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Abstract
This paper presents a method for real-time identification of sensor statistics especially aimed
for low-cost automotivegrade sensors. Based on recent developments in adaptive particle
filtering and under the assumption of Gaussian distributed noise, our method identifies the
slowly time-varying sensor offsets and variances jointly with the vehicle state, and it extends
to banked roads. While the method is primarily focused on learning the noise characteristics
of the sensors, it also produces an estimate of the vehicle state. This can then be used in
driver-assistance systems, either as a direct input to the control system, or indirectly to aid
other sensor-fusion methods. The paper contains verification against several simulation and
experimental data sets. The results indicate that our method is capable of bias-free estima-
tion of both the bias and variance of each sensor, that the estimation results are consistent
over different data sets, and that the computational load is feasible for implementation on
computationally limited embedded hardware typical of automotive applications.
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Noise-Statistics Learning of Automotive-Grade Sensors
Using Adaptive Marginalized Particle Filtering

Karl Berntorp1 and Stefano Di Cairano1∗

This paper presents a method for real-time identification of
sensor statistics especially aimed for low-cost automotive-
grade sensors. Based on recent developments in adaptive
particle filtering and under the assumption of Gaussian dis-
tributed noise, our method identifies the slowly time-varying
sensor offsets and variances jointly with the vehicle state, and
it extends to banked roads. While the method is primarily fo-
cused on learning the noise characteristics of the sensors, it
also produces an estimate of the vehicle state. This can then
be used in driver-assistance systems, either as a direct input
to the control system, or indirectly to aid other sensor-fusion
methods. The paper contains verification against several sim-
ulation and experimental data sets. The results indicate that
our method is capable of bias-free estimation of both the bias
and variance of each sensor, that the estimation results are
consistent over different data sets, and that the computational
load is feasible for implementation on computationally lim-
ited embedded hardware typical of automotive applications.

1 Introduction
Production vehicles are typically equipped with low-

cost sensors that are prone to time-varying offset and scale
errors, and may furthermore have relatively low signal-to-
noise ratio [1]. For instance, the lateral acceleration and
heading-rate measurements are known to have significant
drift and noise in the sensor measurements, leading to mea-
surements that are only reliable for prediction over a very
limited time interval. Similarly, the sensor measuring the
steering-wheel angle has an offset error that, when used for
dead reckoning in a vehicle model, leads to prediction errors
that accumulate over time.

Some of the active safety systems developed in the past
(e.g., electronic stability control [2] and anti-lock braking
systems [3]) have focused on aiding the driver over relatively
short time intervals. However, according to the survey [1],
even for those safety systems, accurate estimation may be
more important than advanced control algorithms. The re-
cent surge for enabling new autonomous capabilities [4–7]
implies a need for sensor information that can be used over
longer time intervals to reliably predict the vehicle motion.
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The underlying theme of how to achieve more reliable sen-
sor information is to leverage sensor fusion, to utilize exist-
ing low-cost sensors as efficiently as possible for as many
purposes and driver-assistance features as possible.

Offset estimation methods for the steering wheel and
yaw rate found in production vehicles are typically based
on averaging, to compensate for the yaw rate and steering
wheel bias. However, this leads to performance that is some-
times more than one order of magnitude away from the re-
quirements imposed by the next-generation advanced driver-
assistance systems (ADAS) [8]. Various methods have been
proposed to improve the offset compensation in the steering-
wheel angle and/or inertial measurements. The method in [9]
estimates the yaw-rate offset in a state-augmented Kalman
filter based on a kinematic vehicle model, where the yaw-
rate offset is modeled as a random walk. The approach in [8]
extends this to also include estimation of the steering offset
in a linear regression. Oftentimes, the bias of the inertial sen-
sors are modeled as a random walk, integrated, and solved
for in an estimation algorithm targeted for a specific applica-
tion [1, 10–12]. However, this results in repeating the same
tasks in different filters, with the consequence of unneces-
sarily repeated computations. Also, it implies that each es-
timator may have redundant components, which might have
implications on observability and feasibility of the approach.

In this paper,1 we develop a method for real-time learn-
ing of the sensor-noise statistics of the acceleration, gyro,
steering-wheel, and (optionally) the roll-rate measurements.
While our primary focus is the lateral vehicle dynamics, the
established framework can be applied to either lateral or lon-
gitudinal dynamics, or to the two combined. We model the
sensor measurements as Gaussian random variables with un-
known mean and covariance, and the task is to learn these
unknown quantities in real time. As opposed to Kalman-
type filtering methods, our method naturally estimates not
only the bias but also the variance of the sensor, that is, with-
out the need to augment the state vector, which increases the
problem dimensionality. The results from our method can
then be used in other sensor-fusion methods to support the
vehicle control functions.

1A preliminary version of this work was presented in [13]. The current,
elaborated, version contains a more detailed explanation of the estimation
algorithm development and extension to road-bank estimation, and a signif-
icantly expanded experimental evaluation based on several datasets.



