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Abstract—A growing number of applications may benefit from
embedding receiver with the capability to separate collided
packets directly on a physical layer. For example, in IoT’s
random access channel scenario, a number of IoT devices are
placed in the same cell, occasionally transmit messages, and
are assigned non-orthogonal channel resources, giving rise to
packet collisions. While channel access techniques for sharing
a common channel are usually employed in most multi-user
communication systems, they cause channel underutilization and
increased latency. This paper considers a scenario where multiple
users asynchronously transmit packets over a shared channel
and are not subject to a random access mechanism, or the
mechanism itself fails to prevent packet collisions. Assuming
that each packet consists of a common preamble and information
bearing payload, and experiences random delay, frequency offset,
phase noise variation and block flat fading channel, we propose
a packet separation algorithm which recovers collided packets,
estimates their parameters and detects corresponding payload
symbols. The performance of the proposed method is validated
using simulations and benchmarked against bounds.

I. INTRODUCTION

A communication system involving multiple users which
transmit signals over non-orthogonal resources (space, fre-
quency, time, and/or code) conventionally has a builtin channel
access mechanism whose goal is to reduce likelihood of
collisions between packets sent by different users, e.g., [1].
While channel access techniques reduce the number of packet
collisions, they lead to channel underutilization and increased
latency. Consequently, a variety of applications may benefit
from embedding the receiver with the capability to separate
collided packets directly on a physical layer.

One such application that has recently received a con-
siderable attention pertains to the Internet of Things (IoT)
realm, where a large number of IoT devices are placed within
the same cell and occasionally transmit short messages to
the common base station [2], [3]. Employing conventional
communication strategies in the design of such a system turns
out to be highly challenging. Namely, due to a large number
of IoT devices and short messages they transmit, allocating
orthogonal resources to them is nearly impossible. Also, since
the IoT devices only occasionally transmit messages, using
network resource management and control may lead to an
excessive communication overhead. Hence, resolving packet
collisions directly on a physical layer seems to be the most
promising strategy.

In some other applications, the capability of separating
collided packets directly on a physical layer may be a vi-
able feature in addition to a conventional channel access
mechanism. In particular, the channel access mechanism may
grant transmission to a latency-critical packet which may
collide with a packet already on the air, thus prompting
the need to separate the colliding packets in the receiver.
For example, different entities on a factory floor wirelessly
exchange command and control messages. Reliable delivery
of those messages with low latency is the main requirement to
be met to facilitate efficiency in manufacturing processes [4].
In yet another application, the V2X paradigm is expected
to enhance safety on the roads and, consequently, a timely
delivery of safety related messages is critical.

Motivated by the above applications, we consider a random
channel access problem where multiple users asynchronously
transmit packets in the same frequency band. Due to Doppler
shift and imperfections in the transmitters’ oscillators, caused
for example by employing inexpensive oscillators in the IoT
devices, each transmitted packet exhibits frequency offset and
phase noise impairment. To aid packet separation, each packet
consists of a common preamble, known in advance, while
the information bits are contained in the packet payload.
We propose a packet separation algorithm which estimates
collided packets’ delays, frequency offsets, corresponding
channel coefficients and phase noise variations, as well as
detects payload bits.

II. RELATION TO PRIOR WORK

A growing research body of packet separation for random
access channel assumes that only a small portion out of a large
and known number of users simultaneously transmit symbols
and exploits sparse recovery framework to detect active users
and their transmitted information [5]. As such, assuming
perfect time synchronization, [6], [7] employ element-wise
sparsity, [8] performs block sparsity aided separation, [9]
probabilistically treats the separation problem by imposing
an arrival model on users, while [10], [11] propose reduced-
dimension multi-user detection (MUD) processors exploiting
analog sparsity. Sparse recovery approaches are also employed
in smart-meter applications [12], [13].

