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Abstract
Mean Field Games (MFG) have emerged as a viable tool in the analysis of large-scale self-
organizing networked systems. In particular, MFGs provide a game-theoretic optimal control
interpretation of the emergent behavior of noncooperative agents. The purpose of this paper
is to study MFG models in which individual agents obey multidimensional nonlinear Langevin
dynamics, and analyze the closed-loop stability of fixed points of the corresponding coupled
forward-backward PDE systems. In such MFG models, the detailed balance property of the
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We use our approach to analyze closed-loop stability of two specific models. Explicit control
design constraints which guarantee stability are obtained for a population distribution model
and a mean consensus model. We also show that static state feedback using the steady state
controller can be employed to locally stabilize a MFG equilibrium.
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On Mean Field Games for Agents with Langevin
Dynamics

Kaivalya Bakshi, Piyush Grover, and Evangelos A. Theodorou, Member, IEEE

Abstract—Mean Field Games (MFG) have emerged as a viable
tool in the analysis of large-scale self-organizing networked
systems. In particular, MFGs provide a game-theoretic opti-
mal control interpretation of the emergent behavior of non-
cooperative agents. The purpose of this paper is to study MFG
models in which individual agents obey multidimensional non-
linear Langevin dynamics, and analyze the closed-loop stability
of fixed points of the corresponding coupled forward-backward
PDE systems. In such MFG models, the detailed balance property
of the reversible diffusions underlies the perturbation dynamics
of the forward-backward system. We use our approach to analyze
closed-loop stability of two specific models. Explicit control design
constraints which guarantee stability are obtained for a popula-
tion distribution model and a mean consensus model. We also
show that static state feedback using the steady state controller
can be employed to locally stabilize a MFG equilibrium.

I. INTRODUCTION

Large scale non-cooperative multi-agent systems involv-
ing coupled costs were introduced as mean field games (MFG)
by Huang et. al [1] and Lasry et. al [2]. Key ideas in this
theory are the rational expectations hypothesis, infinitely many
anonymous agents and that individual decisions are based on
statistical information about the collection of agents. Subse-
quently, this theory has become a viable tool in the analysis of
large-scale, self-organizing networked-systems, and provides a
game-theoretic optimal control interpretation of the the notion
of emergent behaviour in the non-cooperative setting. In the
continuum approach, MFG models are synthesized as standard
[3] stochastic optimal control problems (OCP). Fully coupled
Fokker Planck (FP) and Hamilton Jacobi Bellman (HJB) equa-
tions governing agent density and value functions constitute
the mean field (MF) optimality system. MFG models have
been constructed to study several naturally occurring and
engineered large-scale networked systems, including traffic
[4], financial [5], energy [6], and biological systems [7].

A characteristic feature of MFGs is the ability to model
interaction between networked agents by designing a suitable
cost function. If the cost function has only local density
dependence and is strictly increasing, steady state solutions
to the MF system are unique [8] in several cases. In the
absence of monotonicity, MFGs exhibit non-unique solutions
and related phase transitions [7], [9], [10]. Since real-world
large-scale networked systems often possess several ‘operating
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regimes’, non-monotonicity in the corresponding MFG models
is expected to be the norm, rather than an exception. Closed-
loop stability analysis of MFG models that do not satisfy the
monotonicity condition has to be done on a case-by-case basis.
A given fixed point of the MFG is called (linearly) closed-loop
stable if any perturbation to the fixed-point density decays to
zero under the action of the control, where both the density and
control evolution are computed using the (linearized) coupled
forward-backward system of FP-HJB PDEs.

Guéant [11] studied the stability of an MFG model with
a negative log density cost. Stability of MFGs with nonlocal
cost coupling was considered for a Kuramoto oscillator model
by Yin et. al [9] and a mean consensus cost by Nourian et. al
[12], [13]. A common limitation of these prior works is that the
agents dynamics are assumed to be simple integrator systems.
The MF approach to large-scale systems with nonlinear agent
dynamics has been used to model crowds [14], Brownian
particles in non-equilibrium thermodynamics [15], and robotic
systems [16]. In particular, overdamped Langevin systems that
we consider in this paper have been used in MF formulations
of deep neural networks [17], [18], and flocking with self-
propulsion [19]. Certain multi-agent decision making problems
[20], [21] can also be studied within this framework. In our
recent work [7], we analytically and numerically explored
phase transitions in MFG models consisting of agents with
nonlinear passive dynamics.

We expand upon the idea introduced in [7], and present
rigorous closed-loop linear stability analysis for quadratic
MFG models [10] with dynamics of individual agents lying
in the general class of controlled reversible diffusions. An
example of such diffusions are the overdamped Langevin
(simply Langevin for brevity) dynamics given in (1), while the
simplest case is that of integrator systems. The key idea is that
the detailed balance property of the generator of controlled
reversible diffusions, and the resulting spectral properties
of the linearized MFG system, allow for generalization of
existing stability analysis techniques to this larger class of
MFG systems. Furthermore, we demonstrate that static state
feedback using the steady state controller can be employed to
(sub-optimally) locally stabilize a MFG equilibrium.

In section II, we describe the class of MFG models treated
in this paper. In section III, we present the arguments detailing
the main ideas for stability analysis for this class of models.
Detailed analysis of closed-loop linear stability of steady states
for (i) a population model with local cost coupling and (ii)
consensus model with nonlocal cost coupling are presented
next, which illustrate the key ideas in our approach. The popu-
lation model consists of a general class of nonlinear controlled
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Langevin agent dynamics with a negative log density cost
[11]. In section IV we present technical conditions required for
stability on the stationary solution and control parameters, and
local stability results for this model. This analysis generalizes
the stability analysis for the integrator dynamics case presented
in [11]. The stability analysis does not require explicit analytic
solution of the stationary MF optimality system and the
related eigenbasis, which is in contrast to prior works that
exploit quadratic-Gaussian solutions and associated Hermite
basis. Thus, as in standard equilibrium theory, the presented
techniques can be potentially used to analyze the dynamics of
distributions in relation to various stationary points resulting
from MFG optimality. The consensus model has flocking cost
as in [13]. In section V we present stationary solutions, control
design parameter constraints and linear stability results for this
model in which agents obey Langevin dynamics with quadratic
potential. Our results on this model generalize those of [13]
concerned with integrator agent dynamics.

Finally, in section VI, the action of the MF steady state
controller on a population of agents in a MFG with nonlinear
Langevin dynamics is considered. We show that a population
of agents with perturbed (non Gaussian) initial densities will
decay to the (closest) stationary density under the action
of static feedback given by the corresponding steady state
controller.