The vehicle dynamics and the measurements are de-
scribed by a state-space model, parametrized by the un-
known mean and covariance. The resulting estimation prob-
lem is non-Gaussian and includes both the vehicle state tra-
jectory and the parameters, which introduces dynamic cou-
pling between state and parameters and further necessitates
approximate methods. We use particle filtering (PF) [14] for
solving our non-Gaussian estimation problem. PFs have pre-
viously been used in several automotive applications (see,
e.g., [15, 16]). PFs generally provide asymptotic perfor-
mance guarantees. A common way to estimate slowly time-
varying parameters such as sensor offsets, is to augment the
state vector [10–12, 17]. However, this leads to an increased
state dimension that may be problematic for particle filters,
since the number of propagated particles, and hence the com-
putational burden, increases exponentially with the state-
space dimension, and the computational capabilities of au-
tomotive micro-controllers that run the estimation algorithm
are limited with respect to other applications of PF, such as
avionics and target tracking. Instead, we rely on marginal-
ization [18] and propagation of the sufficient statistics of
the noise parameters, conditioned on the estimated vehicle
states, by exploiting the concept of conjugate priors [19]. We
use similar concepts as in [20], but adapt our algorithm to a
different type of noise dependency. Furthermore, we handle
the road bank by executing a Rao-Blackwellized particle fil-
ter (RBPF), in which the road-bank is estimated by a set of
Kalman filters (KFs), each KF conditioned on a state trajec-
tory and a set of noise parameters.

Outline: Sec. 2 presents the vehicle model, sensor setup,
and the problem definition. Our proposed approach is de-
scribed in Sec. 3. Secs. 4 and 5 present the simulation and
experimental evaluations, respectively, and the paper is con-
cluded in Sec. 6.

Notation: With p(xxx0:k|yyy0:k), we mean the posterior
density function of the state trajectory xxx0:k from time in-
dex 0 to time index k given the measurement sequence
yyy0:k := {yyy0, . . . ,yyyk}. We write fff k for a function fff (xxxk,uuuk),
where uuu is the deterministic input. Throughout, for a vec-
tor xxx, xxx ∼ N (µµµ,ΣΣΣ) indicates that xxx is Gaussian distributed
with mean µµµ and covariance ΣΣΣ, and |ΣΣΣ| is the determinant
of the matrix ΣΣΣ. The notation St(µµµ,ϒ,ν) denotes the mul-
tivariate Student-t distribution with mean µµµ, scaling ϒ, and
ν degrees of freedom. Similarly, NiW(γ,µµµ,ΛΛΛ,ν) denotes the
Normal-inverse-Wishart distribution with statistics (hyperpa-
rameters) summarized in (γ,µµµ,ΛΛΛ,ν) = S. The notation ẑzzk|m
denotes the estimate of zzz at time index k given measurements
up to time index m.

2 Modeling and Problem Formulation
Our algorithm aims at estimating the offsets during nor-

mal driving. We therefore model the vehicle dynamics by a
single-track (i.e., bicycle) model [21, 22], in which the two
wheels on each axle are lumped together, where the vehicle
operates in the linear region of the tire-force curve. We in-
corporate modeling of the influence of the bank angle into
the single-track model to correct for rotational disturbances
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Fig. 1. A schematics of the single-track model and related notation.
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Fig. 2. Bank-angle model.

from the road. This paper focuses on the sensors mainly re-
lated to the lateral vehicle dynamics, but our approach can
also handle the combined longitudinal and lateral setting by
considering the corresponding sensors, and can be extended
to incorporate estimation of the road grade.

Fig. 1 provides a schematic of the single-track model.
In what follows, Fy is the lateral tire force, α is the wheel-
slip angle, ψ is the yaw, δ is the steering angle of the front
wheel at the road and subscripts f ,r denote front and rear,
respectively. The state vector is xxx =

[
vy ψ̇

]T, where vy is the
lateral velocity of the vehicle and ψ̇ is the yaw rate. From
the assumption of driving in the linear regime of the tire-
force curve, the lateral tire force can be expressed as a linear
function of the slip angle α, Fy≈Cyα, where Cy is the lateral
stiffness. The slip angles are approximated as

α f ≈ δ− vy + l f ψ̇
vx , αr ≈

lrψ̇− vy

vx , (1)

where lr and l f are the distance from the center of mass to the
front and rear wheel, respectively. In (1), we use the velocity
at the center of mass instead of the velocity at the center of
the wheel. Fig. 2 illustrates the influence of the road-bank
angle φ. We assume that the effects on the vehicle dynam-
ics from the road-bank angle φ are considerably larger than
the effects on the vehicle dynamics due to the roll angle. This
assumption usually holds under normal driving and/or for ve-
hicles with low center of mass h. The equations of motion of
the single-track model including effects of the bank angle are



mv̇y =−mvxψ̇+Cy
f

(
δ− vy + l f ψ̇

vx

)
+Cy

r
lrψ̇− vy

vx − g
vx φ, (2a)

Iψ̈ = l fC
y
f

(
δ− vy + l f ψ̇

vx

)
− lrCy

r
lrψ̇− vy

vx , (2b)

where m is the vehicle mass, I is the inertia, g is the gravi-
tational acceleration, and we have used the small-angle ap-
proximation sinφ≈ φ. Model (2) is nonlinear in vx and there
are bilinearities between states and parameters. In this paper
we focus on the lateral dynamics and therefore the longitu-
dinal velocity vx is assumed known in the estimator. This is
consistent with many navigation systems, where dead reck-
oning is used to decrease the state dimension. In this work,
we determine vx from the wheel rotation rates given by the
wheel-speed sensors and assuming a known tire radius (see,
e.g., [16] for tire-radius estimation).

2.1 Estimation Model
The estimation model consists of the vehicle dynamics

model (2) and the road bank and sensor models, which will
be introduced next.The road-bank angle φ depends on the
road geometry. The road changes are independent on the ve-
hicle dynamics and furthermore vary with the specific road
the vehicle travels on. However, the road banking changes
smoothly, implying that φ̇ is continuous. We therefore model
the changes of the road-bank angle as white noise on φ̈, that
is, a (nearly) constant acceleration model with Gaussian dis-
tributed noise wφ ∼N (0,σφ) with known variance σφ,
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where zzz = [φ φ̇ φ̈]T. The ability to capture rapid changes in
the road bank will depend on the choice of σφ. Hence, if
there is prior knowledge about the environment, σφ can be
adjusted to reflect this.

