2

Shaft
Wall

<
i o e e

2 Constraints

l Link N-2 <«

Gn—2 Link N 1

Link N-1
l qn

l dn—1
Figure 11. Elevator Cable Sway.

| &
1

see the horizontal displacement of the car due to building
sway that is caused by an earthquake, when the controller
is off. This causes the cable to sway. In Figure 13, the
feedback controller is engaged 50s after the earthquake
begins, and moves the car up and down for a period of
300s, attenuating the cable sway by 75%.

We remark that a model of an open chain is elementary
to construct from the Modelica Standard Library (MSL)
and has been used for benchmarking (Casella, 2015).
However, we have not been successful in modeling the
constrained chain using the MSL, because the index re-
duction fails for large values of N. Even if it did com-
pile, consistent initialization would be a challenge. On
the other hand, using Baumgarte’s method, we are able to
compile models with N > 200 and can initialize the DAE
using the procedure outlined in Section 2.

7 Conclusion

In this paper we show how Baumgarte’s method of in-
dex reduction can be used in a Modelica model of a
constrained mechanical systems. The method reduces
the model index prior to compilation, so that the model
does not undergo automatic index reduction by the com-
piler. Baumgarte’s method has some advantages over the
“dummy derivative” method that is integrated into Model-
ica compilers for some models. It may be easier to com-
pute consistent initial conditions, the derived models can
be used directly to derive model-based control algorithms,
and simulations may run faster. On the other hand, the
method does not enforce constraints exactly, and drift oc-
curs during simulations. We find, however, that this drift is
not consequential for our mechatronic applications, and in

02 Car X-Disiplacement dpsi [1 ’ 1] =0

Sl ' ' ' ' '] dpsi(1,2]-p. L2*cos<q[1) *sin(q[31);
2, dpsi[l,3]=p.L2xsin(q[2])*cos(q[3]);
£ ol | dpsi[2,1]=-p.Ll*sin(g[l]);
8 o2 dpsi[2,2}——p L2*31n([21);

0 100 200 Ti:]go(s) 400 500 600 dpsi [2 , 3] :
o ' ' CarY-Disi'pIacemenl ' . dpsi[3,1]=p. Ll*COS (qll1);
= osf . dpsi[3,2]=p.L2xcos (q[2]) *xcos(ql3]);
E o dpsi[3,3]=-p.L2*sin(q[2]) *sin(q[3]);
g osf 1 end deltaArmKinematics;
a A1 ! L L L N

’ " 0 Time (9 0 . . Arm dynamics are defined extending the kinematics

Cable Disiplacement . .
g2 - - - - model. These expressions are computed in Mathemat-
E ;] ica and exported via scripts, automatically generating the
g4l Modelica code.
o 00 200 Tﬁi) 200 500 600 model deltaRobotArmLagrange
ime (s,

extends deltaArmKinematics;

Figure 12. Car x (top) and y (middle) motion, and elevator cable Real v[3], taul3];

sway (bottom) due to earthquake. g::?e;tg?m . C16,31,G[3];
equation
// Inertia Matrix...
s Car X-Disiplacement m[l,1]=p.Jl+p.LC1"2xMl+p.L1" 2% (p.M2+p.M3) ;
gL ' ' ' ' ' | m[l,2]=p.L1*(p.LC2%p.M2+p.L2xp.M3) ...
é 0 *(cos(g[l])*cos(g[2])*cos(q[3])...
EOM/V\/\W] +sin(q[1]) *sin(q[2]));
8 02 m[l,3]=-p.Llx(p.LC2%p.M2+p.L2%p.M3) ...
0 100 200 Tiri(;ﬂ(s) 400 500 600 *Cos (q[l})*51n(q[2])*81n(q[3]);
= 5 CarYDlsmIacemen(. m[2 , 1] =m [1, 2] ;
=1k 4 m(2,2]=p.J2+p.M2xp.LC2"2+p.M3*L2"2;
%0 m(2,3]1=0.0;
_‘_é--1 IOFF 7 m[3l l]zm[l, 3];
=2 100 200 200 500 600 m[3,2]1=0.0;
cwbngmumwm m(3,3]=(p.J2+p.M2xp.LC2"2+p.M3%p.L2"2) *sin (
ET ' ' N] ql2]) "2
éo_ // Centripetal and Coriolis vectors...
5-1- 75% Reduction t R cll,1]1=0.0;
g2,))))) cl[l,2]=p.Ll* (p.LC2%p.M2+p.L2%*p.M3) ...
0 100 200 Tili(;o(s) 400 500 600 *(cos(q[l])*sin(q[2])7cos(q[2])*cos(q[3])*

sin(qlll));
Figure 13. Car x (top) and y (middle) motion, under feedback ~ ¢[1/31=p.Ll* (p.LC2*p.M2+p.L2+p.M3) . ..