II. MEAN FIELD GAME MODEL

In this section, we first introduce some notation and then
describe the MFG model treated in this paper. Vector inner
products are denoted by a·b, the induced Euclidean norm by |a|
and its square by a2: = |a|2. ∂t denotes partial derivative with
respect to t while ∇, ∇· and ∆ denote the gradient, divergence
and Laplacian operations respectively. L2(g dx;Rd) denotes
the class of g-weighted square integrable functions of Rd. The
norm of a function f and inner product of functions f1, f2 in
this class is denoted by ||f ||L2(g dx;Rd) and

〈
f1, f2

〉
L2(g dx;Rd)

respectively.
Let xs, u(s) ∈ Rd denote the state and control inputs

of a representative agent which obeys controlled Langevin
dynamics in the overdamped case, given by

dxs = −∇ν(xs)ds+ u(s)ds+ σdws (1)

for every s ≥ 0, driven by standard Rd Brownian motion,
with noise intensity 0 < σ on the filtered probability space
{Ω,F , {Ft}t≥0,P}. The smooth function ν : Rd → R is
called the Langevin potential and the control u ∈ U := U [t, T ],
where U is the class of admissible controls [22] containing
functions u : [t, T ] × Rd → Rd. The MFG models treated
in this work can be written as the following control problem
subject to (1), with t ≥ 0

min
u∈U

J(u) :=

E

[∫ T

t

e−ρs
(
q(xs,p(s, ·)) +

R

2
u2(s)

)
ds

]
, (2)

where we denote the probability density of xs by p(s, x) for
every s ≥ 0, with initial density being xt ∼ p(t, x), q : Rd ×

L1(Rd) → R is a known deterministic function which has at
most quadratic growth in (x, p) and R > 0 is the control cost.
We assume that the functions in the class U and∇ν(x), q(x, p)
are measurable. The value function is defined as v(t, x) :=
min
u∈U

J(u) given xt = x. It can be seen by standard application
of dynamic programming [23] as in ( [2], [3]), that this control
problem is equivalent to the following PDE system

−∂tv =q − ρv − (∇v)2

2R
−∇v · ∇ν +

σ2

2
∆v (3)

∂tp =∇ ·
(
(∇ν +

∇v
R

)p
)

+
σ2

2
∆p (4)

with the optimal control u∗(t, x) = −∇v/R, the mass conser-
vation constraint

∫
p(s, x)dx = 1 for all s ≥ 0 and boundary

constraints lim
|x|→+∞

p(t, x) = 0, lim
s→+∞

e−ρsv(s, xs) = 0.

These fully coupled equations identified as the HJB and FP
PDEs comprise the MF optimality system. An infinite time
horizon, that is T → +∞, leads to the stationary system

0 =q(x, p∞)− ρv∞ − (∇v∞)2

2R
−∇v∞ · ∇ν

+
σ2

2
∆v∞, (5)

0 =∇ ·
(
(∇ν +

∇v∞

R
)p∞

)
+
σ2

2
∆p∞, (6)

governing the fixed point pair (v∞(x),p∞(x)) of steady state
value and density functions, with constraints

∫
p∞(x)dx = 1,

and lim
s→+∞

e−ρsv∞(xs) = 0. The optimal control is u∞(x) =

−∇v∞/R.

Remark 1. If the MFG model has a long-time-average (LTA)
utility [9],

min
u∈U

J(u) :=

lim
T→+∞

1

T
E

[∫ T

0

q(xs,p(s, ·)) +
R

2
u2(s) ds

]
, (7)

instead of the discounted version in (2), then the corre-
sponding stationary optimality system consists of ((5), (6)), on
observing the limit ρv∞ → λ in (5) as ρ→ 0, where λ is the
optimal cost. Please see [24] and references therein for proof
of this connection between the utilities. In this case, the time
dependent, relative value function [25] obeys (3) wherein ρv
is replaced by λ. Similarly, the perturbation system is obtained
from (17) by setting ρ = 0. Thus, all the results in sections
III, IV, V, VI can be directly extended to the LTA utility case.

III. PERTURBATION SYSTEM

The FP equation governing the density of an overdamped
Langevin system is called the Smoluchowski PDE. From
the form of the FP PDE (6), it can be interpreted as the
Smoluchowski PDE for such a Langevin system with the
restoring potential ν + v∞/R. This interpretation allows us
to obtain the analytical solution to the FP PDE as a Gibbs
distribution, if the fixed point pair (v∞,p∞) of the MFG (5,
6) and the Langevin potential ν satisfy certain conditions. We
denote w(x) := ν(x) + v∞(x)

R henceforth in this paper.
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Lemma III.1. If v∞(x), ν(x) are smooth functions satisfying
lim

|x|→+∞
w(x) = +∞ and exp

(
− 2
σ2w(x)

)
∈ L1(Rd), then the

unique stationary solution to the density given by the Fokker
Planck equation (6) is

p∞(x) :=
1

Z
exp

(
− 2

σ2

(
w(x)

))
(x), (8)

where Z =
∫

exp
(
− 2
σ2w(x)

)
dx.

Proof. We observe that the (6) is the Smoluchowski equation
for an overdamped Langevin system given by

dxs = −∇(ν + v∞/R)(xs) ds+ σdws. (9)

Under the assumptions above, the proof then follows directly
from proposition 4.2, pp 110 in [26].

Decay of an initial density of particles under uncontrolled
(or open loop) overdamped Langevin dynamics to a stationary
density is a classical topic [27]. We address the question of
decay of a locally perturbed density of agents in a MFG to
a steady state density under the closed loop time varying as
well as steady state MFG optimal controls. The perturbation
analysis then corresponds to a fully coupled forward-backward
PDE system. The proposed approach leads to a general method
to obtain stability constraints on the control design parameters,
with explicit analytical results in certain cases.

To derive the linearization of MFG system (5, 6) around the
pair (v∞,p∞), we write the perturbed density and value func-
tions as p(t, x) = p∞(x)(1+εp̃(x, t)), and v(t, x) = v∞(x)+
εṽ(x, t) respectively. The corresponding perturbed cost is
q(x, p) = q(x, p∞(·)) + εq̃(x, p∞(·), p̃(t, ·)) where ε > 0. We
use q∞(x) := q(x, p∞(·)), and q̃(x) := q̃(x,p∞(·), p̃(t, ·))
for brevity.

The generator of a Langevin process is intrinsically linked
to the stability properties of its density dynamics. We denote
the generator of the optimally controlled agent dynamics (9)
as L(·) := −∇(ν+v∞/R) ·∇(·)+(σ2/2)∆(·) and its L2(R)
adjoint L†(·) := ∇ · (∇(ν + v∞/R)(·)) + (σ2/2)∆(·).

Theorem III.2. If (v∞(x),p∞(x)) are smooth steady state
solutions to the MF system (5, 6) wherein ν is a smooth func-
tion such that lim

|x|→+∞
w(x) = +∞ and exp

(
− 2
σ2w(x)

)
∈

L1(Rd), then the linearization of the MF system (3, 4) around
(v∞(x),p∞(x)) for all (t, x) ∈ [0,+∞)× Rd is

−∂tṽ =q̃ − ρṽ + Lṽ, (10)

∂tp̃ =(2/σ2R)Lṽ + Lp̃, (11)

where p̃(0, x) is given,
∫
Rd p∞(x)(1 + εp̃(t, x))dx = 1 for

all t ≥ 0, ε > 0, lim
|x|→+∞

p̃(t, x) = 0 for all t ≥ 0 and

lim
t→+∞

e−ρtṽ(t, xt) = 0.

