
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Motion Planning of Autonomous Road Vehicles by Particle
Filtering

Berntorp, K.; Hoang, T.; Di Cairano, S.

TR2018-164 December 07, 2018

Abstract
This paper describes a probabilistic method for real-time decision making and motion plan-
ning for autonomous vehicles. Our approach relies on that driving on road networks implies
a priori defined requirements that the motion planner should satisfy. Starting from an initial
state of the vehicle, a map, the obstacles in the region of interest, and a goal region, we formu-
late the motion-planning problem as a nonlinear nonGaussian estimation problem, which we
solve using particle filtering. We assign probabilities to the generated trajectories according
to their likelihood of obeying the driving requirements. Decision making and collision avoid-
ance is naturally integrated in the approach. We develop a receding-horizon implementation
and verify the method in simulated real road scenarios and in an experimental validation
using a scaled mobile robot setup with car-like dynamics. The results show that the method
generates dynamically feasible trajectories for a number of scenarios, such as collision avoid-
ance, overtaking, and traffic-jam scenarios. In addition, the computation times and memory
requirements indicate that the method is suitable for real-time implementation.

IEEE Transactions on Intelligent Vehicles

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2018
201 Broadway, Cambridge, Massachusetts 02139

Motion Planning of Autonomous Road Vehicles by
Particle Filtering

Karl Berntorp1, Tru Hoang1, and Stefano Di Cairano1

Abstract—This paper describes a probabilistic method for
real-time decision making and motion planning for autonomous
vehicles. Our approach relies on that driving on road networks
implies a priori defined requirements that the motion planner
should satisfy. Starting from an initial state of the vehicle, a
map, the obstacles in the region of interest, and a goal region,
we formulate the motion-planning problem as a nonlinear non-
Gaussian estimation problem, which we solve using particle
filtering. We assign probabilities to the generated trajectories
according to their likelihood of obeying the driving requirements.
Decision making and collision avoidance is naturally integrated
in the approach. We develop a receding-horizon implementation
and verify the method in simulated real road scenarios and in an
experimental validation using a scaled mobile robot setup with
car-like dynamics. The results show that the method generates
dynamically feasible trajectories for a number of scenarios, such
as collision avoidance, overtaking, and traffic-jam scenarios.
In addition, the computation times and memory requirements
indicate that the method is suitable for real-time implementation.

I. INTRODUCTION
Autonomous vehicles are complex decision-making sys-

tems that integrate advanced and interconnected sensing and
control components, see Fig. 1. While autonomous vehicles
increasingly begin testing on public roads, production vehicles
are more commonly being equipped with advanced driver-
assistance systems (ADAS) such as adaptive cruise control
and lane-change assist. This is driven by both safety and
economic aspects such as the high number of traffic accidents
associated with overtaking and lane-change maneuvers and
potential fuel savings [1]. Fig. 1 provides a typical high-
level system schematics for an autonomous vehicle [2]. At
the highest level a route is planned through the road network
by the route planner, based on a user-defined destination. The
route plan can be given by intermediate goals Xgoal, for exam-
ple, represented as possible lanes at an intersection and/or a
particular road after an intersection. Then, a discrete decision-
making layer is responsible for determining the local driving
behavior of the vehicle. For instance, a decision could be any
of turn right, stay in lane, turn left, or come to full stop in a
particular lane at an intersection. The motion planner is then
responsible for determining a desired trajectory that the vehicle
should follow based on the outputs from the sensing and
mapping module and the decision making module. The sensing
and mapping module uses various sensor information, such
as radar, Lidar, camera, and global positioning system (GPS)
information, together with prior map information, to estimate
the parts of the surroundings relevant to the driving scenario.

1 The authors are with Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA 02139, USA. Email: karl.o.berntorp@ieee.org.

Important requirements are that the trajectory computed by
the motion planner is collision free, dynamically feasible, and
possible to track by the vehicle controller.