The sensor measuring the steering angle is usually
placed on the steering wheel. Hence, the steering angle δ
at the wheel is not directly measured. Furthermore, the Ack-
ermann steering configuration causes a slight deviation be-
tween the left and the right wheel. We assume a single-track
model (Fig. 1), where δ is modeled as the average between
the left and right wheel angles. In general, δ can be calcu-
lated from a static map of the measured steering-wheel an-
gle. However, the resulting measurement of δ is known to be
subject to an offset, for instance due to the use of relative en-
coders that are cheaper and more robust to the mounting pro-
cess than absolute encoders, which in some cases can even

be time varying. An objective with the present contribution
is therefore to estimate such an offset, which is important
for proper operation of certain ADAS functions, such as the
Electronic Stability Control (ESC) [2]. To this end, we de-
compose the steering angle into one known nominal part and
one unknown part,

δ = δm +∆δ, (4)

where δm is the measured value of the steering angle, and
where ∆δ is the, possibly time-varying, offset. We model

wk := ∆δ (5)

as random process noise acting on the otherwise determinis-
tic vehicle dynamics. The noise term wk is modeled as Gaus-
sian distributed according to wk ∼ N (µk,σ2

k), where µk and
σk are the unknown, slowly time varying, mean and standard
deviation. Inserting (4) into (2), and performing a discretiza-
tion using sampling period Ts leads to

xxxk+1 = fff (xxxk,uuuk)+ ĀAAφzzzk +ggg(xxxk,uuuk)wk, (6)

where uuuk = [vx δm]
T are the known inputs, and where vx is

estimated from the wheel rotation rates. For the purposes
of this paper (6) is linear in state and inputs. However, the
method we propose is generally applicable to nonlinear ve-
hicle models.

Accounting for the road-bank angle dynamics, the state
vector consists of xxx and zzz, which are propagated forward in
time by (6) and (3), respectively.

2.1.1 Measurement Model
We are also interested in learning the slowly time-

varying offsets in the acceleration and gyro measurements,
as well as their corresponding variances. The measurement
model therefore incorporates the measurements of the lateral
acceleration, ay

m, and the yaw rate ψ̇m. The yaw-rate mea-
surement is directly related to ψ̇, whereas the lateral accel-
eration ay can be extracted from the right-hand side of (2a),
after dividing by the vehicle mass. The roll-rate measure-
ment φ̇m picks up effects from both the vehicle roll rate φ̇v
and the bank rate φ̇, φ̇m = φ̇v + φ̇. However, we assume that
φ̇v ≈ 0 and therefore φ̇m ≈ φ̇. The inertial measurements are
summarized in the state vector

yyyk =
[
ay

m ψ̇m φ̇m
]T

. (7)

We also have measurements of φ, φm, where we similar to
the roll rate assume that the roll angle is sufficiently small.
Production vehicles are typically not equipped with direct
roll angle measurements. However, this information can ei-
ther be retrieved from the suspension system of the vehicle
or from differential GPS [23].



Similar to the steering offset (5), we model the measure-
ment noise eeek of the inertial sensors as Gaussian with un-
known mean bbbk (the IMU bias) and covariance RRRk according
to eeek ∼ N (bbbk,RRRk). Since the primary focus is learning the
noise statistics of the inertial sensors, we assume that φm is
zero-mean Gaussian distributed with known standard devia-
tion σφ, eφ,k ∼N (0,σφ). Thus, the measurement model can
be written as[

yyyk
φm,k

]
=

[
hhh(xxxk,zzzk,uuuk)

CCCzzzk

]
+

[
ddd(xxxk,zzzk,uuuk)

0

]
wk +

[
eeek

eφ,k

]
, (8)

where ddd = [
Cy

f
m 0 0]T relates the steering angle to the mea-

surements according to (2) and CCC =
[
1 0 0

]
. Again, for our

purposes (8) is linear, but the method we propose is gen-
erally applicable to nonlinear systems, which is the case
if, for instance, the longitudinal dynamics are also consid-
ered, or nonstandard driving conditions are considered (e.g.,
performance-limit maneuvers).

The joint Gaussian distribution of the steering offset wk
and the inertial sensor measurement noise ēeek can be written
as w̄wwk =

[
wT

k ēeeT
k

]T ∼ N (µµµk,ΣΣΣk), where we have introduced
the short-hand notation ēeek = dddkwk + eeek and

µµµk =

[
µw,k

dddkµw,k +bbbk

]
, ΣΣΣk =

[
σ2

k σ2
kdddT

k
dddkσ2 dddkσ2

kdddT
k +RRR

]
. (9)

Since wk enters in both the vehicle model (6) and the mea-
surement model (8), the process and measurement noise (9)
are dependent. There are two main reasons for assuming
Gaussian noise. First, inertial sensors typically have char-
acteristics that fit well to the Gaussian distribution (see e.g.,
[24]). Furthermore, as we show in Sec. 3, assuming Gaus-
sian noise leads to desired mathematical properties as it en-
ables analytic computations and thus implementation of the
method efficiently in real time.