Proof. Substituting the perturbation density p = p∞(1 + εp̃)
in (4), using the fixed point equation (6) and neglecting higher
order ε terms we have

ε∂t(p
∞p̃) =ε∇ ·

(
∇ṽ
R

p∞ +∇(ν +
v∞

R
)p∞p̃

)
+ ε

σ2

2
∆(p∞p̃), (12)

so that using the operator L† and the fact that ε > 0,

∂t(p
∞p̃) = ∇ ·

(
∇ṽ p∞/R

)
+ L†(p∞p̃). (13)

It can be verified [28] that for a smooth function f(x) the
generator and its adjoint operator satisfy the detailed balance
property L†(p∞f) = p∞Lf . Therefore from (13) we have

p∞∂tp̃ =
1

R

(
p∞∆ṽ +∇ṽ · ∇p∞

)
+ p∞Lp̃. (14)

From the assumed conditions on the potential and value
functions, lemma III.1 gives the stationary density, so that
∇p∞ = − 2

σ2 (∇ν + ∇v∞
R )p∞. Then the previous equation

simplifies as

p∞∂tp̃ = p∞
(
Lp̃ +

2

σ2R
Lṽ
)
, (15)

giving us the density perturbation equation since p∞(x) > 0.
Substituting the perturbation value function v = v∞ + εṽ in
(3), using the fixed point equation (5) and neglecting higher
order ε terms gives

−ε∂tṽ =εq̃ − ερṽ − ε∇
(
v∞

R
+ ν

)
· ∇ṽ

+ ε
σ2

2
∆ṽ. (16)

Using the operator definition and since ε > 0 we get
the required result. The mass conservation and boundary
constraints on ṽ, p̃ follow directly from those constraints on
(3, 4).

In the following two sections we will apply the above result
to obtain stability results for two MFG models. Note that the
perturbation system may be written in concatenated form as

∂t

[
ṽ
p̃

]
=

[
−L+ ρ 0

2
σ2RL L

] [
ṽ
p̃

]
+

[
−q̃
0

]
. (17)

IV. A POPULATION DISTRIBUTION MODEL

We present the linear stability result for a population distri-
bution MFG model in this section. A cost function with local
density dependence is used in this model to mimic a population
of agents with identical dynamics, seeking to minimize their
cost functional but with a preference for imitating their peers.
This models agents in an economic network [29]. A reference
case for this model is [11] where the simplest case of integrator
agent dynamics was treated. Note that while a strictly increas-
ing cost function q(p(t, ·)) models aversion among agents, a
strictly decreasing one models cohesion [30]. We consider a
model comprised by the OCP (2) with the negative log density
cost and agents following nonlinear Langevin dynamics (1).
Since this cost function is strictly decreasing in the density,
it models agents which are locally cohesive in the sense that
they want to resemble their peers as much as possible [31].

The MF optimality system for this model consists of the
coupled system (3, 4) along with the cost coupling equation

q(x, p(t, ·)) = − ln p(t, x), (18)

where p(0, x) = p0(x) is the given initial density of agents,∫
p(t, x)dx = 1 for all t ≥ 0, lim

t→+∞
p(t, x) = 0 and

lim
t→+∞

e−ρtv(t, xt) = 0.
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A. Stationary Solution

The stationary MF optimality system is given by (5, 6) and
the cost coupling equation

q∞(x) =− ln p∞(x), (19)

where
∫

p∞(x)dx = 1 and lim
t→+∞

e−ρtv∞(xt) = 0.
Calculating analytical solutions to HJB PDEs is a daunting

task, examples of which are rare and mainly related to linear-
quadratic regimes. The presented approach aims at being
applicable to the most general class of nonlinear dynamics.
We show that under certain conditions on the (unknown)
stationary solution (v∞,p∞), one may obtain sufficiency
conditions required for linear stability of the population model.
Conditions on the stationary solution required to guarantee
stability are stated in the following assumptions. Let w(x) :=

ν(x) + v∞(x)
R .

(A1) There exist (v∞(x), p∞(x)) ∈ (C2(Rd))2 satisfy-
ing (5,6,19) such that lim

|x|→+∞
w(x) = +∞ and

exp
(
− 2
σ2w(x)

)
∈ L1(Rd).

Due to this assumption, lemma III.1 implies that the stationary
density is uniquely determined by the analytical expression
(8). The above assumption of radial unboundedness on the net
potential w(x) of the closed loop agent dynamics is readily
satisfied in the case of controlled gradient flows appearing
in physical systems [15] and stochastic gradient descent [18]
since the Langevin potential itself satisfies this condition.

B. Linear Stability

Under the assumption (A1), the perturbation PDEs for the
value and density functions as well as the constraints follow
directly from theorem III.2. The only term in (17) specific to
the cost coupling (18) is given by

q̃(x; p̃(t, ·)) =− p̃(t, x), (20)

using the Taylor series expansion.
We define a Hilbert space and a class of perturbations in it,

for which we show stability.

Definition IV.1. Let (A1) hold. Denote the density p∞(x) :=
1
Z exp

(
− 2
σ2w(x)

)
(x) with the normalizing constant Z where

(v∞, p∞) is a pair satisfying (A1). Denote by H the Hilbert
space L2(p∞(x)dx;Rd). The class of mass preserving density

perturbations is defined as S0 :=

{
q(x)∈ H

∣∣∣∣〈1, q(x)
〉
H =

0

}
.

Definition IV.2. Let us denote the set of initial perturbed

densities by S(ε) =

{
p(0, x) = p∞(x)(1+εp̃(0, x))

∣∣∣∣p(0, x) ≥

0, p̃(0, x) ∈ S0

}
. We say the fixed point (v∞(x), p∞(x))

of the MF optimality system (3, 4) is linearly asymptoti-
cally stable with respect to S(ε) if there exists a solution
(ṽ(t, x), p̃(t, x)) to the perturbation system (10,11) such that

lim
t→+∞

||p̃(t, x)||H = 0.

Since we are concerned with stability of isolated fixed
points, we do not assume that initial perturbations are mean
preserving, in contrast to previous work on this topic [11].

Lemma IV.1. If (A1) is true then L is self adjoint in
L2(p∞dx;Rd), negative semidefinite and its kernel consists
of constants.

Proof. Due to (A1) v∞(x) is differentiable and the operator
L is well defined. We observe that it is the generator of an
overdamped Langevin system (9) under a potential ν+v∞/R
and noise intensity σ. The proof follows from proposition 4.3,
pp 111 in [26].