This paper1 develops a probabilistic method for integrated
decision making and motion planning. Specifically, we pose
the combined decision making and motion planning problem
as an estimation problem, and leverage particle filtering for ap-
proximating the involved probability density functions (PDFs).
Particle filtering is a sampling-based technique for solving the
nonlinear filtering problem. The particle filter (PF) numerically
approximates the PDF of the variables of interest given the
measurement history, by generating random trajectories and
assigning a weight to them according to how well they
predict the observations. From the observation that the driving
requirements, such as staying on the road, right-hand traffic,
and obstacle avoidance, are known ahead of planning, we
formulate the driving requirements as measurements generated
by an ideal system. An interpretation for our approach is that
the PF determines decisions and corresponding trajectories,
and scores them according to how likely they are to obey
the driving requirements. In each planning phase, the PF
approximates the joint PDF of the state trajectory conditioned
on the decision and driving requirements. Our method solves
the decision-making and motion-planning problems in an
integrated fashion, and it samples both decisions (modes) and
trajectories within the particle-filter framework. By relying
on the PF framework, we can utilize the structure of the
environment to only search in areas that are likely to give
good trajectories.

PFs can achieve arbitrarily good estimates [5], [6]. PFs are
simulation based, which implies dynamic feasibility. There
exist methods for biasing the state trajectories toward the
driving requirements by choosing proper control inputs, which
significantly reduce the computations and hence ensure real-
time feasibility of the approach. Because of the biasing our
method is fast in determining dynamically feasible trajectories
that are intuitive with respect to the driving requirements, at
the price of being slightly less efficient in finding trajectories
that are counter-intuitive with respect to the driving require-
ments. Therefore, our approach is suitable for normal driving
situations where the trajectories typically executed by human
drivers are intuitive, and hence the trajectories generated by
our method will provide confidence to passengers of the
autonomous vehicle.

1A preliminary version of this work was presented in [3], [4]. The current,
elaborated, version contains an extension to discrete decision making, thor-
ough description of the method and algorithms, and experimental validation.

Motion planning Vehicle control Actuator control Vehicle

EnvironmentSensing & mapping

Decision makingRoute planner

Fig. 1. A high-level system architecture of an autonomous vehicle. The different blocks can be interconnected in various ways but the main building blocks
typically remain the same. In our approach, we consider the joint decision-making and motion-planning problem.

Notation: Throughout, p(x0:k|y0:k) denotes the condi-
tional probability density function of the state trajectory
x ⊂ X ∈ Rnx at time tk ∈ R conditioned on the vari-
able (measurement) y ⊂ Y ∈ Rny from time t0 to time tk,
ym:k := {ym, . . . ,yk}. Given mean vector µ and covariance
matrix Σ, N (µ,Σ) and N (x|µ,Σ) stand for the Gaussian
distribution and PDF, respectively. The notation x ∼ p(·)
means x sampled from p(·) and ∝ reads proportional to.

Outline: This paper is outlined in the following way. Sec. II
gives an overview of some of the previous work related
to autonomous vehicle motion planning. Sec. III provides
the models, and Sec. IV gives the scope of the motion-
planning problem. Sec. V develops the proposed method. In
Sec. VI we provide simulation study, which is followed by an
experimental evaluation of our approach in Sec. VII. Finally,
conclusions are drawn in Sec. VIII.

II. PREVIOUS WORK

The motion-planning problem in autonomous vehicles has
many similarities with the standard robotics setup [7], and ex-
act optimal solutions are in most cases intractable. Approaches
relying on model predictive control (MPC) are available [8]–
[13]. However, a limiting factor with these approaches is
typically nonconvexity [9]. This results in achieving only
a locally optimal solution, which may be significantly far
from the globally optimal one, and possibly in a very large
computational load and time. Also, while MPC efficiently
converges for convex problems, using MPC for highly non-
convex problems can result in getting stuck in local infeasible
solutions, with nonconvergence as a result. Instead, motion
planning in autonomous vehicle research is often performed
using either sampling-based methods such as rapidly-exploring
random trees (RRTs) [7], graph-search methods [14], [15] such
as A* [16] or D* and variations of it [17], [18], or optimal
control, possibly using MPC for tracking the motion plan [19],
[20].

