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Abstract
Learning robot tasks or controllers using deep reinforcement learning has been proven effec-
tive in simulations. Learning in simulation has several advantages. For example, one can
fully control the simulated environment, including halting motions while performing compu-
tations. Another advantage when robots are involved, is that the amount of time a robot
is occupied learning a task—rather than being productive—can be reduced by transferring
the learned task to the real robot. Transfer learning requires some amount of fine-tuning on
the real robot. For tasks which involve complex (non-linear) dynamics, the fine-tuning itself
may take a substantial amount of time. In order to reduce the amount of fine-tuning we
propose to learn robustified controllers in simulation. Robustified controllers are learned by
exploiting the ability to change simulation parameters (both appearance and dynamics) for
successive training episodes. An additional benefit for this approach is that it alleviates the
precise determination of physics parameters for the simulator, which is a non-trivial task. We
demonstrate our proposed approach on a real setup in which a robot aims to solve a maze
game, which involves complex dynamics due to static friction and potentially large accelera-
tions. We show that the amount of fine-tuning in transfer learning for a robustified controller
is substantially reduced compared to a non-robustified controller.
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Sim-to-Real Transfer Learning using Robustified Controllers in Robotic
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Abstract— Learning robot tasks or controllers using deep
reinforcement learning has been proven effective in simulations.
Learning in simulation has several advantages. For example,
one can fully control the simulated environment, including
halting motions while performing computations. Another ad-
vantage when robots are involved, is that the amount of
time a robot is occupied learning a task—rather than being
productive—can be reduced by transferring the learned task
to the real robot. Transfer learning requires some amount
of fine-tuning on the real robot. For tasks which involve
complex (non-linear) dynamics, the fine-tuning itself may take
a substantial amount of time. In order to reduce the amount
of fine-tuning we propose to learn robustified controllers in
simulation. Robustified controllers are learned by exploiting the
ability to change simulation parameters (both appearance and
dynamics) for successive training episodes. An additional benefit
for this approach is that it alleviates the precise determination
of physics parameters for the simulator, which is a non-trivial
task. We demonstrate our proposed approach on a real setup
in which a robot aims to solve a maze game, which involves
complex dynamics due to static friction and potentially large
accelerations. We show that the amount of fine-tuning in
transfer learning for a robustified controller is substantially
reduced compared to a non-robustified controller.

I. INTRODUCTION

Teaching robots to perform challenging tasks has been an
active topic of research. In particular, it has recently been
demonstrated that reinforcement learning (RL) coupled with
deep neural networks is able to learn policies (controllers)
which can successfully perform tasks such as pick and fetch.

Robots may be slow, dangerous, can damage themselves
and they are expensive. When a robot is learning a task,
it needs to be taken out of production. Learning policies
using model-free deep RL typically requires many samples
to explore the sequential decision making space. Model-free
RL applied to tasks that involve complex dynamics, require
even more samples to learn adequate policies compared to
tasks involving (largely) linear dynamics. Directly learning
on robots may thus be very costly.

In order to reduce the time required for learning on a real
robot, training can be performed in simulation environments.
The learned policy is then transferred to the real world
domain. Modern graphics cards and sophisticated physics
engines enable the simulation of complex tasks. Learning with
simulators has several advantages. The rendering and physics
engines are capable of computing simulations faster than real-
time. This helps to reduce overall training times. Recent deep
reinforcement learning algorithms allow agents to learn in
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parallel [1], which reduces training times. Furthermore, both
appearance and physics can be controlled in simulation. For
example the lighting condition, or the friction of an object
can be changed, or the entire simulation can be halted to
allow for computation of updates.

Appearance, complex dynamics, and robot motor move-
ments in the real world can only be simulated up to some
approximation. Simulation to real world transfer thus requires
fine-tuning on real data. Furthermore, real setups involving
various components, experience delays which are hard to
determine exactly. For example, the delay introduced by the
acquisition system, where some time has passed before the
acquired image is available for processing by the algorithm.