We need an assumption to obtain relevant properties of the
generator of the controlled process.

(A2) lim
|x|→+∞

(
|∇w(x)|2

2 − σ2

2 ∆w(x)
)

= +∞

and ν(x) ∈ C2(Rd).
An example of an one dimensional MFG model with integrator
dynamics and its corresponding stationary solution v∞(x)
satisfying this assumption was explicitly constructed in [11].
Using the stationary HJB equation (5) satisfied by v∞, the
above condition reduces to a condition on the cost function
q(x, p∞) + (R/2)(∇ν)2 − (σ2R/2)∆ν −−−−−→

|x|→+∞
+∞.

Lemma IV.2. Let (A1, A2) hold. Then p∞(x) satisfying (A1)
and given by (8), satisfies the Poincaré inequality with λ > 0,
that is, there exists λ > 0 such that for all functions f ∈
C1(Rd) ∩ L2(p∞(x)dx;Rd) and

∫
fp∞(x)dx = 0, we have

λ
2

σ2
||f ||2L2(p∞(x)dx;Rd)

≤ ||∇f ||L2(p∞(x);Rd) = −
〈
Lf, f

〉
L2(p∞(x);Rd). (21)

Proof. The assumptions imply that v∞(x) ∈ C2(Rd), and
hence, (ν + v∞/R)(·) ∈ C2(Rd). Observe that operator L
is the generator of an overdamped Langevin system under a
potential ν + v∞/R and noise intensity σ. The proof then
follows from theorem 4.3, pp 112 in [26].

Lemma IV.1 implies that eigenvalues of L are real, neg-
ative semidefinite and its eigenfunctions are orthonormal in
L2(p∞(x)dx;Rd) while lemma IV.2 implies that the eigenval-
ues of L are discrete and its eigenfunctions are complete on
L2(p∞(x)dx;Rd) [28]. We denote the eigenvalues {ξn}n≥0
and corresponding eigenfunctions {Ξn}n≥0 of L which form
a complete orthonormal basis of H. Let eigenvalues {ξn}n≥0
be indexed in descending order of magnitude 0 = ξ0 > ξ1 >
... > ξn > ... and let Ξ0 = 1.

Remark 2. The detailed balance L†(p∞f) = p∞L(f) used
in proof of theorem (III.2) is the key property, because of which
we have distinct, real and non negative eigenvalues [28] of
the generator L. These eigen properties make the presented
approach to stability analysis of MFGs possible, through the
result in theorem III.2.

(A3) ρ− 2
σ2R > ξn for all n ≥ 1.

The assumption above is the explicit control design constraint
required to show stability. Denote the matrix associated with
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the MF system for the population distribution model An :=[
−ξn + ρ 1

2
σ2Rξn ξn

]
.

Lemma IV.3. If ξn 6= 0 and ρ− 2
σ2R > ξn then the eigenvalues

of An are real, distinct and ordered λ1n < 0 < λ2n.

Proof. The characteristic equation of An is (λn)2 − ρλn +
(ρ− ξn)λn + 2

σ2Rξn = 0 has the eigenvalue roots λ1,2n = ρ
2 ±√(

ρ
2

)2 − (ρ− ξn)ξn + 2
σ2Rξn from which the result follows.

The spectral properties of perturbation MFG system derived
in this section allow us to extend the methods in [11] (applied
to integrator agent dynamics) to the case of nonlinear Langevin
agent dynamics. Note that the stationary solution as well as
the eigenbasis are not explicitly known here, unlike in previous
works which exploit the Hermite basis resulting from explicitly
known quadratic-Gaussian stationary solutions.

Theorem IV.4. Let (A1, A2, A3) hold, and (v∞(x),p∞(x))
be a stationary solution to the MF system (3, 4, 18). If
perturbation p̃(0, x) ∈ S0 and {vn, pn}n≥0 is determined by
p0(t) = 0, and for n ≥ 0[

v̇n
ṗn

]
=An

[
vn
pn

]
, (22)

pn(0) = 〈p̃(0, x),Ξn(x)〉H , (23)

then {ṽ(t, x) =
∑+∞
n=0 vn(t)Ξn(x), p̃(t, x) =∑+∞

n=0 pn(t)Ξn(x)} are uniqueH solutions to the perturbation
MF system (10,11,20). p∞(x) is linearly asymptotically stable
with respect to S(ε).

Proof. Finite time solution: We first construct finite time
solutions to the perturbation system (10,11,20) under ini-
tial and terminal time boundary conditions ṽ(T, x) ∈ H,
p̃(0, x) ∈ S0. We have the unique representations ṽ(T, x) =∑+∞
n=0 vn(T )Ξn(x) and p̃(0, x) =

∑+∞
n=0 pn(0)Ξn(x), where

vn(T )n≥0 = 〈ṽ(T, x),Ξn(x)〉H , (24)

and pn(0)n≥0 is given by (23).
Consider the infinite sums {

∑+∞
n=0 vn(t)Ξn(x),∑+∞

n=0 pn(t)Ξn(x)}. Using the eigen property
LΞn(x) = ξnΞn(x), and inserting the infinite sums
into the perturbation system (10, 11, 20) yields the ODE
system (22).

For n = 0, since p̃(0, x) ∈ S0 and Ξ0 = 1, we know that
p0(0) = 〈Ξ0, p̃(0, x)〉 = 0. Since ξ0 = 0, from the matrix
An we have ṗ0(t) = 0 implying p0(t) = 0 for all t ∈ [0, T ].
Therefore, v0(t) = v0(T )e−ρ(T−t).

For n ≥ 1, from lemma IV.3 we have that the
eigenvalues spec(An) = λ1,2n are distinct, real and are
ordered λ1n < 0 < λ2n. We may write[

vn(t)
pn(t)

]
= Cn,T1 eλ

1
nt

[
1
e1n

]
+ Cn,T2 eλ

2
nt

[
1
e2n

]
, (25)

with eigenvector components e1,2n = ξn − ρ+ λ1,2n . Boundary
conditions give us vn(T ) = Cn,T1 eλ

1
nT + Cn,T2 eλ

2
nT and

pn(0) = Cn,T1 e1n + Cn,T2 e2n implying

Cn,T1 =
(e2n/e

1
n)vn(T )− eλ

2
nT (pn(0)/e1n)

(e2n/e
1
n)eλ

1
nT − eλ

2
nT

, (26)

Cn,T2 =
(pn(0)/e1n)− vn(T )

(e2n/e
1
n)eλ

1
nT − eλ

2
nT
. (27)

From the eigenvalues given by lemma IV.3 and since in
the limit ξn → −∞, we observe that e1n ∼ −2|ξn| and
e2n ∼

ρ
2 as n → +∞ so that in the limit Cn,T1 ∼ pn(0)

e1n

and Cn,T2 ∼ vn(T )

eλ
2
nT

. We can therefore say that vn(t) =

O
(
−pn(0)2|ξn| e

−λ1
nt
)

+ O
(
vn(T )e−λ

2
n(T−t)

)
and pn(t) =

O
(
pn(0)eλ

1
nt
)

+O
(
vn(T )e−λ

2
n(T−t)

)
. From these estimates

we can say that
∑+∞
n=0 vn(t)Ξn(x) and

∑+∞
n=0 pn(t)Ξn(x)

given by the ODE system (22, 24, 23) are in C∞([0, T ]×Rd)
and H.