RRTs rely on random exploration of the state space. RRT-
type methods are very suitable for unstructured environments,
due to their random sampling leading to guarantees of finding
feasible solutions whenever a solution exists. Optimal variants
of the suboptimal RRT have been recently developed [21],
[22]. RRTs can solve autonomous vehicle motion-planning
problems assuming a target region is given by the decision
maker. This provides for a decomposition of the decision-
making and motion-planning problem, which simplifies the

problem, but can lead to inconsistencies between the decision
maker and motion planner, since the route planner typically
does not know the limits of the motion planner. Furthermore,
RRTs are generally applicable but can be inefficient for non-
trivial and/or underactuated dynamics due to the computational
cost or limitations in computing steering laws to connect points
sampled in the configuration space [23], [24]. Furthermore, the
quality of the path in RRT can vary heavily between any two
planning instants, which is highly undesirable for autonomous
driving. Hence, a tailored implementation is typically needed
to achieve the performance requirements set for autonomous
vehicles.

Sampling-based methods have been applied to autonomous
vehicles. For instance, [25] proposed a kinodynamic RRT han-
dling the dynamic feasibility issue, and [26] considered time-
optimal motion planning by leveraging differential flatness in
the single-track vehicle model. Kinodynamic RRTs randomly
choose a node, generate random inputs, and propagate them
through the system model [27]. This reduces the tree expan-
sion to integration of the system model and by construction
generates drivable paths, provided a realistic model. However,
it introduces other potential problems, such as sparse coverage
of the reachable set [25], and the generated trajectory is of
varying quality. For efficiency, [28] proposed closed-loop RRT
(CL-RRT), which uses closed-loop prediction for trajectory
generation. The optimal version is in [29]. The method in [30]
uses a dynamic programming phase for a coarse trajectory
solution, which is then refined by sampling. Table I gives an
overview of some different approaches for motion planning
and their properties.

Our approach borrows concepts from RRT in that we
also perform random sampling to construct a tree expansion
of reachable locations. However, to overcome some of the
limitations of RRT-like methods, we do not sample the state
space, but rather the input space. First, this implies a reduced
search dimension, since the input space is usually of lower
dimension than the state space. Second, the trajectories satisfy
the differential constraints (i.e., the dynamics of the vehicle)
by construction, thus avoiding the need for steering algorithms.
Third, sampling the input space produces trajectories, rather
than paths, which is beneficial in scenarios with dynamically
moving obstacles. We also add an additional term correcting
the sampled input based on the driving requirements, hence
generating trajectories such that we minimize the deviations
from the driving requirements in the probabilistic sense. This

TABLE I
DIFFERENT METHODS FOR MOTION PLANNING AND THEIR PROPERTIES.

RRT-TYPE METHODS WORK UNDER GENERAL CONDITIONS BUT MAY
BECOME INEFFICIENT IN CERTAIN CASES. OPTIMIZATION-BASED

METHODS (E.G., MPC) ARE TYPICALLY VERY EFFICIENT FOR (CLOSE TO)
CONVEX PROBLEMS, BUT CAN BE COMPUTATIONALLY HEAVY AND GET
STUCK IN LOCAL INFEASIBLE SOLUTIONS FOR NONCONVEX PROBLEMS.

RRT-type

Pros Cons
feasibility randomness
optimality inefficiency
global solution dynamic feasibility

Optimization

Pros Cons
optimality (convex) numerical problem
efficient solvers computational cost
dynamic feasibility

results in finding relatively quickly trajectories that are intu-
itively good, although it may slow down the computation of
the optimal trajectory with respect to any of the RRTs for
optimal motion planning [21], [22]. However, our rationale is
that in automated driving under normal conditions, we seek to
quickly find trajectories that are effective, but not necessarily
optimal.