Few more recent works are relevant to current paper.
As such, [14] considers time and frequency asynchronous
transmissions of known and user-specific packets that go



through unknown multipath channels and separates them on
the receiver side for the purpose of link acquisitions of
active users. The separation algorithm from [15] considers
packets encoded with spreading codes, asynchronous in time,
synchronous in frequency, and transmitted through known,
single path channels. Finally, [16], [17] propose separation
algorithms when transmitted packets are encoded with spread-
ing codes, transmitted through unknown multipath channels,
asynchronous in time with relative delay of up to one signaling
interval, and synchronous in time. In comparison, each packet
in our setup has the same preamble and unknown data content,
not subject to a spreading/precoding, and channels from active
users are unknown and estimated on the receiver side. In
addition, the transmissions in our setup are asynchronous in
time and frequency, and each packet undergoes a random and
independent phase noise variation, estimated and corrected on
the receiver side.

Since the transmitted packets undergo random frequency
offsets, the considered scenario resembles a sinusoid sepa-
ration problem setup. A vast literature has been devoted to
a sinusoid separation problem, with prominent results being
the MUSIC algorithm [18], recent off-the-grid optimization-
based approaches exploiting frequency domain sparsity [19],
[20] and a practical OMP-like recovery with frequency esti-
mate refinement step [21]. Although the proposed algorithm
separates colliding packets in the frequency offset and delay
domain, we emphasize that the considered problem is more
challenging than sinusoid separation problem in a sense that
each atom in a given frequency offset bin carries unknown
payload symbols and experiences unknown delay and phase
noise variation.

The closest work to this paper is [22]. In comparison, we
reduce the computational complexity of the algorithm in [22]
by shrinking the search space for a packet. More importantly,
we address the issue of phase noise impairments, arising due
to using inexpensive oscillators in the future IoT devices and
sensors. Specifically, phase noise variation from each active
user is estimated on the receiver side and corrected to yield
accurate payload symbol detection.

III. ARRIVAL MODEL

In the considered scenario, K different users transmit
signals to a receiver employing a single antenna. The symbols
of the k-th user are formatted into packets sk ∈ CN×1,
where each packet is concatenation of preamble p ∈ CM1×1

and payload pk ∈ CM2×1, i.e., sk =
[
pT pTk

]T
and

M1 + M2 = N . The preamble is known in advance and
same for all packets. The payloads carry information and are
detected on the receiver side.

Each user, k, modulates its packet sk and transmits a
waveform xk(t) obtained as

xk(t) =M(sk), 0 ≤ t ≤ T, (1)

where M denotes a modulation operator. The duration of the
transmitted waveform is T = NTs, where Ts is the symbol
duration. Without loss in generality, we assume the transmitted

power of user k is contained in the corresponding channel
coefficient.

The users send signals asynchronously so that the transmit-
ted waveform, xk(t), experiences delay τk. This delay also
incorporates the propagation delay between user k and the
receiver. In addition, each waveform is impaired by frequency
offset fk and phase noise θk(t). The signal at the receiver
is a superposition of the received signals originating from
all active users. The overall received signal is pre-processed,
downconverted, and its complex baseband representation is
given by

r(t) =

K∑
k=1

hkxk(t− τk)ej2πfk(t−τk)ejθk(t) + v(t). (2)

Above, v(t) is a circularly symmetric additive white Gaussian
noise (AWGN), i.e., v(t) ∼ CN (0, σ2), while hk ∈ C is
a coefficient (gain) of the channel between user k and the
receiver. This model corresponds to a block flat fading channel
and handles narrowband systems with relatively short packets
(shorter than the channel coherence time). Additionally, the
model can also handle channels with a single dominant path.

We note that the frequency offsets fk and phase noise real-
izations θk(t) are independent across different users because
they are caused by different oscillators. Each θk(t) is modeled
as a Wiener process, meaning that the phase noise increments
during two non-overlapping time intervals are independent and
Gaussian distributed, i.e.,

θk(t+ ∆t)− θk(t) ∼ N (0, σ2
p(∆t)), (3)

where the variance σ2
p depends on the time difference ∆t.