Since {Ξn}n≥0 is a complete basis to H, any solution
in H to the system (10, 11, 20) must have the form
{ṽ(t, x) =

∑+∞
n=0 vn(t)Ξn(x), p̃(t, x) =

∑+∞
n=0 pn(t)Ξn(x)}

where {vn, pn}n≥0 are finite for all t ∈ [0, T ]. This concludes
the proof that such a {ṽ(t, x), p̃(t, x)} governed by the ODE
system (22, 23, 24) is a unique H solution to the perturbation
system (10, 11, 20).

Asymptotic stability: Now, we construct infinite time solu-
tions by considering the limit T → +∞ of the solutions in
the finite time case. As explained in the finite time solutions
case, it can be shown that p0(t) = 0 at all times.

The pair {ṽ(t, x) =
∑+∞
n=0 vn(t)Ξn(x), p̃(t, x) =∑+∞

n=0 pn(t)Ξn(x)} is a unique solution specified by (25)
given the initial and terminal coefficients pn(0) and vn(T )
for all n ≥ 0. Now, if ṽ(t, x) ∈ H then lim

t→+∞
|vn(t)| < +∞

for all n ≥ 0. It is also known that |pn(0)| < +∞.
Therefore, for n = 0, this means that p0(t) = 0 and
v0(t) = v0(T )e−ρ(T−t)

T→+∞−−−−−→ 0.
From lemma IV.3, the eigenvalues of An are ordered λ1n <

0 < λ2n for all n ≥ 1 due to (A3). Therefore, for all n ≥ 1,
we observe from the finite time solutions (26, 27) to the ODE
system (22), that Cn,T1 → pn(0)

e1n
and Cn,T2 → vn(T )e−λ

2
nT as

T → +∞. Since λ1n < 0 < λ2n, for any α ∈ (0, 12 ) and as
T → +∞, it can be obtained from (25) that

sup
t∈[αT,(1−αT )]

|vn(t)| ≤ |Cn,T1 |eλ
1
nαT + |Cn,T2 |eλ

2
n(1−α)T

≤
∣∣∣∣pn(0)

e1n

∣∣∣∣ eλ1
nαT + |vn(T )|e−λ

2
nαT , (28)

sup
t∈[αT,(1−αT )]

|pn(t)| ≤ |Cn,T1 ||e11|eλ
1
nαT + |Cn,T2 ||e21|eλ

2
n(1−α)T

≤ |pn(0)|eλ
1
1αT + |vn(T )|e−λ

2
1αT , (29)

the right sides of which vanish in the limit since |vn(T )| <
+∞ and |pn(0)| < +∞.

We have shown that the unique solution in H to the MF
perturbation system has the properties v0(t) = p0(t) = 0,

lim
t→+∞

vn(t) = 0 and lim
t→+∞

pn(t) = 0 for all n ≥ 1.



6 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS

Therefore using Parseval’s theorem ||ṽ(t, x)||L2(p∞(x);Rd) =(∑+∞
n=1 vn(t)

) 1
2

, ||p̃(t, x)||L2(p∞(x);Rd) =
(∑+∞

n=1 p
2
n(t)

) 1
2

and the Lebesgue dominated convergence theorem, we have
that p∞(x) is linearly asymptotically stable with respect to
perturbing densities in S(ε).

V. A MEAN CONSENSUS MODEL

In this section we obtain stability results for a mean con-
sensus MFG model using theorem (III.2). The model consists
of the problem statement (2) with the nonlocal consensus
cost q(x, p(t, ·)) = 1

2

(∫
(x− x′)p(t, x′) dx′

)2
and agents

following controlled one dimensional Langevin dynamics (1)
with quadratic restoring potential ν = 1

2ax
2, a 6= 0. A MFG

model with consensus cost has been previously studied in
[13] wherein it is assumed that all agents follow integrator
dynamics, that is, the case a = 0. Although a more general
potential ν(x) can be treated using the result (III.2) to obtain
stability results, we choose to present the generalization only
to the quadratic potential. This choice allows us to obtain
analytical fixed point solutions for the stationary MF system,
inspired by related work in [31] where fixed points solutions
were found for a different class of MFGs. The linearity in
passive agent dynamics also allows for mean consensus, as
discussed later in this section.

The MF optimality system for this model consists of the
coupled system (3, 4) wherein ν = 1

2ax
2, along with the cost

coupling equation

q(x, p(t, ·)) =
1

2

(∫
(x− x′)p(t, x′) dx′

)2

(30)

where p(0, x) = p0(x) is the given initial density of agents,∫
p(t, x)dx = 1 for all t ≥ 0, lim

|x|→+∞
p(t, x) = 0 and

lim
t→+∞

e−ρtv(t, xt) = 0.

A. Gaussian Stationary Solution

The stationary MF optimality system for this model consists
of (5, 6) wherein ν = 1

2ax
2, along with the cost coupling

equation

q∞(x) =
1

2

(∫
(x− x′)p∞(x′)dx′

)2

(31)

where
∫

p∞(x)dx = 1 and lim
t→+∞

e−ρtv∞(xt) = 0. We

denote µ∗ :=
∫
R x
′p∞(x′)dx′. In this subsection we will

obtain solutions of the form

v∞(x) =
η

2
x2 + βx+ ω, (32)

p∞(x) =
1√

2πs2
e−

(x−µ∗)2

2s2 , (33)

to the value and density functions in the coupled optimality
system (5, 6, 31). Parameters η, β and ω can be obtained by

substituting (32) into (5), using (31) and equating coefficients
of powers of x:

ω =
1

ρ

(
1

2
(µ∗)2 − β2

2R
+
σ2

2
η

)
, (34)

β =
−µ∗

ρ+ η
R + a

, (35)

η2 + 2R(ρ/2 + a)η −R = 0. (36)

These parameters must satisfy additional conditions related
to the validity of the solution ansatz, namely, s2 > 0 and
v∞(x) > 0 for all x ∈ R. The unique positive solution
to the Algebraic Riccati Equation (ARE) (36) which permits
v∞(x) > 0 for all x ∈ R is

η = −R
(ρ

2
+ a
)

+

√
R2
(ρ

2
+ a
)2

+R. (37)

Choosing this solution, it is easily verified that ρ+ η
R +a > 0.