III. MODELING

In this section we introduce the different discrete-decision
model and the vehicle model used in the problem solution. We
refer to the automated vehicle as the ego vehicle (EV), whereas
other moving entities in the region of interest (ROI) of the EV
are designated as other vehicles (OV). That the OVs can be
either autonomous or manual vehicles, as we do not assume
any explicit collaboration between different vehicles. In the
following, we model the vehicle with respect to the global
inertial frame. Although throughout the paper, for illustration
we will use a specific vehicle model, our method handles
general discrete-time nonlinear vehicle models for describing
the time evolution of the EV that can be written in the form

xk+1 = f̄(xk) + ḡ(xk)uk, (1)

with EV state xk ∈ Rnx and EV input uk ∈ Rnu , and k is
the time index corresponding to time tk.

We introduce the following assumptions.
Assumption 1: Positions and velocities of the OVs relative

to the EV at the current time are known.
Note that the quantities involved in Assumption 1 can be

measured and estimated by onboard sensors such as cameras,
Lidars, radars, and/or ultrasound sensors attached to the EV.
The future states of the OVs over the planning horizon are not
assumed to be known a priori in the method we propose in
this paper, but the estimation of the future state is incorporated
into the planning method.

Assumption 2: The road geometry, number of lanes, and the
direction of travel in each lane is known.

The quantities involved in Assumption 2 are usually known
over the ROI from maps and onboard cameras. We collect the
road information over the ROI in the road state xRD.

A. Discrete Decision Model

Given the route plan, when driving on road networks such
as multiple-lane highways or city driving, there are behavioral
driving decisions that need to be determined. For instance,
if we consider a three-lane road and have a high-level route
coming from a route planner (Fig. 1), the possible decisions
are either to come to a full stop (S), stay in lane (SL), change
lane left (CLL), or change lane right (CLR). The possible
decisions can be modeled as a set of modes

M = {S, SL,CLL,CLR} = {m1, . . . ,m4}. (2)

We model the decision making model as a finite-state Markov
process with transition probabilities associated with each
decision. These transition probabilities can be determined,
for instance, from the driving context perceived from the
sensing and prediction modules, in combination with the route
commanded by the route planner. We write the transition
model between any two modes j and i as

mj ∼ p(mj |mi), (3)

which is determined from the transition probabilities. When
there is no a priori information from the sensing and prediction
modules, the transition probabilities encoded in (3) can be set
to the same value for all transitions.

B. Vehicle Model for Motion Planning

We introduce the following assumption on the driving
behavior assumed in the motion planner.

Assumption 3: The planner operates regular driving ma-
neuvers, while emergency braking and aggressive evasive
maneuvers are handled by a separate control system.

Based on Assumption 3, the motion planner can be based on
a single-track model [31]. Assumption 3 is reasonable, since
the decision maker and motion planner typically execute at
considerably slower update rates than the vehicle controller ,
and dynamic effects such as wheel slip are handled by the
lower-level control layers [2]. However, note that the planner
we present is not limited to the driving behavior imposed
by Assumption 3. When Assumption 3 does not hold, more
complex vehicle models may be included in (1).

A model based on force-mass balances is generally more
accurate than a kinematic model, but for regular driving the
differences are small [32], and remaining model mismatches
are compensated by lower-level control logics (Fig. 1). In this
paper we use the discretized version of the kinematic single-
track model [32],

ẋ =


ṗX
ṗY

ψ̇
v̇x
δ̇

 =


vx cos(ψ + β)/ cos(β)

vx sin(ψ + β)/ cos(β)

vx tan(δ)/L
u1

u2

 , (4)

where pX , pY are the longitudinal and lateral position in the
world frame, respectively, ψ is the heading (yaw) angle of the
EV, ψ̇ is the yaw rate, vx is the longitudinal velocity of the EV,
δ is the steering angle of the front wheel, L := lf + lr is the
wheel base, and β := arctan (lr tan(δ)/L) is the (kinematic)

body-slip angle. The inputs u1, u2 are the acceleration and
steering rate, respectively, which allows to obtain smooth
velocity and steering profiles and to constrain the rate of
changes of the velocity and steering angle, respectively.