The complex received signal r(t) over some observation
time window of duration Tobs is sampled with oversampling
factor No, yielding NoTobs/Ts samples. The vector of the
generated samples, r, is the input to the proposed packet sep-
aration algorithm. The proposed method estimates the packet
delays τk, frequency offsets fk, phase noise realizations θk(t)
and channel gains hk, and detects the transmitted payload
symbols pk, k = 1, . . . ,K.

The described packet separation method is, in general, ob-
solete to modulation format in (1). However, we focus on the
Gaussian Minimum Shift Keying (GMSK) modulation [23],
as it has some desirable features well suited for potential
applications of our interest. Namely, the GMSK waveform has
constant modulus so that relatively cheap radio frequency (RF)
components can be used, which is especially desirable for
IoT applications. In addition, the GMSK has relatively good
spectral efficiency and reduced sidelobe levels. While the use
of the GMSK modulation is reflected in the way we perform
joint carrier phase estimation (CPE) and payload detection in
Section IV-C, we stress out that our packet separation method
can handle any other modulation format by employing an
appropriate joint CPE and symbol detection algorithm.

IV. PROPOSED PACKET SEPARATION ALGORITHM

This section presents the proposed packet separation algo-
rithm. We start with a discussion on sparse recovery formu-



lation of the problem and then proceed with a more detailed
elaboration of the proposed algorithm.

A. Sparse Recovery Formulation
Packets transmitted by different users likely differ in delay,

or frequency offset, or both. Therefore, we specify a delay-
frequency offset domain as

S = T ×F = {(τ, f) : τ ∈ [0, Tmax], f ∈ [fmin, fmax]}, (4)

where Tmax, fmin, fmax are, respectively, maximum delay,
minimum and maximum frequency offset, all dependent upon
a specific application. The range of delays T and frequency
offsets F are discretized to yield, respectively, Td and Fd. The
bin size chosen in each discretization depends on application,
resolution properties of the employed preamble, and available
computational resources. Overall, the discretized search space
for the packet separation method is Sd = Td ×Fd.

Packet collisions occur as a result of transmissions from
only a small number of users in the IoT random access channel
setting, and are thus described within a sparse recovery frame-
work. Neglecting phase noise impairments in our problem
setup for a moment, the received signal can be represented
as a sparse and linear combination of atoms, where an atom
is a waveform characterized with particular delay, frequency
offset and payload symbols, while the coefficients in the linear
combination are channel gains corresponding to active user.
More formally,

r = Ah + v, (5)

where columns (i.e., atoms) in A are obtained by modulating
each possible combination of payload bits, appended to the
fixed and known preamble, and applying each possible delay
and frequency offset (τ, f) ∈ Sd. Sparse vector h contains
non-zero channel coefficients in the entries corresponding to
active atoms, while v is the discretized noise vector.

The sparse recovery formulation has been utilized in other
works on random access channel [6]–[9], [12], [13]. However,
non-zero entries in an unknown sparse vector in those works
are transmitted symbols of active users, while the columns of
the sensing matrix depend on users’ spreading codes and full
knowledge of channels of all users available at the receiver. In
addition, in case of asynchronous transmissions [24], atoms
also encode possible delays. In comparison to those works, we
consider a more realistic scenario where users’ channels are
not available at the receiver. This, in fact, gives rise to quite a
different model (5) from the one considered in the referenced
papers.

In principle, one may apply a sparse recovery algorithm
to (5) to detect active atoms in A and, in turn, estimate delays,
frequency offset and payloads, along with the corresponding
channel coefficients. However, a closer look reveals that such
an approach would suffer from a prohibitive computational
complexity because the number of possible payload com-
binations for each (τ, f) pair in Sd is exponentially large.
For example, a simple BPSK modulation yields 2M2 payload
combinations for each (τ, f). Accounting for phase noise
further exacerbates this issue.