Our contributions can be summarized as:
• For each of the appearance, physics and system parame-

ters we draw the values from uniform distributions. We
do this for each episode and each agent when performing
RL on simulation data, and learn robustified policies.

• We extend A3C with pixel change and reward prediction
auxiliary tasks to learn a task involving complex physics,
where moving objects are controlled indirectly.

• We implement an off-policy variant of the A3C-based
RL to fine-tune transferred policies on the real setup.

We demonstrate our proposed approach on a challenging task
of a robot learning to solve a marble maze game, via tilting of
the maze. The maze game is shown in Figure 1. The marbles
are subject to static and rolling friction, acceleration, and
collisions (with other marbles and with the maze geometry).
A simulator simulates the physics of the marbles in the maze
game, and renders the results to images. We learn to solve
the game from scratch using deep reinforcement learning.
We learn both a robustified and non-robustified policy in
simulation and compare the times required for fine-tuning
after transferring the policy to the real world. We found that
robustified policies can greatly reduce the amount of time
for fine-tuning in transfer learning, which becomes especially
important for tasks involving complex dynamics.

In the remainder of this paper we will refer to learning
on simulated data / environments as offline learning, and
learning on real data / environments will be referred to as
online learning. Transfer learning (TL) with fine-tuning on
real data therefore constitutes both offline as well as online
learning.

II. RELATED WORK

Our work is inspired by the recent advances in deep rein-
forcement learning, learning complicated tasks and achieving
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Fig. 1. Marble maze game. (Left) Top view of the marble maze after a plexiglass top has been removed (leaving holes in the outermost edge). A paper
rim is used to cover the holes. The black dots in each gate between rings are used for alignment. The view also shows the world aligned x and y axes.
(Middle) The marble maze mounted on the robot arm. (Right) A rendering of the simulated marble maze under some chosen lighting conditions (without
added noise).

(beyond) human level performance on a variety of tasks [1]–
[4].

TL has been an active area of research in the context of
deep learning. For example, tasks such as object detection
and classification can avoid costly training time by using
pre-trained networks and fine-tuning [5], [6], where typically
only the weights in the last couple of layers are updated. TL
from simulated to real has also been applied to learn robot
tasks [7]–[11]. To reduce the time required for fine-tuning in
TL, the authors in [12] propose to make simulated data look
more like the real world. In [13] the authors propose a form of
fine-tuning where the inverse dynamics for the real robot are
recovered. It requires a simulator and training which produces
reasonable estimates of the real world situation. The drawback
of this method is that it requires long online training times,
whereas our goal is to minimize the duration of the online
training time. The authors in [14] propose model-based RL,
where some of the physics parameters are estimated online.
The difficulty of the task we aim to solve is in the fact that the
motion of the marbles is controlled via tilting of the platform.
Estimating physics in our case is thus very challenging.

By randomization of the appearance, the learning can
become robust against appearance changes and readily transfer
to the real world domain [15], [16]. The method proposed
in [17] exploits an ensemble of simulated source domains
and adversarial training to obtain robust policies. This policy
search approach relies on trajectories and roll-outs which
solve the task. The approach proposed in [18] uses model-
based RL to learn a controller entirely in simulation, allowing
for zero-shot TL. Since we are considering tasks involving
(much) more complex dynamics, we instead follow a similar
approach as [19], and perform randomization of appearance,
physics and system parameters with model-free RL.

Model-agnostic meta-learning (MAML) [20], aims to learn
a meta-policy that can be quickly adapted to new (but similar)
tasks. In the case of complex dynamics it is not clear how

easily MAML could be applied. Appearance and dynamics
randomization can be considered as forms of meta-learning.
Other approaches aim to learn new tasks, or refine previously
learned tasks, without ”forgetting”, e.g., [21]. Our emphasis
instead is on reducing the amount of time required for fine-
tuning in TL.