We impose various state and input constraints on the vehicle.
The steering angle δ is subject to linear constraints, and linear
input constraints on the steering rate δ̇ and acceleration v̇x are
introduced. These constraints can be compactly written as

U = {uk : umin ≤ uk ≤ umax}. (5)

The road boundaries impose constraints on the position
vector p, as do obstacles in the region of interest (ROI) of
the vehicle. These constraints are in general nonconvex, but
as it will be explained later in Sec. V, they are directly handled
in our approach. The road-boundary constraint can be written
as

Γ(pX , pY) ≤ 0, (6)

where the function Γ is typically constructed from point-wise
data of the road and lane boundaries.

In general the constraints due to the OVs can take any shape.
For instance, if the motion of the OVs is estimated by means
of Kalman filters, a natural choice is to model the OVs as
ellipsoids. Alternatively, the OVs can be modeled as having
rectangular shape [9]. The spatial extent of the collision area
of the EV around the oth OV is denoted with Bo, and the
corresponding OV state is

xOV
o = [pOV

X,o p
OV
Y,o ψ

OV
o vOV

x,o]T.

The spatial extent of the EV and the OVs, as well as measured
positions and velocity at the beginning of the planning phase,
result in additional time-varying constraints on the states of the
EV. We define the (deterministic or probabilistic) obstacle set
at time step k as Ok(xOV

o,0,Bo). Denote the planning horizon
with Tf . The predicted set of the oth obstacle for each k ∈
[0, Tf] is

Sk,o = Ok(xOV
o ,Bj). (7)

The collision-avoidance area at time index k is computed as
the union over all OV trajectory sets (7),

Sk =

M⋃
o=1

Sk,o. (8)

C. Driving Requirements

The method we propose is based on the understanding that
nominal driving requirements can be determined beforehand.
For instance, when driving on a structured road network a set
of driving requirements may be:
• Stay on the road
• Obey right-hand traffic rules
• Maintain a certain velocity (e.g., from the speed limits)
• Stay in the middle of a certain lane
• Drive smoothly, that is, prioritize small steer rates
• Keep safety distance to surrounding obstacles

The driving requirements for each time step k can be summa-
rized in the vector yk ∈ Rny . The driving requirements will
be dependent on the different modes in the mode set M. For

instance, the modes CLL and CLR will result in different
desired lanes to follow. The driving requirements can directly
correspond to some or all of the states, and typically the
requirements are not possible to fulfill exactly. For instance,
it might be impossible to maintain a certain velocity while
keeping a specified safety distance to other vehicles. In this
paper, we model the driving requirements assuming that we
want to maintain a (possibly time varying) nominal velocity
vnom, be positioned in the middle of the lane corresponding
to the driving mode, that is, to have zero deviation from the
middle of the lane, and ideally keep the distance larger than
dmin from the surrounding vehicles.

Hence, for M obstacles in the ROI of the EV,

yk =
[
vnom 0 g1 · · · gM

]T
, (9)

where

go =

{
0 if do > dmin,

f(dmin − do) if do ≤ dmin,
(10)

in which do is the distance between the EV and the oth OV
and go(·) is a monotonically increasing function.

The resulting trajectory generated by the motion planner
will not exactly track yk, due to, for instance, conflicting
requirements, input constraints, the vehicle kinematics limiting
the drivable space, sensing and modeling errors, or limited
computing time. The driving requirements are modeled as
constraints on the vehicle states as

ŷk = h(xk,mj ,Sk,xRD), (11)

where h is a nonlinear function relating the EV state xk,
mode mj , OV obstacle set Sk (hence also {xOV}Mo=1), and
road information xRD, to the driving requirements. For the
driving requirements in (9), (11) can be written as

h(xk,mj ,Sk,xRD) =
[
vx pe d1 · · · dM

]
, (12)

where pe is the lateral deviation from the middle of the lane
in the road-aligned frame corresponding to the driving mode.
Fig. 2 shows the driving requirements and the notation.