To overcome the computational issue, we build upon [22]
and extend it to handle transmissions with phase noise im-
pairments. The crux of our algorithm lies in approximating
model (5) with

r ≈ A′h′ + v, (6)

where a column in A′, corresponding to a particular (τ, f),
represents the most likely waveform that would be received if
indeed there were a transmission with delay τ and frequency
offset f . That is, instead of considering all possible payload
combinations for a given (τ, f) ∈ Sd, and placing the
corresponding waveforms into separate columns of A in (5),
we estimate a single most likely waveform for each (τ, f).
We note that in this formulation, h′ is a shrunk version of h,
and contains the same non-zero entries as h.

The proposed algorithm iteratively recovers collided packets
using (6), where the approximated sensing matrix A′ is
learned in each iteration. The details are elaborated in the
following part.

B. Packet Separation Algorithm

To simplify the exposition, we describe the algorithm in
the continuous time domain. However, in practice, upon the
discretization of the received signal r(t) into r, all processing
is done in the discrete time domain. The pseudo-code of the
algorithm is given in Algorithm 1.

1) Reduced-Complexity Learning of Sensing Matrix: To
avoid determining the most likely waveform for each (τ, f) ∈
Sd, a matched filter bank (MFB) is implemented to indicate
relevant (τ, f) bins for a packet search. That is, for each
(τ, f) bin from the set of bins containing the location of
the MFB peak (τ̂0, f̂0), and a certain number of surrounding
bins, we detect what the transmitted symbols would be if a
packet were indeed located at that (τ, f) bin, and estimate the
corresponding waveform. This essentially results in estimates
of the relevant atoms in A′.

Specifically, the received signal r(t) is processed through
the MFB, where the impulse response of each filter is the
preamble waveform, tuned to a specific frequency offset
from Fd. Denoting with p(t) the modulated waveform of the
preamble, the template of a filter in the MFB, turned to a
particular frequency f ∈ Fd, is given by

pf (t) = p(t)ej2πft, 0 ≤ t ≤ T1. (7)

The location of the MFB output magnitude is given by

(τ̂0, f̂0) = arg max
(t,f)∈Sd

|r(t) ? pf (−t)|, (8)

where ? denotes the convolution. The set of (τ, f) bins around
(τ̂0, f̂0), relevant for a packet search is identified as

N (τ̂0, f̂0) = {(τ, f) : |τ − τ̂0| ≤ T̄ , |f − f̂0| ≤ F̄}, (9)

where T̄ and F̄ specify the size of the search area. These
values are chosen based on application, desired accuracy,
employed preamble, and expected arrival scenario.

In the following, we determine most likely payload symbols
for each (τ, f) ∈ N (τ̂0, f̂0). Specifically, if a packet has delay



τ , the portion of the received signal r(t) containing that packet
is

rτ (t) = r(t+ τ)1[0,T ](t), 0 ≤ t ≤ T, (10)

where 1[t1,t2](t) is 1, if t1 ≤ t ≤ t2, and zero otherwise.
Similarly, if this packet has frequency offset f , rτ (t) is
frequency compensated to yield

r̃τ,f (t) = rτ (t)e−j2πft, 0 ≤ t ≤ T. (11)

Assuming the power of the interfering packets is relatively
small, the compensated signal r̃τ,f (t) effectively contains
the considered (hypothesized) packet, impaired by carrier
phase noise, block flat fading channel and AWGN noise.
This signal is input to a block which jointly performs CPE,
estimation of channel coefficient and GMSK demodulation to
yield, respectively, the estimates of carrier phase noise θ̂τ,f (t),
channel coefficient ĥτ,f , and payload symbols p̂τ,f . This joint
estimation is outlined in IV-C.