control, and elevator cable sway (bottom) during earthquake. *sin(q[l])*sin(ql2])»sin(q[3]);
c[2,1]=p.Llx(p.LC2xp.M24+p.L2xp.M3) ...

* (cos (q[2]) *sin(gll])-cos(g[l])*cos(q[3])*

I . . i 2 i
fact the method allows for compilation and simulation of | (2, ZS] l:% (_%E]C)[)z 31=0.0;

some models that otherwise cannot compile and initialize. ¢[3,1]=— (p.L1# (p.LC2+p.M2+p.L2+p.M3) . ..
We believe the method may find successful application in xcos (q[3]) xcos (q[1]) *sin(q[2]))
other domains, particularly for problems in which consis- c[3,2]=-(p.J2+p.LC2"24p.M2+p.L2"2%p.M3)
tent initial conditions are difficult to compute. xcos (q[2]) »sin(q[2]);
c[3,31=0.0; c[4,1]1=0.0;
. c[4,2]1=0.0; c[4,31=0.0;
A Delta RObOt MOdellca MOdel c[5,1]1=-2.0%p.L1lx(p.LC2%p.M2+p.L2%p.M3) ...
The Delta robot arm kinematics are defined in the follow- *cos (q[1])*cos (ql2])*xsin(ql3]);
ing partial Modelica model. c[5,21=0.0; ,
c[5,3]1=(p.J24p.LC2"2xp.M24p.L2"2xp.M3) *sin
partial model deltaArmKinematics (2+xgql2]);
deltaArmParameters p; // Parameters cl[6,1]1=0.0; c[6,2]=0.0; c[6,3]=0.0;
Real q[3],psi[3],dpsil3,3]; // Gravity vector...
equation G[l]=-p.g*x(p.LCl*xp.Ml+p.Llx (p.M2+p.M3)) ...
psi[l]=p.L2xsin(q[2])*sin(gl3]); *cos (gl[l]);
psi[2]=p.L3-p.L0+p.Llxcos(gq[l]) ... G[2]=-p.g*x (p.LC2%p.M2+p.L2xp.M3) ...
+p.L2xcos (q[2]); *cos (g[2])*cos (ql[3]);
psi[3]=p.Llxsin(q[l])+... G[3]= p.g* (p.LC2*p.M2+p.L2*p.M3) ...
p.L2xsin(qg[2]) *cos (q[3]); *sin(q[2])*sin(q[3]);

// Gradient of end effector location ... // Arm Dynamics. ..

der (q) v

mrxder (v)+c[l, :]1*v[1]"24+c[2,:]1*Vv[2]"2...
+c[3,:]*xv[3]1"2+c[4, :]*v[1]*xv[2]...
+c[5, :]*v[2]*Vv[3]+c[6,:]*v[1]*VvI[3]...

+G+p .DAMPING. *v = tau;
end deltaRobotArmLagrange;

Below is the Lagrangian robot model. The Hamiltonian
version is similar. Note that the derivatives of & are com-
puted automatically.

model deltaRobotLagrange
Arms.deltaRobotArmLagrange arml,arm2,arm3;
Real lambdal[6];
Real hO[6],hl[6],h2[6];
Input Real ul[3];
parameter Real POLE=5.0;
constant Real Rot2([3,3] =
(2.0+xPI1/3.0);
constant Real Rot3([3, 3]
(-2.0xPI/3.0);

Utilities.RotZ

= Utilities.RotZ

constant Real B[3] = {1, 0, 0};
equation
// tau = H"T(qg) #* lambda...

arml.tau=transpose (arml.dpsi)*lambdal[l:3]
+transpose (arml.dpsi) xlambda[4:6]+Bxu[l];

arm2.tau=-transpose (Rot2xarm2.dpsi) ...
lambda[l:3]+Bxul2];

arm3.tau=-transpose (Rot3xarm3.dpsi) *...
lambda[4:6]+Bxu[3];

// Baumgarte’s method of index reduction...

hO=cat (1,arml.psi-Rot2xarm2.psi, ...
arml.ps —-Rot3+xarm3.psi);

hl=der (hO0) ;

h2=der (hl);

zeros (6)=h2+2.0*POLE+h1+POLE"2+h0;

end deltaRobotLagrange;

We remark that the index-3 model can be constructed
by replacing the last line with

hO=zeros (6) ;

which will compile in Dymola using the “dummy deriva-
tive” method for index reduction. The result is two sets of
DAEs with some switching logic.