2.1.2 Observability
Observability can be analyzed by augmenting (3), (6)

with a random walk model of the steering offset and bias
terms, and by computing the observability Gramian. With
the current sensor setup, the system is detectable but not fully
observable. To remedy this, we utilize that the angular veloc-
ities of the rear wheels can be converted to virtual measure-
ments of the yaw rate according to

ψ̇virt =
ω(r)

r r−ω(l)
r r

lT
, (10)

where lT is the distance between the rear left and rear right
wheel and ω(l)

r , ω(r)
r , are the rotation rates for the rear left

and rear right wheel, respectively. With the additional mea-
surement (10), the system composed of (3), (6), (8), and (10)
is observable. In this paper we assume that the virtual mea-
surement (10) is Gaussian distributed with zero mean and

a priori determined standard deviation σvirt, and we denote
the full measurement vector ȳyyk = [yyyT

k φm ψ̇virt]
T. In practice,

measurements using the wheel rotation speed have scale er-
rors due to differences between the true and estimated wheel
radius r. This is not considered here but we refer to [16] for
one way to estimate the tire radii.

Remark 1. We stress that it is common to model the bias
vector bbbk as a random walk and extend the state vector, and
the covariance RRRk of the measurement noise is typically also
determined a priori. However, determining the covariance a
priori can be significantly time consuming, and error prone.
The same applied to the process noise of the bias random
walk. In fact, unmodeled effects can lead to differences be-
tween the effective measurement noise and the sensor spec-
ifications. Hence, including the bias and variances in the
estimation problem formulation provides additional robust-
ness throughout the entire vehicle operating life.

Remark 2. The incorporation of bank-angle estimation (3)
and the measurements φm, φ̇m is optional. For instance, if it
is expected that the road is mostly flat it may be preferable
to avoid incorporating the road-bank effects since it leads to
a more complex estimation problem and requires using more
sensors.

2.2 Problem Formulation
We want to recursively estimate the steering offset

and the noise statistics of the inertial measurements. In
a Bayesian setting, this can be expressed as learning the
parameters θθθk := {µw,k,bbbk,σk,RRRk} of the Gaussian noise
sources wk, eeek. We approach this problem in the following
way. Given the system model (6)–(10) and dependent Gaus-
sian noise between wk and ēeek characterized by (9), where the
unknown parameters θθθk may be time varying, we recursively
estimate

p(θθθk|ȳyy0:k), (11a)
p(xxxk|ȳyy0:k). (11b)

Eqs. (11a) and (11b) are coupled, which will be apparent in
the derivation of the proposed solution, because (11a) de-
pends on the state trajectory and the density (11b) depends
on the parameter estimates. Because the lateral velocity and
lateral acceleration depend on the bank angle, we also need
to estimate the state vector zzzk.

3 Marginalized Particle Filter for Sensor Estimation
This section focuses on determining the densities

in (11). We formulate the joint estimation in a Bayesian
framework as approximating the joint filtering density
p(zzzk,θθθk,xxx0:k|ȳyy0:k), that is, the joint posterior conditioned on
all measurements from time index 0 to k. We decompose

p(zzzk,θθθk,xxx0:k|ȳyy0:k) = p(zzzk|θθθk,xxx0:k|ȳyy0:k)p(θθθk|xxx0:kȳyy0:k)

p(xxx0:k|ȳyy0:k), (12)



and recursively estimate the densities in (12). Note that for
the case of planar motion, all terms involving zzz can be ig-
nored in the following derivations.

3.1 State Estimation
We approximate the posterior of the state trajectory with

a particle filter as

p(xxx0:k|ȳyy0:k)≈
N

∑
i=1

qi
kδ(xxx0:k− xxxi

0:k), (13)

where δ(·) is the Dirac delta mass and qi
k is the importance

weight for the ith state trajectory sample xxxi
0:k. The approx-

imate distribution (13) is propagated with a sequential im-
portance resampling (SIR) based particle filter [14]. In gen-
eral, the particles are sampled using a proposal distribution
π(xxxk+1|xxxi

0:k, ȳyy0:k+1), which starts from the particles at the pre-
vious time step. For dependent noise, the weight update is
performed as [20]

qi
k ∝ qi

k−1
p(ȳyyk|xxxi

0:k, ȳyy0:k−1)p(xxxi
k|xxxi

0:k−1, ȳyy0:k−1)

π(xxxi
k|xxxi

0:k−1, ȳyy0:k)
, (14)

where p(ȳyyk|xxxi
0:k, ȳyy0:k−1) is the likelihood. If the proposal is

chosen equal to p(xxxi
k|xxxi

0:k−1, ȳyy0:k−1), (14) simplifies to

qi
k ∝ qi

k−1 p(ȳyyk|xxxi
0:k, ȳyy0:k−1). (15)

Hence, to obtain new weights, we need to evaluate

p(ȳyyk|xxxi
0:k, ȳyy0:k−1), (16a)

p(xxxi
k+1|xxxi

0:k, ȳyy0:k). (16b)

3.2 Parameter Estimation
According to (6) and (8), knowing both the state and

measurement trajectory leads to full knowledge about w̄ww0:k =
[w0:k ēee0:k]

T. The posterior for the noise parameters can there-
fore be rewritten using Bayes’ rule as

p(θθθk|xxx0:k,yyy0:k) = p(θθθk|w̄ww0:k) ∝ p(w̄wwk|θθθk)p(θθθk|w̄ww0:k−1).
(17)

Based on the assumption the conditional probability distri-
bution of the noise with respect to the noise parameters,
p(w̄wwk|θθθk) in (17), is Gaussian, we can utilize the concept
of conjugate priors. If a prior distribution belongs to the
same family as the posterior distribution, the prior is said
to be conjugate to the particular likelihood. For multivari-
ate Normal data w̄ww ∈ Rd with unknown mean µµµ and covari-
ance ΣΣΣ, a Normal-inverse-Wishart distribution defines the
conjugate prior [25], p(µµµk,ΣΣΣk) := NiW(γk|k, µ̂µµk|k,ΛΛΛk|k,νk|k),

through the model

µµµk|ΣΣΣk ∼N (µ̂µµk|k,ΣΣΣk),

ΣΣΣk ∼ iW(νk|k,ΛΛΛk|k)