Once the most likely payload symbols corresponding to
a hypothesized transmission at (τ, f) are determined, we
estimate the corresponding waveform. Specifically, assum-
ing payload symbols p̂τ,f were transmitted with delay τ ,
frequency offset f and phase noise θ̂τ,f (t), the received
waveform would be, up to a channel coefficient, given by

zτ,f (t) =M([pT p̂Tτ,f ]T )ej2πftejθ̂τ,f (t), 0 ≤ t ≤ T. (12)

The discretized version of this waveform is a column in A′,
corresponding to the considered (τ, f) ∈ N (τ̂0, f̂0).

2) Packet Recovery: Upon learning the relevant atoms in
A′, standard steps from greedy sparse recovery algorithms,
such as matching pursuit (MP) or orthogonal MP (OMP),
are applied for packet recovery and residual signal update.
Specifically, a packet is recovered by maximizing an objective
function given as a cross-correlation between the received
segment rτ (t) and zτ,f (t), i.e.,

J(τ, f) =

∫ T

0

rτ (t)z∗τ,f (t)dt, (13)

where the integral above is effectively an inner product be-
tween the corresponding vectors in the discrete time domain.
The delay and frequency offset of the recovered packet are
obtained as

(τ̂ , f̂) = arg max
(τ,f)

J(τ, f), (14)

where the search is done over the set N (τ̂0, f̂0). The payload
symbols, phase noise and channel coefficient corresponding to
the estimated pair (τ̂ , f̂) are already determined in the joint
CPE and GMSK demodulation step. They are indexed with
(τ̂ , f̂) and are, respectively, p̂τ̂ ,f̂ , θ̂τ̂ ,f̂ (t) and ĥτ̂ ,f̂ .

3) Residual Signal Update: The procedure described in the
previous parts recovers a single packet. The contribution of
that packet to the received signal r(t) is given by

rτ̂ ,f̂ (t) = ĥτ̂ ,f̂M([pT p̂T
τ̂,f̂

]T )ej2πf̂tejθ̂τ̂,f̂ (t), 0 ≤ t ≤ T.
(15)

The contribution of the recovered packet to the received signal
is removed from the received signal to obtain a residual signal

r̃(t) = r(t)− rτ̂ ,f̂ (t− τ̂)1[τ̂ ,T+τ̂ ](t), 0 ≤ t ≤ T. (16)

The residual signal is then processed using the steps described
in Sections IV-B1 and IV-B2, where it is treated as a received
signal. Notably, the residual signal update from (16) resembles
that of the MP approach. Alternatively, the OMP-like residual
signal update can be used and is expected to perform better
at the expense of increased computational complexity.

The packet separation method continues as an iterative
process, where each iteration recovers one packet. The iter-
ations continue until some stopping criterion is satisfied, for
example, when the power of the residual signal falls below
some threshold dependent on the AWGN noise variance.
Alternatively, if Cyclic Redundancy Check (CRC) is part of
the transmitted packet, it is used to check if the detected
symbols are correct. In that case, the recovery proceeds to
next iteration as long as the most recently detected packet
passes the CRC.

C. Joint Carrier Phase Estimation and Payload Detection

As already pointed out, the estimation of the carrier phase
noise and channel coefficient, as well as payload symbol
detection are all performed jointly. The input signal to this
block is r̃τ,f (t), evaluated in (11), and we assume it contains
a single, frequency compensated packet. The joint CPE and
payload detection is performed in three processing steps,
outlined in this part.

First, known preamble waveform p(t), 0 ≤ t ≤ T1, is
utilized to estimate the phase noise corresponding to the
preamble segment of the received signal. Without delving into
the details, the phase information is contained in [25]

u(t) =
[
r̃τ,f (t)1[0,T1](t)

]
p∗(t). (17)

The signal u(t) is processed through a moving average (MA)
filter of certain length. The phase estimate θ̂τ,f (t), 0 ≤ t ≤ T1,
is obtained after taking the angle argument of the MA filter
output and performing the angle unwrapping operation.