Our simulator provides observations of the state in simu-
lation, similar to the real world. In [22] the critic receives
full states, whereas the actor receives observations of states.
Coupled with appearance randomization, zero-shot transfer
can be achieved. The full state requires that the physics
parameters to produce complex dynamics match those of
the real world. However, precisely determining the physics
parameters is non-trivial.

Formulating reward functions is not straightforward. The
authors in [23] propose to discover robust rewards to enable
the learning of complicated tasks. Adding additional goals
(sub-goals), basically a form of curriculum learning [24], can
improve the learning as well [25]. The latter approach may
be applied to break up the goal of a marble maze into stages.
However, in this paper we show that a simple reward function
which governs the overall goal of the game is sufficient.

The authors in [26] propose a game-like environment for
generating synthetic data for benchmark problems related to
reinforcement learning. We developed our simulator along
the same lines as [26].

In [27] the authors propose to model both the dynamics
and control in order to solve the marble maze game. This is
a complementary approach to the TL approach proposed in
this paper, and we believe that each approach has its own
strengths and weaknesses.

III. PRELIMINARIES

We briefly review some concepts from (deep) reinforcement
learning (RL) using model-free asynchronous actor-critic, and
define some terminology that we will use in the remainder of
this paper. In the next section we will discuss our approach.



A. Reinforcement Learning

In RL an agent interacts with an environment, represented
by a set of states S, taking actions from an action set A,
and receiving rewards r : S × A → R. The environment is
governed by (unknown) state transition probabilities p(s′|s, a).
The agent aims to learn a (stochastic) policy π(a|s), which
predicts (a distribution over) actions a based on state s. The
goal for the agent is to learn a policy which maximizes the
expected return E[Rt], where the return Rt =

∑∞
k=0 γ

krt+k
denotes the discounted sum of future rewards, with discount
factor γ.

To determine for a given policy π how good it is to be in
a certain state, or how good it is to take a certain action in
a certain state, RL depends on two value functions: a state-
value function V π(s) = Eπ[

∑∞
k=0 γ

kRt+k+1|St = s] and an
action-value function Qπ(s, a) = Eπ[

∑∞
k=0 γ

kRt+k+1|St =
s,At = a]. For Markov decision processes, the value
functions can be written as a recursion of expected rewards,
e.g., V π(s) = R(s, π(s))+γ

∑
s′ p(s

′|s, π(s))V π(s′), where
s denotes the current state, and s′ denotes the next state. The
recursive formulations are Bellman equations. Solving the
Bellman optimality equations would give rise to the optimal
policy π∗. For details we refer the reader to [28]

We consider the case where agents interact with the
environment in episodes of finite length. The end of an episode
is reached if the agent arrives at the timestep of maximum
episode length, or the goal (terminal state) is achieved. In
either case, the agent restarts from a new initial state.

B. Deep RL using Advantage Actor-Critic

In [1] the authors propose the asynchronous advantage
actor-critic algorithm. The algorithm defines two networks:
a policy network π(a|s, θp) with network parameters θp,
and a value network V (s|θv) with network parameters θv.
This policy-based model-free method determines a reduced
variance estimate of ∇θpE[Rt] as ∇θp log π(at|st, θp)(Rt −
bt(st)) [29]. The return Rt is an estimate of Qπ and the
baseline bt is a learned estimate of the value function V π.
The policy π is referred to as the actor, and value function
estimate V π as the critic.

The authors in [1] describe an algorithm where mul-
tiple agents learn in parallel, and each agent main-
tains local copies of the policy and value networks.
Agents are trained on episodes of maximum length Le.
Within each episode, trajectories are acquired as sequences
τ = (s1, a1, r1, s2, a2, r2, . . . , sLse

, aLse
, rLse

), of maximum
length Lse. Rather than the actual state, the inputs are
observations (images) of the state, and a forward pass of each
image through the agent’s local policy network results in a
distribution over the actions. Every Lse steps, the parameters
of the global policy and value networks are updated and the
agent synchronizes its local copy with the parameters of the
global networks. The current episode ends after Le steps, or
when the terminal state is reached, and then a new episode
starts. This episodal learning is repeated until the task is
solved consistently. See [1] for further details.