∝ |ΣΣΣk|−
1
2 (νk|k+d+1)e(−

1
2 tr(ΛΛΛk|kΣΣΣ−1

k ),

where tr(·) is the trace operator. We compute the statistics
Sk|k := (γk|k, µ̂µµk|k,ΛΛΛk|k,νk|k) for each particle as (see [26])

γk|k =
γk|k−1

1+ γk|k−1
, (18a)

µ̂µµk|k = µ̂µµk|k−1 + γk|kηηηk, (18b)

νk|k = νk|k−1 +1, (18c)

ΛΛΛk|k = ΛΛΛk|k−1 +
1

1+ γk|k−1
ηηηkηηηT

k , (18d)

ηηηk = w̄wwk− µ̂µµk|k−1, (18e)

where the data w̄wwk for each particle is generated by

w̄wwi
k =

[
wi

k
eeei

k

]
=

[
gggi,−†

k (xxxi
k+1− fff i

k− ĀAAφẑzzi
k|k)

yyyk−hhhi
k−dddi

kµi
w,k

]
, (19)

where ggg−†
k is the pseudo-inverse of gggk. Hence, a key task in

this paper is how to generate the particles in (19) to update
the parameters. For slowly time-varying parameters, the pre-
diction step consists of

γk|k−1 =
1
λ

γk−1|k−1, (20a)

µ̂µµk|k−1 = µ̂µµk−1|k−1, (20b)

νk|k−1 = λνk−1|k−1, (20c)

ΛΛΛk|k−1 = λΛΛΛk−1|k−1, (20d)

where λ ∈ (0,1] introduces exponential forgetting. Since we
know the dependence structure (9), the scale matrix ΛΛΛk can
be decomposed as

ΛΛΛk =

[
Λw,k Λw,kdddT

k
dddkΛw,k dddkΛw,kdddT

k +ΛΛΛeee,k

]
, (21)

implying that it suffices to propagate Λw,k and ΛΛΛeee in (18d)
and (20d). Further, for a Normal-inverse-Wishart prior,
the predictive distribution of the data w̄ww is a Student-t,
St(µ̂µµk|k−1, Λ̃ΛΛk|k−1,νk|k−1−d +1), with

Λ̃ΛΛk|k−1 =
1+ γk|k−1

νk|k−1−d +1
ΛΛΛk|k−1.

If the predictive distribution p(θθθk|w̄ww0:k−1) in (17) is a
Normal-inverse-Wishart distribution, from (17), (18), also



the posterior is Normal-inverse Wishart, p(θθθk|xxx0:k,yyy0:k) =
NiW(µ̂µµk|k,ΛΛΛk|k,νk|k). To obtain estimates of the mean and
covariance of the noise processes, we rewrite the marginal
(11a) as

p(θθθk|ȳyy0:k) =
∫

p(θθθk|xxx0:k,yyy0:k)p(xxx0:k|ȳyy0:k)dxxx0:k

≈
N

∑
i=1

qi
k p(θθθk|xxxi

0:k, ȳyy0:k), (22)

which has complexity O(N). Based on (22), the unknown
parameters can be extracted; for example, the estimate of bbbk
and RRRk can be found as

b̂bbk =
N

∑
i=1

qi
kb̂bb

i
k|k, (23a)

R̂RRk =
N

∑
i=1

qi
k

(
1

ν̃k|k
ΛΛΛi

eee,k|k +(b̂bb
i
k|k− b̂bbk)(b̂bb

i
k|k− b̂bbk)

T
)
, (23b)

and similarly for µ̂w,k, σ̂k, where ν̃k|k = νk|k−d−1.

3.3 Noise Marginalization
Consider first the likelihood (16a) resulting in the weight

update (15), and note that the noise processes of the inertial
sensors and the steering-wheel angle are independent of φm
and ψ̇virt. Hence, from the state-space model (3), (6), and
(8), the knowledge of xxx0:k, φ̇0:k, and yyy0:k gives full knowl-
edge of the unknown noise sequence ēee0:k. The property of
transformations of variables in densities [27] gives that

p(yyyk|xxx0:k,yyy0:k−1) ∝ p(ēeek(yyyk,xxxk)|ēee0:k−1). (24)

We marginalize out the noise parameters and zzz as

p(yyyk|xxx0:k,yyy0:k−1) =
∫

p(yyyk|θθθk,zzzk,xxxk)

· p(zzzk|yyy0:k−1,θθθk,xxx0:k)p(θθθk|xxx0:k,yyy0:k−1)dzzzkdθθθk. (25)

The first two integrands in (25) are Gaussian and the third
integrand is Normal-inverse-Wishart. Hence, (25) is Student-
t distributed [25], implying that

p(ēeek(yyyk,xxxk)|ēee0:k−1) = St(µ̂µµēee,k|k−1, Λ̃ΛΛēee,k|k−1, ν̃k|k−1),

with ν̃k|k−1 = νk|k−1−d +1, and mean and scaling

µ̂µµēee,k|k−1 = dddkµ̂w,k|k−1 + b̂bbk|k−1,

Λ̃ΛΛēee,k|k−1 =
1+ γk|k−1

ν̃k|k−1

(
dddkΛw,k|k−1dddT

k +ΛΛΛeee,k|k−1

)
.