IV. PROBLEM STATEMENT

This paper focuses on the motion-planning problem on road
networks, such as highway driving or city driving. In our
proposed approach, we consider a discrete-time vehicle model
of the EV that can be written in the form

xk+1 = f(xk) + g(xk)wk, (13)

where f ∈ Rnx and g ∈ Rnx×nu in general are nonlinear
functions, and wk ∈ Rnu is the input (process) disturbance.
The input disturbance is Gaussian distributed according to
wk ∼ N (0,Qk), where Qk is the covariance matrix. Com-
pared to the deterministic vehicle model (1), we use an input
disturbance, which is used to generate the control input in
our approach as will be explained later, instead of directly
using the deterministic control input. In general, the input
disturbance can depend on both the EV state xk and the
driving mode mj , but we do not make that dependence explicit

d1

d2

pe

vx (a)

(b)

(c)

Time

g1(d)

ddmin0

vnom

Sk,1Sk,1

Sk,2Sk,2

Fig. 2. Illustration of the driving requirements used in this paper; (a) nominal
velocity profile vnom requirement, which in general can be time varying; (b)
mid-lane tracking requirement pe and safety distance dj to OV requirements;
(c) possible shape of gj(·) for separation distance requirement. In the figure
the obstacle sets are modeled as ellipsoidal sets obtained, for example, from a
Kalman filter, including uncertainty around the spatial extent of the rectangular
OVs.

in the following. We model the EV behavior with respect to
the driving requirements as

yk = h(xk,mj ,Sk,xRD) + ek, (14)

where ek ∈ Rne is the slack, which results in the probabilistic
cost, on the driving requirements. We model ek as a stochastic
Gaussian disturbance with covariance Rk that can be depen-
dent on the vehicle and driving mode. Compared to the ideal
driving requirements (9), we have added the noise term ek.
Eq. (14) models the outputs of the system (13) on which
driving requirements are imposed. The term ek is important
for several reasons. For example, due to sensor noise from
estimation algorithms responsible for the vehicle state and road
map and to avoid infeasibility in trying to fulfill all driving
requirements exactly. For convenience, we define

Zk = {xRD,Sk} (15a)
ZG

k = {xk,Zk}, (15b)

where (15a) groups the external time-varying entities and (15b)
groups the global time-varying information. In a Bayesian
framework, using the notation (15), (13) and (14) can be
reformulated as

xk+1 ∼ p(xk+1|xk), (16a)
yk ∼ p(yk|ZG

k ,mj), (16b)

where xk+1 and yk are regarded as samples from the respec-
tive distributions.

Given the vehicle dynamics (1), the goal of the motion-
planning method is to generate an input trajectory uk, k ∈

[0, Tf] over the planning horizon Tf satisfying the input
constraints (5) such that the resulting trajectory obtained from
(1) obeys (6), avoids the obstacle set (8), and reaches the
goal region, that is, xTf

∈ Xgoal, where goal region Xgoal

is assumed given by a higher-level route planner.

V. DECISION MAKING AND MOTION PLANNING DESIGN

In this section we present the method for decision mak-
ing and motion planning. First, we show how PF can be
used to simultaneously generate decisions and corresponding
collision-free dynamically feasible motion plans. Then, we
outline the full algorithm for integrated decision making and
motion planning formulated as a tree-expansion algorithm.

A. Particle Filtering with Discrete and Continuous States

According to Sec. IV, the aim is to determine an input
trajectory and corresponding motion plan over the planning
horizon Tf that navigates the road safely while satisfying input
constraints (5), road constraints (6), and obstacle constraints
(8). In addition, we want to minimize deviations from the
predefined driving requirements (9).