Second, the estimated phase noise corresponding to the
preamble part is used to compensate r̃τ,f (t) to yield

r̃′τ,f (t) =
[
r̃τ,f (t)1[0,T1](t)

]
e−jθ̂τ,f (t), 0 ≤ t ≤ T1. (18)

The channel coefficient is then estimated from r̃′τ,f (t) and
preamble waveform p(t) using the least squares (LS) fit.

Finally, the phase noise of the payload part is estimated
blindly using the approach proposed in [25]. Essentially, the
method applies a phase noise estimate corresponding to a
certain symbol period to compensate received signal at the
following symbol period, detects the symbol upon phase
noise compensation, and re-estimates the corresponding phase
noise. In addition, phase noise estimates of a certain number
of consecutive symbols are filtered using moving average
(MA) filter in order to reduce phase estimation error. In
comparison to the original CPE method from [25], which is
designed for memory-less modulation formats, we extend it to



Algorithm 1: Packet Separation Algorithm

Require: Received signal r(t)
Initialize search space S as in (4)
Initialize MFB as in (7)
Initialize residual signal r̃(t) = r(t)
for i = 1, 2, . . . ,K do

Process r̃(t) through the MFB.
Find coarse estimates τ̂0 and f̂0 as in (8)
Define search area N (τ̂0, f̂0) as in (9)
for (τ, f) ∈ N (τ̂0, f̂0) do

Extract received portion rτ (t) as in (10)
Compensate freq. offset to obtain r̃τ,f (t) as in (11)
Estimate θ̂τ,f (t) and ĥτ,f , and detect p̂τ,f from
r̃τ,f (t) as outlined in Section IV-C
Evaluate zτ,f (t) as in (12)
Evaluate objective function J(τ, f) as in (13)

end for
Find τ̂ (i), f̂ (i) = arg maxτ,f J(τ, f)
Detected payload symbols p̂(i) = p̂τ̂(i),f̂(i)

Find residual r̃(t) as in (16)
end for
return Parameters and symbols of the collided packets

handle formats with memory, such as the GMSK modulation.
Towards that end, a symbol-by-symbol GMSK detection is
required and we employ the optimum detection described
in [23]. However, any other sub-optimum and computationally
less demanding GMSK detection can also be used.

V. SIMULATION RESULTS

The proposed algorithm is validated with Monte-Carlo
simulations where we consider an arrival scenario consisting
of two packets. Since separating two packets that have fairly
different delays and frequency offsets is relatively easy, to
validate the algorithm, the two packets in our scenario com-
pletely overlap in time so that their delays are τ1 = τ2 = 7.
The normalized frequency offset of one packet, referred to as
Packet 1, is f ′1 = f1Ts = 6.5 × 10−4, while two different
cases for the normalized frequency offset of the other packet,
referred to as Packet 2, are considered, f ′2 = 0.05 and
f ′2 = 0.025. The received power of Packet 1 is 0 dB and
the AWGN variance is −15 dB. The power of Packet 2 is
subject to a sweep from 0 dB down to −10 dB, so that the
power ratio of the two packets, P1/P2, changes from 0 dB to
10 dB.

Each packet in our study consists of the same and known
32-bit preamble and an unknown 192-bit payload. The payload
bits for each packet are generated uniformly at random, ap-
pended to the preamble and modulated using the IoT-friendly
GMSK modulation with memory, with bandwidth−symbol
duration product BTs = 0.5 and oversampling rate of 4.
The phase noise is independent across packets and along
each packet follows a Wiener process with σp = 1o per
symbol. The channel coefficients corresponding to each packet

have independent, uniformly distributed phase, while their
magnitude depends on the desired received packet power.