The full measurement noise also contains the scalar compo-
nents eψ̇ and eφ due to the virtual measurement (10) and road
bank measurement φm, which are both zero-mean Gaussian
with known variance. However, this gives a joint density
which has no closed form expression. An approach to re-
solve this is to resort to moment matching; that is, we model
the full measurement noise as a Student-t distribution with a
common degree of freedom,

ēeek
eφ
eψ̇

∼ St
([

µ̂µµēee,k|k−1
000

]
,

[
Λ̃ΛΛēee,k|k−1 000

000T Λaug)

]
, ν̃k|k−1

)
, (26)

where

Λaug =
ν̃k|k−1−2

ν̃k|k−1

[
σ2

φ 0
0 σ2

virt

]
.

The Student-t converges to the Gaussian as the degrees of
freedom tend to infinity. Hence, from lim

ν→∞
St(µµµ,ΛΛΛ,ν) =

N (µµµ,ΛΛΛ) and the update formulas (18c) and (20c), it follows
that we recover the Gaussian measurement noise of the vir-
tual measurement with precision determined by the forget-
ting factor [12]. Hence, the measurement update (15) is

qi
k ∝ qi

k−1St(µµµ∗, Λ̃ΛΛ∗, ν̃), (27)

which can be evaluated analytically, where

µµµ∗ = hhhk +dddkµ̂w,k|k−1 +bbbk,

Λ̃ΛΛ∗ =
1+ γk|k−1

ν̃k|k−1

(
dddkΛw,k|k−1dddT

k +ΛΛΛeee,k|k−1

)
+Λaug.

The prediction step (16b) is resolved in a similar way,

p(xxxk+1|xxx0:k, ȳyy0:k) ∝ p(ggg−†
k (xxxk+1− fff k−AAAφzzzk)|xxx0:k, ȳyy0:k)

= p(ggg−†
k (xxxk+1− fff k−AAAφzzzk)|ēee0:k)

= p(wk(xxxk+1)|ēee0:k). (28)

We integrate out θθθk, zzzk in (16b),

p(xxxk+1|xxx0:k, ȳyy0:k) =
∫

p(xxxk+1|θθθk,zzzk,xxx0:k, ȳyy0:k)

· p(zzzk|θθθk,xxx0:k, ȳyy0:k)p(θθθk|xxx0:k, ȳyy0:k)dzzzkdθθθk. (29)

The integrand in (29) is a product of Gaussian and Normal-
inverse-Wishart distributions, resulting in a Student-t distri-
bution after integration [25]. Combining with (28), we obtain
a Student-t distribution for wk as

p(wk(xxxk+1)|ēee0:k) = St(µ̂∗k , Λ̃
∗
k ,ν
∗
k), (30)



where

ν∗k = νk|k−1−d +1+dy,

µ∗k = µ̂w,k|k−1 +dddkΛw,k|k−1Λ̃ΛΛ−1
ēee,k|k−1ηηηk,

Λ̃ΛΛ∗k =
νk|k−1−d +1+ηηηkΛ̃ΛΛ−1

ēee,k|k−1ηηηT
k

νk|k−1−dy +1

(
Λw,k|k−1

−dddkΛw,k|k−1Λ̃ΛΛ−1
ēee,k|k−1ΛT

w,k|k−1dddT
k

)
,

ηηηk = ēeek− µ̂µµēee,k|k−1.

3.4 Road-Bank Estimation
The main purpose of the road-bank estimation is to re-

move errors in the noise-statistics estimation due to effects
of the road bank on the vehicle dynamics. Consequently, we
use a process noise wφ in (3) and measurement noise eφ of
the angle measurement φm with constant parameters, and we
propose an add-on scheme to the existing estimator for esti-
mating the road bank.

The motion model (3) is linear and the measurement
model (8) is linear in zzzk given xxxk. Furthermore, given xxxk+1
and xxxk and by moving over fff k to the left-hand side, the ve-
hicle model (6) is linear and Gaussian. Hence, we can ap-
proximate p(zzzk|θθθk,xxx0:k, ȳyyk) in (12) by an RBPF [18], where
the vehicle model (6) acts as an extra measurement of zzzk,
and where the variance of the measurement noise is given by
ΣΣΣi

k = ΛΛΛi
k/(νk−dy−1).

3.5 Algorithm Summary
In the implementation, the process noise is generated

from (30) and used in (6) to generate samples {xxxi
k+1}N

i=1.
This removes the need for the matrix inversion in (19), since
wk is directly generated from (30) instead of generated from
the samples xxxk+1. Algorithm 1 summarizes the method.

4 Simulation Study
This section evaluates the proposed method in simu-

lation using measured input data (wheel rotation rates and
steer angle) from an experimental test drive. We then gen-
erate synthetic ground-truth data by feeding the single-track
model (2) with the measured input data. The true variances
of the sensors are fixed and the sensor bias is generated
from a random-walk model, which is motivated by the low-
frequency dynamics of a typical inertial sensor unit [24] after
averaging out the initial offset. Note that the generation of
the synthetic bias does not use the same model as the estima-
tion algorithm, where the bias vector is modeled as the mean
of a Gaussian disturbance, hence allowing some assessment
of the robustness. The steering-wheel offset is fixed to a con-
stant in the simulations, which cannot be averaged out, and
the road bank rate is modeled as piecewise linear.