IV. DEEP REINFORCEMENT LEARNING FOR A TASK WITH
COMPLEX DYNAMICS

A. Setting up the Task

The task we aim to learn is to solve a marble maze game,
see Figure 1. Solving the game means that the marble(s) are
maneuvered from the outermost ring, through a sequence
of gates, into the center. Due to static and dynamic friction,
acceleration, damping, and the discontinuous geometry of
the maze, the dynamics are (highly) complex and difficult to
model. To solve the marble maze game using model-free RL
we can define a reward function as:

r =


−1, if through gate away from the goal
+1, if through gate towards the goal
0, otherwise

(1)

This sparse reward function is general and does not encode
any information about the actual geometry of the game.
The action space is discretized into five actions. The first
four actions constitute 1◦ rotation increments, clockwise and
counterclockwise around the x, and y axes up to a fixed
maximum angle. Figure 1–Left shows the orientation of the
x, and y axes with respect to the maze. The 1◦ increment is
sufficient to overcome the static friction, while simultaneously
avoiding accelerations that are too large. We define a fifth
action as no-op, i.e., maintain the current orientation of the
maze. We empirically determined the fixed maximum angle
to be 5◦ in either direction.

B. Deep Reinforcement Learning on Simulated Robot Envi-
ronments

In order to learn a robustified policy in simulation, we
adopt the idea of randomization from [15], [16], [19]. We
implemented two learning schemes. In the first scheme, each
agent was assigned different parameters which were kept fixed
for the duration of learning. In the second scheme, the physics
and appearance parameters are randomly sampled from a
pre-determined range, according to a uniform distribution,
for each episode and each agent. We found that the second
scheme produced robustified policies which adapted more
quickly during fine-tuning on the real robot after transfer.

We use the asynchronous advantage actor-critic (A3C)
algorithm to learn a policy for the marble maze game. To
successfully apply reinforcement learning with sparse rewards,
a framework of auxiliary tasks may be incorporated [30]. One
could consider path following as an auxiliary (dense reward)
task. However, we aim to keep our approach as general as
possible, and not rely on the geometry of the maze. We
instead incorporate pixel change and reward prediction, as
proposed by [30]. Pixel change promotes taking actions which
result in maximal change between images of consecutive
states. In the context of the maze game, we aim to avoid
selecting consecutive actions that would result in little to
no marble motions. In addition, reward prediction aims to
over-represent rewarding events to offset the sparse reward
signal provided by the reward function. To stabilize learning



and avoid settling into sub-optimal policies we employ
the generalized advantage estimation as proposed by [31]
together with entropy regularization with respect to the policy
parameters [1].

1) Robustified Policies: At the start of each episode,
for each agent, the parameter values for static friction,
dynamic friction, damping and marble(s) mass are uniformly
sampled from a range of values. We emulated a camera
delay by rendering frames into a buffer. The camera delay
was varied per episode and agent. During each episode the
parameters are held constant. Each observation received from
the simulator is corrupted by AGWN. We experimented with
additional appearance changes, such as different light colors
and intensities. We found that those changes had little effect
on improving the time required for fine-tuning for our current
setup.

C. Deep Reinforcement Learning on Real Robot Environments

A3C is an on-policy method, since the current policy
π(s; θ) is used in roll-outs (using an ε-greedy exploration
strategy) to obtain the current trajectory of length Lse. For
each update, A3C accumulates the losses for the policy
and value networks over the trajectory and performs back-
propagation of the losses to update the policy and value
network parameters. The simulation is halted until the network
parameters have been updated, and then roll-outs for the next
trajectory continue using the updated policy π(s; θ′).

For a real robot setup we need to be able to compute an
update, while simultaneously collecting the next trajectory,
since we cannot halt the motion of the marble(s) during an
update. We therefore adopt an off-policy approach for the
real robot setups (see Algorithm 1).