References

Bernhard Bachmann. Mathematical aspects of object-oriented
modeling and simulation. In Proceedings of the 5th Interna-
tional Modelica Conference, 2006.

Olivier A. Bauchau and André Laulusa. Review of contempo-
rary approaches for constraint enforcement in multibody sys-
tems. Journal of Computational and Nonlinear Dynamics,
2007.

J. W. Baumgarte. Stabilization of constraints and integrals of
motion in dynamic systems. Computer Methods in Applied
Mechanics and Engineering, 1:1-16, 1972.

J. W. Baumgarte. A new method of stabilization for holonomic
constraints. ASME Journal of Applied Mechanics, 50:869—
870, 1983.

Scott A. Bortoff. Object-oriented modeling and control of delta
robots. In IEEE Conference on Control Technology and Ap-
plications, pages 251-258, 2018.

K. E. Brenan, S. L. Cambell, and L. R. Petzold. Numerical
Solution of Initial-Value Problems in Differential-Algebraic
Equations. SIAM, 1996.

J. Brinker, B. Corves, and M. Wahle. A comparative study of in-
verse dynamics based on clavel’s delta robot. In Proceedings
of the 14th IFToMM World Congress, Oct. 2015.

Francesco Casella. Simulation of large-scale models in model-
ica: State of the art and future perspectives. In Proceedings of
the 11th International Modelica Conference, pages 459—468,
2015.

Francois E. Cellier. Continuous System Simulation. Springer,
2006.

Francois E. Cellier and Jurden Greifeneder. Continuous System
Modeling. Springer, 1991.

R. Clavel. Device for the movement and positioning of an ele-
ment in space. U.S. Patent 4, 976, 582, Dec. 11 1990.

Hilding Elmgqvist, Toivo Henningsson, and Martin Otter. Inno-
vations for future modelica. In Proceedings of the 12th Inter-
national Modelica Conference, pages 693-702, 2017.

Peter Fritzon. Principles of Object Oriented Modeling and Sim-
ulation with Modelica 3.3: A Cyber-Physical Approach. Wi-
ley, 2015.

Philippe Guglielmetti. Model-Based Control of Fast Parallel
Robots: A Global Approach in Operational Space. PhD the-
sis, Ecole Polytechnique Federale de Lausanne, 1994.

Alberto Isidori. Nonlinear Control Systems. Springer-Verlag,
1989.

Peter Kunkel and Volker Mehrmann.
Equations: Analysis and Numerical Solution.
Mathematical Society, 2006.

Differential-Algebraic
European

Sven Erik Mattsson and Gustaf Soderlind. Index reduction
in differential algebraic equations using dummy derivatives.
SIAM Journal on Scientific Computing, 14(3), 1993.

Jean-Pierre Merlet and Clement Gosselin. Springer Hand-
book of Robotics, chapter Parallel Mechanisms and Robots.
Springer, 2008.

Sigurd Skogestad and Ian Postlethwaite. Multivariable Feed-
back Control: Analysis and Design. Wiley, 2005.

M. M. Spong and M. Vidyasagar. Robot Dynamics and Control.
Wiley, 2004.

Staicu St. and Carp-Ciocardia D. C. Dynamic analysis of
clavel’s delta parallel robot. In Proceedings of the 2003 In-
ternational Conference on Robotics and Automation, pages
4116-4121, 2003.

Waldemar Tomaszewski and Piotr Pieranski. Dynamics of ropes
and chains: 1. the fall of the folded chain. New Journal of
Physics, 7(45), 2005.

A.J. van der Schaft. Surveys in Differential-Algebraic Equations
1, chapter Port-Hamiltonian Differential-Algebraic Systems,
pages 173-226. Springer, 2013.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-204.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