4.1 Simulation Results
The statistics of the Normal-inverse-Wishart is initial-

ized as zero-mean with the estimated standard deviations set

Algorithm 1 Pseudo-code of the estimation algorithm
Initialize: Set {xxxi

0}N
i=1 ∼ p0(xxx0), {qi

0}N
i=1 = 1/N,

{Si
0}N

i=1 = {γ0, µ̄µµ0,ΛΛΛw,0,ν0}, {ẑzzi
0|−1,PPP

i
0|−1}N

i=1 =

{zzz0,PPP0}
1: for k← 0 to T do
2: for i ∈ {1, . . . ,N} do
3: Update weight q̄i

k using (27).
4: Update noise statistics Si

k|k using (18).
5: end for
6: Normalize weights as qi

k = q̄i
k/(∑

N
i=1 q̄i

k).
7: Compute Neff = 1/(∑N

i=1(q
i
k)

2)
8: if Neff ≤ Nthr then
9: Resample particles and copy the corresponding

statistics. Set {qi
k}N

i=1 = 1/N.
10: end if
11: for i ∈ {1, . . . ,N} do
12: Determine {ẑzzi

k|k,PPP
i
k|k}N

i=1 (see (10) in [18]).
13: end for
14: Compute state estimates xxxk = ∑N

i=1 qi
kxxxi

k.
15: Compute estimates of noise parameters using (23).
16: for i ∈ {1, . . . ,N} do
17: Predict noise statistics Si

k+1|k using (20).
18: Sample wwwi

k from (30).
19: Predict state xxxi

k+1 using (6).
20: Predict {ẑzzi

k+1|k,PPP
i
k+1|k} (see (17) in [18]).

21: end for
22: end for

to be roughly twice of the true standard deviation, and the
forgetting factor is set to λ = 0.995.

Fig. 3 shows the estimated standard deviations for the
lateral acceleration, yaw rate, and roll rate in red and the true
values in black. After the initial transients, the gyro variances
converge to their true values. The standard deviation estimate
for the lateral acceleration sensor exhibits a longer transient,
partially due to the more complicated measurement function,
which also involves estimation of mean and variance of the
steering offset. Setting the forgetting factor to a lower value
or the initial variances to larger values leads to faster con-
vergence (at the cost of larger fluctuations in steady state).
The estimated offsets are shown in Fig. 4. There is a cross-
dependence between the steering offset and the measurement
offsets, especially the acceleration measurement. However,
the estimator is able to track the low-frequency components
of the offsets closely. Note that although Fig. 3 shows re-
sults for constant noise variances, the method handles slowly
time-varying variances similar to the variations in the bias
components in Fig. 4.

Fig. 5 displays the estimated steering-wheel offset over
100 Monte-Carlo executions. The maximum and minimum
deviations from the true value in steady state are roughly
±0.04 deg.

The road-bank angle and rate, respectively, are shown in
Fig. 6, and Fig. 7 displays the lateral velocity and yaw rate.
Also these quantities are tracked closely, which shows that
the proposed approach is capable of estimating all quantities
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Fig. 3. Estimated standard deviations (red) and true values (black)
of the lateral acceleration, yaw rate, and roll rate in simulation for
N = 100 particles.

of interest and also correct for the bias in the sensors, in sim-
ulation.

5 Experimental study
For experimental validation, we have used a mid-size

SUV, equipped with industry-grade validation equipment to
gather data, and collected several different data sets using
the same vehicle setup. The parameters of the vehicle model
have been extracted from data sheets and bench testing. The
true steering offset has been determined from an offline op-
timization procedure using a particle Monte-Carlo-Markov-
Chain (PMCMC) method described in [28], where it was
used for calibration of tire-friction parameters. After a cer-
tain number of MCMC iterations (the burn-in period), the
method converges to produce consistent estimates [29]. Note
that we use the standard internal IMU, steering angle, and
wheel rotation rate measurements, obtained from the CAN
bus, and only compare with the nonproduction sensors for
validation purposes. However, the roll angle measurements
have been extracted from an RT3100 mounted on the SUV,
since we do not have access to a differential GPS or to the
suspension deflection sensors. The tuning parameters are the
same for all results in this section. We use a forgetting fac-
tor λ = 0.999 and activate the algorithm whenever all wheel
rotation rates are nonzero.
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Fig. 4. The estimated bias (red) and true bias (black) in simulation
for N = 100 particles.
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Fig. 5. Estimated steering offset (red) and true offset (black) in sim-
ulation for N = 100 particles. The results from 100 Monte-Carlo
trials are displayed, and the offset is 0.28 deg at the road side in all
simulations.

In the validation, each of the three data sets are about
three minutes long. The data has been recorded from test
drives on multiple loops of a track, with portions of signifi-
cant (≈ 6 deg) road-bank angle on parts of the track. Due to
the proximity in time between the test drives and the (very)
slowly time-varying nature of the steering offset, the offset
values are similar in all data sets.
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Fig. 6. The estimated road bank and rate (red) and true values
(black) in simulation for N = 100 particles.
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Fig. 7. The estimated lateral velocity and and the yaw rate (red) and
true values (black) in simulation for N = 100 particles. Both states
are estimated accurately.

In the simulation study, we assumed that the bias offsets
in the IMU were zero initially due to averaging of the initial
errors. However, in the experimental evaluation we activate
the method as soon as the longitudinal velocity vx > 0, which
occurs immediately after start recording the data, and the bi-
ases of the IMU are nonzero initially.