Algorithm 1 Algorithm for off-policy A3C
π(s|θ)—initialized or robustly learned in simulation
t← 0
obtain τt using π(s|θ)
repeat

while |τt+1| < Lse do {concurrently}
compute update from τt → π(s|θ′)
obtain τt+1 using π(s|θ)

end while
π(s|θ)← π(s|θ′)
t← t+ 1

until done

We acquire the next trajectory τt+1 while concurrently
computing the updates for the policy and value networks
based on the previously acquired trajectory τt. We first verify
in simulation that our off-policy adaptation of A3C would
indeed be able to successfully learn a policy to solve the
marble maze. If one had access to multiple robots, the robots
could act as parallel agents similar to the case of simulation.
However, due to practical limitations, we only have access to
a single robot and are thus limited to training with a single
agent in the real world case.

V. IMPLEMENTATION

We have implemented a simulation of the marble maze
using MuJoCo [32] to simulate the dynamics, and Ogre
3D [33] for the appearance. We carefully measured the
maze and marble dimensions to accurately reconstruct its
3D geometry. In order to match the simulated dynamics
to the real world dynamics, we have tuned the MuJoCO
parameters, with static friction, dynamic friction, and damping
parameters in particular. For tuning, the maze was inclined
to a known orientation, and the marble was released from
various pre-determined locations within the maze. Using
the markers (see Figure 1) we aligned the images of the
simulated maze to the real maze by computing a homography
warp. We then empirically tuned the parameters to match
the marble oscillations between the simulated and real maze.
Learning the parameters instead would be preferable, but
this is left as future work. The simulator is executed as a
separate process, and communication between controller and
simulator is performed via sockets. The simulator receives
an action to perform, and returns an image of the updated
marble positions and maze orientation, along with a reward
(according to Eq. 1) and terminal flag.

The policy network consists of two convolutional layers,
followed by a fully-connected layer. The input to the network
is an 84×84 image. A one-hot action vector and the reward
are appended to the 256-dim. output of the fully-connected
layer and serves as input to an LSTM layer. This part of
the network is shared between the policy (actor) and value
(critic) network. For the policy network a fully-connected
layer with softmax activation computes a distribution over
the actions. For the value network, a fully connected layer
outputs a single value. We empirically chose Le = 3000 and
Lse = 200.

The (st, at, rt)-tuples are stored in a FIFO experience buffer
(of length 3000). We keep track of which tuples have zero
and non-zero rewards for importance sampling. For reward
prediction we (importance) sample three consecutive frames
from the experience buffer. The two convolutional layers
and fully connected layer are shared from the policy and
value networks. Two more fully connected layers determine
a distribution over negative, zero or positive rewards.

For pixel change, we compute the average pixel-change for
a 20×20 grid, for the central 80×80 portion of consecutive
images. The pixel-change network re-uses the layers up to and
including the LSTM layer for the policy and value network.
A fully connected layer together with a deconvolution layers
predict 20×20 pixel change images. At most Le + 1 frames
are sampled from the experience buffer, and we compute the
L2 loss between the pixel change predicted by the network,
and the recorded pixel change over the sampled sequence.
Both losses are added to the A3C loss.

The physics parameters are uniformly sampled from a
range around the empirically estimated parameter values.
Due to the lack of intuitive interpretation of some of the
physics parameters, the range was determined by visually
inspecting the resulting dynamics to ensure that the dynamics



had sufficient variety, but did not lead to instability in the
simulation.