The received signal is the input to the described packet
separation algorithm. The algorithm is run two iterations so
that it recovers two packets and outputs detected payload bits
and estimated parameters (delays, frequency offsets, channel
coefficients and phase noise waveforms). The normalized
frequency offset domain contains 251 bins spanning from
−0.1 to 0.1, while the resolution of the delay domain is equal
to the sampling period (1/4 of the symbol duration). The grid
search area in (9) is specified with T̄ = 1 and F̄ = 15.

As a performance metric, we measure bit and packet error
rate (BER and PER) of each packet. As benchmarks, we
simulate the performance of the successive interference can-
cellation (SIC) and maximum likelihood (ML) joint detection
(i.e., Viterbi algorithm) with perfect knowledge of the packets’
delays, frequency offsets, channel coefficients and phase noise
realizations, respectively referred to as the SIC and ML bound.
The averaging in all three schemes is done over 1,000 Monte-
Carlo runs (so that the minimum measurable BER and PER
are, respectively, 5.2× 10−6 and 10−3). Each simulation run
has different realization of the AWGN, phase noise in each
packet, and phases of channel coefficients.

The BER’s and PER’s of the two packets are shown in
Figures 1, 2, 3 and 4, for f ′2 = 0.05, and in Figures 5, 6, 7
and 8, for f ′2 = 0.025. As can be seen, the BER and
PER performance of Packet 1 detection exhibit insignificant
degradation compared to the SIC bound in both considered
cases, and no bit error has been observed for P1/P2 above 5dB
in all cases. Also, the BER and PER corresponding to Packet 2
are fairly close to the SIC bound for f ′2 = 0.05, indicating that
the proposed algorithm fairly accurately estimates packets’ pa-
rameters. As the two packets get closer in the frequency offset
domain when f ′2 = 0.025, the BER and PER performance of
Packet 2 detection deteriorate, however is still relatively close
to the SIC bound over a number of P1/P2 points. The largest
deterioration happens at P1/P2 of around 5− 6dB. A closer
examination reveals that in this regime, the errors of phase
noise estimation of Packet 1, even though not large to impact
payload detection of Packet 1, occasionally cause inaccuracies
in the residual signal (that should contain only Packet 2) that,
in turn, yields completely wrong localization of Packet 2 in
the delay-frequency offset domain. Approaches to overcome
this issue will be sought for in our future research.

VI. CONCLUSION

An IoT scenario where multiple users asynchronously trans-
mit packets over a shared channel causing packet collisions
on the receiver side is considered in this paper. Each packet
consists of known and common preamble, and information
bearing payload. The signal from each user is impaired with
frequency offset and carrier phase noise, and is transmitted
through a block flat fading channel. The described packet
separation algorithm estimates the parameters of the colliding
packets (i.e., relative delays, frequency offsets, phase noise
realizations and channel coefficients) and detects their payload
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Fig. 1: BER of Packet 1 for f ′1 = 6.5× 10−4 and f ′2 = 0.05.
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Fig. 2: BER of Packet 2 for f ′1 = 6.5× 10−4 and f ′2 = 0.05.
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Fig. 3: PER of Packet 1 for f ′1 = 6.5× 10−4 and f ′2 = 0.05.
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Fig. 4: PER of Packet 2 for f ′1 = 6.5× 10−4 and f ′2 = 0.05.
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Fig. 5: BER of Packet 1 for f ′1 = 6.5×10−4 and f ′2 = 0.025.
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Fig. 6: BER of Packet 2 for f ′1 = 6.5×10−4 and f ′2 = 0.025.
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Fig. 7: PER of Packet 1 for f ′1 = 6.5×10−4 and f ′2 = 0.025.
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Fig. 8: PER of Packet 2 for f ′1 = 6.5×10−4 and f ′2 = 0.025.

symbols. The described algorithm is validated using simula-
tions of a two-packet arrival scenario where the two packets
completely overlap in time and are close in the frequency
offset domain.
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