5.1 Results
The first part of the experimental evaluation focuses on

Monte-Carlo evaluation on a single data set, which is fol-
lowed by an evaluation for different data sets, to ensure re-
peatability of the method over different driving behaviors.
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Fig. 8. The upper plot shows the estimated steering-wheel offset
(red) for 100 Monte-Carlo executions and the ground truth (black), as
obtained by an offline optimization-based procedure, in experiments
for N = 500 particles. The lower plot displays a corresponding his-
togram of the error distribution accumulated over all time steps after
the initial transients (25 s), for all 100 Monte-Carlo runs. The aver-
age error is displayed in dashed vertical line.

5.1.1 Monte-Carlo Evaluation
Fig. 8 displays the estimated steering-wheel angle off-

set (red) for 100 Monte-Carlo executions on one of the data
sets. The ground truth as estimated by the PMCMC method
is shown in black. After the initial transients (≈ 40 s), the
estimate converge very close to the true mean. The average
of the estimates is correct, with maximum deviations around
0.35 deg. Measured at the road side, this corresponds to an
accuracy of roughly 0.02 deg road-wheel angle.

In Fig. 9 we show the estimated bias and standard de-
viation over 100 Monte-Carlo executions (two upper plots)
and an excerpt of the measured and true yaw rate, respec-
tively, together with the estimated yaw rate, for one realiza-
tion. The initial values of the bias samples are set to zero.
We do not have ground truth for the bias, as is a time-varying
process. However, by comparing the measured yaw rate with
the yaw rate from the validation equipment (a measurement
system composed of a high-cost, high-precision fiber-optic
gyro, and a GPS with real-time kinematic correction), we
can get some information about the instantaneous errors be-
tween them. The lower plot shows the results after the initial
transients of the bias parameters. The estimated yaw rate
follows the validation sensor closely. Furthermore, the es-
timator finds similar bias values (upper plot) and standard
deviations (middle plot) across the executions, indicating a
high degree of repeatability in the method.

The experimental results for the quantities associated
with the bank angle are shown in Fig. 10. The bank angle
estimates follow the measurements closely, and the bias es-
timates are consistent over all 100 Monte-Carlo executions.
The error distribution (lower plot) over the entire data set for
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Fig. 9. The estimated bias (upper) standard deviation (mid) for 100
Monte-Carlo runs, and estimated yaw rate (red) for N = 500 parti-
cles in experiments. The measured yaw rate is in green and the true
yaw rate as measured by the validation equipment is in black.

100 Monte-Carlo executions shows that the bank angle esti-
mates are unbiased and that the error rarely exceeds 0.3 deg.

5.1.2 Results for Different Data Sets
Fig. 11 displays the estimated steering-wheel angle off-

set for four different data sets. After the initial transients, the
estimated bias converges to values very close to the true off-
set for all data sets. This indicates that the method is reliable
for different types of driver behaviors.

In Fig. 12 we show the measured yaw rate for the four
different data sets (upper plot) and the deviation between the
measured yaw rate and the estimated yaw rate with the es-
timated bias added. The error is for most parts smaller than
0.5 deg/s, which is in the range of the standard deviation of
the yaw-rate sensor (see Fig. 9). The spikes that occur last
for short periods of time and coincide with rapid changes in
the yaw rate.

We conclude the evaluation of our proposed method
with an assessment of the computational load shown in
Fig. 13, where we plot the average computation time for one
estimation iteration of Algorithm 1 (i.e., Lines 2–21) for a
varying number of particles. The computer is a standard lap-
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Fig. 10. Estimated bank angle for one realization (upper), estimated
bias for 100 Monte-Carlo runs (mid), and the error distribution of the
bank angle estimation over the 100 Monte-Carlo runs (c.f. Fig. 8) in
experiments.
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Fig. 11. The estimated steering-wheel offset (red) for four differ-
ent data sets and the ground truth (black), as obtained by an offline
optimization-based procedure, in experiments.

top equipped with a 2014 i5 2.8 GHz processor. We have im-
plemented the algorithm as C-coded mex functions in MAT-
LAB and measured the computation time with the built-in
tic-toc functionality. Thus, what we report is an over-
estimate of the algorithm execution time, due to the over-
head introduced by the context switch and the transfer of the
variables from MATLAB to C, and due to the overhead intro-
duced by tic-toc. The O(N) line is also shown to verify
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Fig. 12. The measured yaw rate (upper plot) and the error between
the measured yaw rate and estimated yaw rate with bias compensa-
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Fig. 13. Average computation time for one iteration of Algorithm 1
for varying number N of particles. The computation time is measured
in MATLAB on a 2014 i5 2.8 GHz processor.

that the algorithm is linear in the number of particles. The
C-implementation is not optimized for speed nor for the spe-
cific processor, and further performance improvements can
be obtained. As shown in Fig. 13, the filter with N = 500
particles can be executed in the laptop in about 1.4 ms. Thus,
a target implementation with sampling period 10 ms can op-
erate in an ECU that is up to 7 times slower than our laptop
CPU, and using a sampling period 25 ms leads to that the
filter can operate in an ECU that is up to 18 times slower
than our laptop CPU. The proposed estimator gives reliable
estimates as long as N & 100, for which the ECU can be up
to 25 and 55 times slower, respectively. Note that the fast
implementation is feasible due to the marginalization of the
noise parameters and the bank dynamics, which reduces the
state dimension in the particle filter and hence reduced com-
putations.

6 Conclusion
We developed a method for learning of the offset and

variance of low-cost automotive-grade sensors. The offset
and noise of the different sensors are related through the ve-
hicle state trajectory and the associated estimation problem is
non-Gaussian. We provided a method based on marginalized
particle filtering to solve the problem. Tests on simulation
and experimental data sets verified that the method can ac-
curately estimate both the offsets and sensor variances, and
that the results are repeatable over different data sets with
different driving behavior.
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