For the real setup, the ROS framework is used to integrate
the learning with camera acquisition and robot control. The
camera is an Intel RealSense R200 and the robot arm is a
Mitsubishi Electric Melfa RV-6SL (see Figure 1–Middle).
The execution time of a 1◦ rotation command for the robot
arm is about 190ms. Forward passes through the networks
and additional computation time add up to about 20 or
30ms. Although we can overlap computation and robot
command execution to some degree, observations are acquired
at a framerate of 4.3Hz, i.e. 233ms intervals, to ensure
robot commands are completed entirely before the new state
is obtained. We observed that during concurrent network
parameter updates the computation time for a forward pass
through the policy network increases drastically. If we expect
that the robot action cannot be completed before the new
state is observed by the camera, we set the action to no-op
(Sec. IV-A). We implemented a simple marble detector to
determine when a marble has passed through a gate, in order
to provide a reward signal. For learning in simulation we use
the same 4.3Hz framerate. Each incremental rotation action
is performed over the course of the allotted time interval of
233ms, such that the next state provided by the simulator
reflects the situation after a complete incremental rotation.

VI. RESULTS

Table I compares the number of steps for training a policy to
successfully play a one marble maze game. Training directly
on the real robot takes about 3.5M steps. For TL, we compare
the number of fine-tuning steps necessary for a robustified
policy versus a non-robustified policy (fixed parameters).
Training a robustified policy in simulation takes about 4.0M
steps, whereas a non-robustified policy takes approximately
4.5M to achieve 100% success rate. TL of a robustified policy
requires about 55K steps to ”converge”. This is a reduction
of nearly 60× compared to online training. A non-robustified
policy requires at least 3× the number of fine-tuning steps
in order to achieve the same level of success in solving the
maze game.

Figure 2 further shows the benefit for TL of a robustified
policy. The left side of Figure 2 shows results for the
robustified policy, with results for the non-robustified policy
on the right. The bottom row shows the accumulated rewards
for an episode. An accumulated reward of 4.0 means that the
marble has been maneuvered from the outside ring into the
center, since there are four gates to pass through. The graph
for the robustified policy shows that the learning essentially
converges, i.e., achieve 100% success, whereas for the non-
robustified policy transfer, the success rate is around 90%.
The top row of Figure 2 shows the length of each episode. It
is evident that the robustified policy has successfully learned
how to handle the complex dynamics to solve the maze game.

We repeated the same experiment for a two marble maze
game, with the goal to get both marbles into the center of
the maze. We only compared TL with the robustified policy.
The results are shown in Table II. Learning a two marble

game in simulation with ±1 rewards achieved 100% success.
However, training on the real setup with these rewards proved
very challenging. We believe this is due to the geometry of
the maze—the center has only one gate, surrounded by four
gates in the adjacent ring—coupled with the static friction. We
designed a reward function which gives more importance for
passing through gates into rings closer to the goal. This
promotes a marble to stay in the center area, while the
controller maneuvers the remaining marble. The rewards
were modified to ±{1, 2, 4, 8} instead (which was also used
for training the two marble game offline). When learning
online, even after 1M steps, the success rate is still at 0%
(a single marble reached the center about a dozen of times).
With fine-tuning a transferred robustified policy, after ∼225K
steps around a 75% success rate is achieved.

We investigate if the transfer of a single marble policy
learned offline, would require longer fine-tuning for a two
marble game online. After ∼100K steps of fine-tuning, the
policy was able to start solving the game. A success rate of
about 50% was achieved after ∼400K steps. Thus, fine-tuning
a robustified policy trained on a two marble maze game in
simulation achieves a higher success rate compared to the
fine-tuning of a single marble robustified policy.

We refer the reader to the supplemental material for videos
of example roll-outs for single and two marble maze games.

VII. DISCUSSION AND FUTURE WORK

Deep reinforcement learning is capable of learning com-
plicated robot tasks, and in some cases achieving (beyond)
human-level performance. Deep RL requires many training
samples, especially in the case of model-free approaches.
For learning robot tasks, learning in simulation is desirable
since robots are slow, can be dangerous and are expensive.
Powerful GPUs and CPUs have enabled simulation of
complex dynamics coupled with high quality rendering at
high speeds. Transfer learning, i.e., the training in simulation
and subsequent transfer to the real world, is typically followed
by fine-tuning. Fine-tuning is necessary to adapt to any
differences between the simulated and the real world. Previous
work has focused on transfer learning tasks involving linear
dynamics, such as controlling a robot to pick an object
and place it at some desired location. However, we explore
the case when the dynamics are complex. Non-linearities
arise due to static and dynamic friction, acceleration and
collisions of objects interacting with each other and the
environment. We compare learning online, i.e., directly in
the real world, with learning in simulation where the physics,
appearance and system parameters are varied during training.
For reinforcement learning we refer to this as learning
robustified policies. We show that the time required for fine-
tuning with robustified policies, is greatly reduced.