Equating our stationary density ansatz (33) with the unique
Gibbs distribution solution (8) from lemma III.1 implies

µ∗ =
−β

(aR+ η)
, (38)

s2 =
σ2

2(a+ η
R )
. (39)

Equations (35) and (38) are compatible only if µ∗ = 0 or
1

ρ+ η
R+a = aR + η. Using the ARE (36) it can be verified

that the latter condition is equivalent to a = −ρ. We conclude
that the Gaussian stationary solutions can be categorized into
two distinct cases depending upon problem parameters: (1) if
a 6= −ρ, there exists a unique solution with µ∗ = 0 and (2) if
a = −ρ, there exist a continuum of solutions, since µ∗ ∈ R
can be chosen arbitrarily. The following assumption is needed
to ensure s2 > 0.

(B1) a+ η
R > 0 for all a 6= 0.

Given a value of a, we provide the range of control design
parameters for which (B1) is true in the following lemma,
which can be verified by substitution in equation (37).

Lemma V.1. Let al,u := −ρ
2 ±

√(
ρ
2

)2 − 1
R . Then (B1) holds

if either
• ρ < 2√

R
or

• ρ > 2√
R

and a ∈ (−∞, au) ∪ (al,+∞).

We summarize the obtained quadratic-Gaussian solution to the
stationary MF system below.

Lemma V.2. Let (B1) hold. 1) Case a 6= −ρ : The unique
quadratic-Gaussian solution to the stationary MF optimality
system (5, 6) (with ν(x) = 1

2ax
2, a 6= 0) is the pair

(v∞(x) = η
2x

2 + σ2η
2ρ ,p

∞(x) = 1√
2πs2

e−
x2

2s2 ) where (η, s)

are defined by (37, 39). Furthermore, q∞(x) = 1
2x

2.
2) Case a = −ρ : For each µ∗ ∈ R, there exists a
pair (v∞(x),p∞(x)) given by equations (32, 33) that is a
solution to the stationary MF optimality system (5, 6) (with
ν(x) = 1

2ax
2, a 6= 0). The parameters (ω, β, η, s) are given by

equations (34, 35, 37, 39). Furthermore, q∞(x) = 1
2 (x−µ∗)2.



BAKSHI et al.: ON MEAN FIELD GAMES FOR AGENTS WITH LANGEVIN DYNAMICS 7

Proof. In both cases, q∞(x) = 1
2 (x − µ∗)2 follows from

equation (31) and assumption (B1) ensures that s2 > 0 in
the unique Gaussian Gibbs distribution (33) corresponding to
the quadratic value function (32).

In case 1, the solution to the stationary value function is
obtained by substituting µ∗ = 0 in equations (34), (35). This
completes the first part of the proof. In case 2, for a given
value of µ∗ ∈ R, the solution to the value function maybe
obtained similarly to the previous case.

From the expression for the Gibbs distribution (8) and
equation (33) we have 2

σ2 v
∞(x) = (x−µ∗)2

s2 ≥ 0, which
concludes the proof.

B. Linear Stability

We define a Hilbert space and a class perturbations in it,
for which we show stability.

Definition V.1. Denote Gaussian density p∞G (x) :=
1√
2πs2

e−
(x−µ∗)2

2s2 with µ∗ ∈ R, s2 > 0. Denote by
HG the Hilbert space L2(p∞G (x)dx;R). The class of
mass preserving density perturbations is defined as S0 :={
q(x)∈ H

∣∣∣∣〈1, q(x)
〉
HG

= 0

}
. The class of mass and

mean preserving density perturbations is defined as S1 :={
q(x)

∣∣∣∣〈1, q(x)
〉
HG

= 0,
〈
x, q(x)

〉
HG

= 0

}
.

The class of initial perturbed densities and linear asymptotic
stability can be defined analogously from the previous section
by replacing p∞(x) by p∞G (x) in definition IV.2.

The lemma below follows from theorem III.2 and Taylor
expansion of q in (30) around the fixed point.

Lemma V.3. Let ν(x) = 1
2ax

2, a 6= 0. If (B1) holds,
and (v∞(x), p∞(x), q∞(x)) given by lemma V.2 is a sta-
tionary solution to the nonlinear MF system (5, 6, 31) then
the linearization of the system around this solution for all
(t, x) ∈ [0,+∞)× R is given by (10,11) and

q̃(x) =− (x− µ∗)
(∫

R
x′p∞(x′)p̃(t, x′)dx′

)
, (40)

where p̃(0, x) is given,
∫
R p∞(x)(1 + εp̃(t, x))dx = 1 for

all t ≥ 0, ε > 0, lim
|x|→+∞

p̃(t, x) = 0 for all t ≥ 0 and

lim
t→+∞

e−ρtṽ(t, xt) = 0.

We now state eigen properties of the generator (
[26], [32]) of the controlled process for the consen-
sus model. We define normalized Hermite polynomials
{Hn(x)}n∈W for the space L2(p∞G dx;R) as Hn(x) =

sn 1√
n!

(−1)ne
(x−µ∗)2

2s2
dn

dxn e−
(x−µ∗)2

2s2 . These polynomials with
n ≥ 0, form a countable orthonormal basis of the space
HG. {Hn(x)}n∈W are eigenfunctions of the operator L
wherein ν(x) = 1

2ax
2, with the [13] eigenproperty LHn =

− σ2

2s2nHn = −(a + η
R )nHn. The following condition is

needed for stability of the consensus model.

(B2) a(a+ ρ) ≥ 0.

Note that this assumption is true if and only if a ∈ (−∞,−ρ]∪
(0,+∞), recalling that a 6= 0. Denote the matrix associ-
ated with the MF system for the consensus model Bn :=[

σ2n
2s2 + ρ s2δ(n− 1)
−n
s2R

−σ2n
2s2

]
.

Lemma V.4. Let (B1, B2) hold. Then, for all n ≥ 2 the

eigenvalues of Bn, λ1,2n = ρ
2 ±

√(
ρ
2

)2
+ σ2n

2s2

(
σ2n
2s2 + ρ

)
=

{−σ
2n

2s2 ,
σ2n
2s2 + ρ} = {−

(
a+ η

R

)
n,
(
a+ η

R

)
n + ρ} are real,

distinct and ordered λ1n < 0 < λ2n. Furthermore, the
eigenvalues of B1 denoted λ1,21 are real, distinct and ordered
λ11 < 0 < λ21 if a ∈ (−∞,−ρ) ∪ (0,+∞) and λ1,21 = {0, ρ}
if a = −ρ.

On applying the ARE (36), we see that the eigenvalues

λ1,21 = ρ
2 ±

√(
ρ
2

)2
+ σ2

2s2

(
σ2

2s2 + ρ− 2s2

σ2R

)
= {−a, a + ρ}.

Choosing to denote the lower of the eigenvalues by λ11, we see
that λ11 = −a if a ∈ (0,+∞) and λ11 = a+ρ if a ∈ (−∞,−ρ).