Although we have shown that model-free deep reinforce-
ment learning can be successfully used to learn tasks involving
complex dynamics, there are drawbacks of using a model-
free approach. In the example discussed in our paper, the
dynamics are (mostly) captured by the LSTM layer in the
network. In the case of more than one marble the amount



TABLE I
COMPARISON OF ONLINE, OFFLINE AND ONLINE FINE-TUNING STEPS FOR TL FOR A SINGLE MARBLE. A ROBUSTIFIED POLICY CAN REDUCE THE

TRAINING STEPS BY A FACTOR OF ALMOST 60× COMPARED TO ONLINE TRAINING, AND A FACTOR OF MORE THAN 3× COMPARED TO

NON-ROBUSTIFIED TL FINE-TUNING.

Online (real) Offline (simulator) TL (online part)
Robust ∼3.5M ∼4.0M ∼55K

Non-Robust ∼3.5M ∼4.5M ∼220K
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Fig. 2. Results for the fine-tuning of policies solving a maze game with one marble for a simulation pre-trained robustified policy (Left), and for a
simulation pre-trained non-robustified policy (Right). Note that the horizontal axis ranges between Right and Left are slightly different. In the Top we plot
the number of steps per episode —with maximum episode length Le = 2500 —and in the Bottom row we plot the cumulative rewards per episode. The
fine-tuning of the robustified policy leads to earlier success of consistently solving the maze game. We consider convergence at ˜55K for the robustified
policy. Even after more than ˜220K fine-tuning episodes, the non-robustified policy occasionally fails to solve the maze game. In addition, the number of
steps on average per episode to solve the maze game is significantly less for the case of the robustified policy.

TABLE II
COMPARING TL FOR A TWO MARBLE MAZE GAME. BOTH THE NUMBER

OF STEPS AND SUCCESS RATE ARE REPORTED.

Online Offline TL
Robust ∼1M (0%) ∼3.0M (100%) ∼225K (75%)

of fine-tuning time significantly increases. In general, as the
complexity of the state space increases, the amount of training
time increases as well. When people perform tasks such as the
maze game, they typically have a decent prediction of where
the marble(s) will go given the amount of rotation applied.
In [34], [35] the graphics and physics engine are embedded
within the learning to recover physics parameters and perform
predictions of the dynamics. In [36] the physics and dynamics
predictions are modeled with networks. These approaches are
interesting research directions for tasks involving complex
dynamics.

We currently use high-dimensional images as input to

the learning framework. Low-dimensional input, i.e. marble
position and velocity, may be used instead. In addition, rather
than producing a distribution over a discrete set of actions,
the problem can be formulated as a regression instead and
directly produce values for the x and y axes rotations [1],
[37].

People quickly figure out that the task can be broken down
into moving a single marble at the time into the center, while
avoiding marbles already in the center location from spilling
back out. Discovering such sub-tasks automatically would
be another interesting research direction. Along those lines,
teaching a robot to perform tasks by human demonstration,
or imitation learning, could teach robots complicated tasks
without the need for elaborate reward functions, e.g., [38].
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B. McGrew, J. W. Pachocki, J. Pachocki, A. Petron, M. P. andGlenn
Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng,
and W. Zaremba, “Learning dexterous in-hand manipulation,” CoRR,
2018. [Online]. Available: http://arxiv.org/abs/1808.00177

[12] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial
training,” Computer Vision and Pattern Recognition (CVPR), 2016.