Spectral properties of the perturbation MFG system ob-
tained in this section allow us to generalize the methods in
[13] (applied to integrator agent dynamics) to prove stability
of fixed points for MFG with linear Langevin agent passive
dynamics. In the following theorem, we show linear stability of
unique zero mean stationary density (µ∗ = 0, corresponding to
a 6= −ρ) with respect to mass preserving density perturbations
(p̃(0, x) ∈ S0).

Theorem V.5. Let ν(x) = 1
2ax

2, a 6∈ {0,−ρ}. Let (B1, B2)
hold. Let (v∞(x),p∞(x), q∞(x)) given by lemma V.2 be a
stationary solution to the MF system (5, 6, 31). If perturbation
p̃(0, x) ∈ S0, and {vn, pn}n≥0 are determined by[

v̇n
ṗn

]
=Bn

[
vn
pn

]
, n ≥ 0, (41)

then ṽ(t, x) =
∑+∞
n=0 vn(t)Hn(x), p̃(t, x) =∑+∞

n=0 pn(t)Hn(x) are unique HG solutions to the
perturbation MF system (10, 11, 40). Moreover,
the steady state density p∞(x)= p∞G (x) is linearly
asyptotically stable with respect to S(ε). Furthermore,

p̃(t, x) = p1(0)eλ
1
1tH1(x) +

∑+∞
n=2 pn(0)e−

−σ2n
2s2

tHn(x),
q̃(x; p̃(t, x)) = −s2p1(0)H1(x) = 0, and
ṽ(t, x) = s2p1(0)

σ2

2s2
+ρ−λ1

1

eλ
1
1tH1(x) where λ11 is defined in

lemma V.4.

Proof. We construct HG solutions of form ṽ(t, x) =∑+∞
n=0 vn(t)Hn(x), p̃(t, x) =

∑+∞
n=0 pn(t)Hn(x) to the

perturbation MF system (10, 11, 40) and show that they are
unique. Since p̃(0, x) ∈ HG we have the unique representation
p̃(0, x) =

∑+∞
n=0 pn(0)Hn(x).

Since H1(x) = x−µ∗
s , from (40) we note that

q̃(x; p̃(t, x)) = −sH1(x)
∑+∞
n=0 pn(t)

〈
p̃(t, x), x

〉
=

−s2p1(t)H1(x). Substituting the selected form of the
solutions into the perturbation system (10, 11, 40) and using
the eigen property of the operator yields the ODEs (41).
(i) Case n = 0: Since H0(x) = 1, and p̃(0, x) ∈ S0, we
have p0(0) =

〈
p̃(0, x), 1

〉
HG

= 0. Therefore, from the ODE
system (41) and matrix Bn, we have ṗ0 = 0 and v̇0 = ρv0
implying p0(t) = 0 and v0(t) = v0(0)eρt for all t > 0. So,
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(a) (b) (c)

Fig. 1: (a) Bistable potential (black), v∞(x) for population model (blue) and the consensus cost case (red). Population model, α = 0.5, σ = 1, ρ = 5,
Q = 10 and R = 0.5: (b) Stochastic paths for ten agents (c) Evolution of density at various times, t = 0 (black), t = T/5 (blue), t = 2T/5 (pink), t = T
(red) to the PDE solution (green)

the only solution allowing ṽ(t, x) ∈ HG is v0(t) = 0.
(ii) Case n = 1: In this case, from (39),

B1 =

[ (
a+ η

R + ρ
)

s2

− 1
s2R −

(
a+ η

R

)] . (42)

The assumptions imply a ∈ (−∞,−ρ) ∪ (0,+∞). Hence,
from lemma V.4, the eigenvalues spec(B1) = λ1,21 are ordered
λ11 < 0 < λ21. Consider the finite time boundary conditions
p1(0), v1(T ) to ODE system in this case. We may write[

v1(t)
p1(t)

]
= C1,T

1 eλ
1
1t

[
1
e11

]
+ C1,T

2 eλ
2
1t

[
1
e21

]
(43)

with the eigenvector components e1,21 =
1
s2

(
σ2

2s2 + ρ− λ1,21

)
. Boundary conditions give us

C1,T
1 =

(e21/e
1
1)v1(T )e−λ

2
1T−p1(0)/e11

(e21/e
1
1)e

(λ11−λ
2
1)T−1

, and C1,T
2 =

−e(λ
1
1−λ

2
1)T p1(0)/e

1
1−e

−λ21T v1(T )

(e21/e
1
1)e

(λ11−λ
2
1)T−1

. Note that if ṽ(t, x) ∈ H
then lim

t→+∞
|vn(t)| < +∞ for all n ≥ 0. It is also known

that |pn(0)| < +∞. Since λ11 < 0 < λ21 we observe
that e(λ

1
1−λ

2
1)T , e−λ

2
1T → 0 as T → +∞ so that in the

limit, C1,T
1 → p1(0)/e11 and C1,T

2 → 0. Therefore we
have the unique solutions v1(t) = (p1(0)/e11)eλ

1
1t and

p1(t) = p1(0)eλ
1
1t. Therefore, if p̃(0, x) ∈ S1 so that

p1(0) = 〈p̃(0, x), H1(x)〉 = 0 then v1(t) = 0, p1(t) = 0 for
all t ≥ 0.
(iii) Case n ≥ 2: In this case, from the ODE system we have[

v̇n
ṗn

]
=

[
σ2n
2s2 + ρ 0

− n
s2R − σ2n

2s2

]
. (44)

Therefore vn(t) = vn(0)e(
σ2n
2s2

+ρ)t, for which the unique
solution allowing ṽ(t, x) ∈ HG for all t ≥ 0 is vn(t) = 0.
Therefore pn(t) = pn(0)e−

nt
s2R is the unique solution to the

ODE on pn.
In the preceeding discussion we have shown that the

unique HG solution to the perturbation system has the
properties {v0(t) = 0, v1(t) = s2p1(0)

σ2

2s2
+ρ−λ1

1

eλ
1
1t, vn(t) =

0 for all n ≥ 2,}, and { p0(t) = 0, p1(t) =

p1(0)eλ
1
1t and pn(t) = pn(0)e

−nt
s2R for all n ≥ 2}.

Therefore using Parseval’s theorem ||p̃(t, x)||L2(p∞(x)dx;R) =

(
p21(0)e2λ

1
1t +

∑+∞
n=2 p

2
n(0)e−

2nt
s2R

) 1
2

where λ11 < 0, and
the Lebesgue dominated convergence theorem, we have that
p∞G (x) is linearly asymptotically stable with respect to per-
turbing densities in S(ε).

Remark 3. For the case a = −ρ, there exists a continuum of
stationary solutions, similar to the models considered in ( [11],
[13]). Stability of mean consensus models can be proved in the
case of such a continuum of solutions by imposing additional
restriction of mean preserving perturbations (p̃(0, x) ∈ S1)
as in [13] or via contraction mapping arguments ( [1], [9],
[7]). However, we do not treat this case in order to avoid such
unrealistic assumptions on the density perturbation.

We state a theorem regarding the mean consensus property
[13] of the steady state MFG control law. Let us denote a finite
set of agents A := {xi}1≤i≤N , identified by their individual
states xi with individual dynamics given by equation (1). The
set of agents A is said to have the mean consensus property
if lim
t→+∞

|E[xit − x
j
t ]| = 0 for any two agents xi, xj ∈ A. The

assumption below is required to prove mean consensus for a
set of agents in our consensus model.

(B3) sup
1≤i≤N

E[|xi0|2] < +∞ for the set A.

Theorem V.6. Let (B1, B2, B3) hold. Let (v∞,p∞) be
the steady state solutions to the optimality system (5, 6)
given in lemma (V.2). The steady state MF control law
u∞(x) = −∇v∞(x)/R applied to a set of agents A, in
the MFG model given by equations (1,2,) with ν(x) = 1

2ax
2

and consensus cost (30) results in a mean consensus with
individual asymptotic variance s2 = σ2

2(a+ η
R )2 .

The proof is a straightforward modification of that in [13],
and is omitted. Since the fixed point density is unique in
the generic case, there is no initial mean consensus, i.e. the
consensus mean is independent of the initial mean of the
population.

Theorems (IV.4,V.5) show that in the population model
(with nonlinear agent dynamics) as well as the consensus
model (with linear agent dynamics , a 6= −ρ), the optimal
MF control law u∗(t, x) = u∞(x)−∇ṽ(t, x)/R for a density
of agents under small S0 perturbations is in general time-
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varying, and hence different from the static steady controller
u∞(x) = −∇v∞(x)/R. In the next section we study the local
stabilizing property of the static steady MF controller with
respect to small S0 perturbations in the steady state density,
for both MFG models with nonlinear Langevin agent dynamics
and general cost functions.

VI. STEADY CONTROLLER: STATIC STATE FEEDBACK

We consider the stability of a population of agents in a
MFG, under the action of static state feedback provided by the
steady state MFG solution. Let (v∞,p∞) be a fixed point for
the MF system (5, 6). Consider a perturbed density of agents
p∞(1 + εp̃) as before. The static feedback MF control law
u∞(t, x) = −∇v∞(x)/R for agents governed by (1) is said
to be locally stabilizing for a steady state density p∞(x), if the
density perturbation p̃(t, x) governed by (11) with ṽ(t, x) ≡ 0,
decays to zero.

From equation (17), the perturbation dynamics under the
static feedback are given by ∂tp̃ = Lp̃. Local stability
therefore depends only on the eigen properties of the generator
L. Assuming (A1, A2) hold, theorems IV.1 and IV.2 imply
non-negativity of spectrum of L, which in turn yields stability
w.r.t. density perturbations in S0. Notice that this result is
independent of the cost function q(x,p). Therefore, the static
feedback under the steady controller is locally stabilizing.

We demonstrate local linear stability property under decen-
tralized static state feedback in two 1D numerical examples.
We consider the example of a bistable Langevin potential,
ν(x) = α(x

4

4 −
x2

2 ), α > 0, for both models considered. Open
loop dynamics (1) under this potential would cause agents
to fall into either one of the wells and exhibit a bimodal
distribution at infinite time.

We use Chebfun [33] to solve for steady states of the MF
system (5, 6) [7]. Monte Carlo simulations are performed for
Langevin dynamics (1) using the nonlinear static feedback
controller. Trajectories for N = 500 agents are simulated
with 100 stochastic realizations each. We observe an initial
distribution of agents decay to the steady state density over
the total simulation time T , in both cases.

In the population model, a combined quadratic state and
log density cost q(t, x) = 1

2Q(x−1)2− ln p(t, x) is designed.
This models a population of agents with a tendency to imitate
each other while moving towards the preferred state x = 1.
Initial states of agents are sampled from a uniform density over
[−2, 2]. We observe that for the log density cost, in Fig. 1b
that some agents which are initially stuck in the potential well
centered at x = −1 are able to escape it, to the preferential
well centered at x = 1, given sufficient time. In figure 1c, we
see that at t = T/5 the dynamics are dominated by the bistable
potential but as time increases t = 2T/5, t = T , the density
becomes unimodal with a mean close to the preferred state x =
1. Finally the stationary density from the PDE computation is
achieved by the agents at t = T .

In the consensus model case, the cost (30) is used in
conjunction with the long-time-average utility (7). Analytical
stability results in the consensus cost case with the bistable
potential, were presented by the authors in [7]. However, those

results pertain to local stability of the optimal (time-varying)
MFG control, in contrast with the decentralized static MF
control considered here. Note that there are two steady state
densities, with mean values µ∗ = ±1. We use the control
law corresponding to the right well (µ∗ = 1). Initial states
of agents are sampled from a uniform density over [−3, 1].
Since the initial density has a negative mean, at t = T/5 we
notice that there are more agents in the left well. However
as time increases, we see that more agents migrate into the
right well under the control. At t = T the PDE solution to
the stationary density which is slightly bimodal, is recovered
by the Monte Carlo simulation. Although we are using the
consensus cost, a high control cost causes some agents to be
in the well centered at x = −1. Most agents are seen to escape
from the left well and move into the right well in figure 2a.
However, due to the high noise intensity combined with low
control authority, some agents are seen to move in the opposite
direction as well. Finally, from stochastic means in Fig. 2c
we see that unlike the linear case where mean consensus is
guaranteed (theorem V.6), mean consensus is not achieved in
the case with nonlinear passive dynamics.

VII. CONCLUSIONS

In this paper, we have studied MFGs for agents with
multidimensional nonlinear Langevin dynamics, and provided
a framework for stability analysis of fixed points in such
systems. The key idea is to use the detailed balanced property
of the closed-loop generator to characterize the eigenvalue
spectrum of the perturbation forward-backward system, hence
extending existing methods that deal with integrator agent
dynamics. While we demonstrate this approach in the dis-
counted cost case, it is also applicable to MFGs using the LTA
cost functional. Using the presented approach, conditions on
the stationary solutions and explicit control design constraints
have been obtained for guaranteeing stability in a population
distribution and a mean consensus model. We also provide
a mean consensus result for the case where the Langevin
potential is quadratic, with individual asymptotic variance
depending on the linear drift.

It is also shown that under certain conditions on the station-
ary solution, the steady MF controller providing decentralized
static feedback is locally stabilizing. We illustrate this fact by
Monte Carlo simulations for population and consensus cost
models with non-Gaussian steady state behaviour.

The most general class of (uncontrolled) diffusions which
possess the detailed balance property are reversible diffusions
with possibly multiplicative noise. Hence, the approach pre-
sented here can be extended to provide stability results for
the corresponding MFG models. Generalizing our results to
second order Langevin systems will be a topic of future
work. Such MFG systems must be treated separately, since the
concerned closed loop generator in that case is a combination
of a Liouville operator and generator L in this paper.
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