[13] P. F. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell,
J. Tobin, P. Abbeel, and W. Zaremba, “Transfer from simulation to real
world through learning deep inverse dynamics model,” arXiv preprint,
vol. arXiv/1610.03518, 2016.

[14] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation
skills with online dynamics adaptation and neural network
priors,” CoRR, vol. abs/1509.06841, 2015. [Online]. Available:
http://arxiv.org/abs/1509.06841

[15] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage
task,” Conference on Robot Learning (CoRL), 2017.

[16] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without
a single real image,” Robotics: Science and Systems Conference (RSS),
2016.

[17] A. Rajeswaran, S. Ghotra, S. Levine, and B. Ravindran, “Epopt:
Learning robust neural network policies using model ensembles,”
International Conference on Learning Representations (ICLR), vol.
abs/1610.01283, 2016. [Online]. Available: http://arxiv.org/abs/1610.
01283

[18] K. Lowrey, S. Kolev, J. Dao, A. Rajeswaran, and E. Todorov,
“Reinforcement learning for non-prehensile manipulation: Transfer
from simulation to physical system,” IEEE Conf. on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), vol.

abs/1803.10371, 2018. [Online]. Available: http://arxiv.org/abs/1803.
10371

[19] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Sim-to-real transfer of robotic control with dynamics randomization,”
arXiv preprint, vol. abs/1710.06537, 2018. [Online]. Available:
http://arxiv.org/abs/1710.06537

[20] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” ICML 2017, vol. abs/1703.03400,
2017. [Online]. Available: http://arxiv.org/abs/1703.03400

[21] Z. Li and D. Hoiem, “Learning without forgetting,” European Confer-
ence on Computer Vision (ECCV), 2016.

[22] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and
P. Abbeel, “Asymmetric actor critic for image-based robot
learning,” CoRR, vol. abs/1710.06542, 2017. [Online]. Available:
http://arxiv.org/abs/1710.06542

[23] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” CoRR, vol. abs/1710.11248, 2017.
[Online]. Available: http://arxiv.org/abs/1710.11248

[24] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in International Conference on Machine Learning (ICML,
2009.

[25] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” Advances in Neural Information Processing Systems
(NIPS), 2017.

[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint, vol.
arXiv/1606.01540, 2016.

[27] D. Romeres, D. Jha, A. DallaLibera, B. Yerazunis, and D. Nikovski,
“Learning hybrid models to control a ball in a circular maze,”
arXiv preprint, vol. abs/1809.04993, 2018. [Online]. Available:
http://arxiv.org/abs/1809.04993

[28] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[29] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no.
3-4, May 1992.

[30] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” arXiv preprint, vol. arXiv/1611.05397, 2016.

[31] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
Internationcal Conference on Learning Representations (ICRL), 2016.

[32] E. Todorov, “Convex and analytically-invertible dynamics with con-
tacts and constraints: Theory and implementation in mujoco,” IEEE
International Conference on Robotics and Automation (ICRA), 2014.

[33] “Ogre 3D,” http://www.ogre3d.org, 2018, [Accessed May 2018].
[34] J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum, “Galileo:

Perceiving physical object properties by integrating a physics engine
with deep learning,” Advances in Neural Information Processing
Systems (NIPS), 2015.

[35] J. Wu, E. Lu, P. Kohli, B. Freeman, and J. Tenenbaum, “Learning to
see physics via visual de-animation,” Advances in Neural Information
Processing Systems (NIPS), 2017.

[36] S. Ehrhardt, A. Monszpart, N. J. Mitra, and A. Vedaldi,
“Unsupervised intuitive physics from visual observations,” arXiv
preprint, vol. abs/1805.05086, 2018. [Online]. Available: http:
//arxiv.org/abs/1805.05086

[37] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” International Conference on Learning Representations
(ICLR), 2015.

[38] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual
imitation learning via meta-learning,” Conference on Robot Learning
(CoRL), 2017.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2018-202.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