In determining what combination of driving mode and state
trajectory is preferable, we assume that the driving mode
(3) is sampled less frequently than the states. That is, for
a given sample mj we execute a PF for a predefined time
T . The main idea in the approach is that we determine the
state trajectory PDF p(x0:T |y0:T ,mj ,ZG), conditioned on the
driving requirements y0:T , the driving mode mj , and the
global information as a finite weighted sum over the planning
horizon, and then extract the trajectory from the PDF. By doing
this iteratively, we construct a trajectory x0:Tf

based on the
driving requirements and modes. In our approach, the driving
requirements are the equivalent of sensor measurements in a
traditional estimation problem.

According to the PF approach, we approximate the state
trajectory PDF by a set of N particles xi

0:T and their associated
importance weights qiT as

p(x0:T |y0:T ,mj ,ZG
k−1) ≈

N∑
i=1

qiT δ(x0:T − xi
0:T), (17)

where qiT in (17) is the importance weight for the ith particle
and δ(·) is the Dirac delta mass. To propagate the particles
forward in time, at any time step k in the planning phase,
the particle-filter approach generates N samples xi

k from a
proposal density π(·),

xk ∼ π(xk|,yk,mj ,Zk) (18)

by using the particles from the previous time step k−1. After
sampling the state at time index k, which amounts to the
prediction step, the measurement step consists of updating the
weights qik according to

qik ∝
p(yk|xi

k,mj ,Zk)p(xi
k|xi

k−1)

π(xi
k|xi

k−1,yk,mj ,Zk)
qik−1, (19)

where p(yk|xi
k,mj ,Zk) is the likelihood (16b) and

p(xi
k|xi

k−1) is the vehicle model (16a). It is natural to choose
the vehicle model (16a) as proposal, that is,

π(xk|xi
k−1,yk) = p(xk|xi

k−1). (20)

This reduces the weight update (19) to

qik ∝ p(yk|xi
k,mj ,Zk)qik−1. (21)

However, using only the prediction model to construct the
proposal density leads to inefficient exploration of the state
space, since the information about the driving requirements
and the driving mode are only used in the weight update,
when the particles have already been generated. This would
lead to a large spread of the particles, which implies that the
particles are not used efficiently.

To maximize the usage of each particle when planning the
motion, we incorporate the driving requirements and driving
mode when choosing the inputs to the system. Since the
driving requirements y0:Tf

and the predicted obstacle set STf

are known beforehand, we can even use requirements ys,
where k ≤ s ≤ T , to generate samples xi

k by choosing as
proposal density

π(xk|xi
k−1,ys,mj ,Zs) = p(xk|xi

k−1,ys,mj ,Zs). (22)

The proposal (22) leads to the modified weight update

qik ∝
p(ys|xi

k,mj ,Zs)p(x
i
k|xi

k−1)

p(xi
k|xi

k−1,ys,mj ,Zs)
qik−1, (23)

Inserting (22) into (23) and using

p(xk|xi
k−1,ys,mj ,Zs) =

p(ys|xi
k,mj ,Zs)p(x

i
k|xi

k−1)

p(ys|xi
k−1,mj ,Zs)

,

(24)
where the likelihood is obtained from

p(ys|xi
k,mj ,Zs) =

∫
p(ys|xs,mj ,Zs)p(xs|xi

k) dxs, (25)

leads to the weight update

qik ∝ p(ys|xi
k−1,mj ,Zs)q

i
k−1. (26)

With the proposal (22) we are generating particles using a
fixed-point smoothing step with smoothing (prediction) time
ts, that is, we are leveraging knowledge about the driving
requirements in the future when determining the motion plan
for the entire planning horizon. Eq. (26) indicates that the
weight update is independent of the sample xi

k, that is, (22) is
optimal in the sense that it maximizes the effective number of
samples. On the other hand, it is generally difficult to sample
from (22) exactly.

If the driving requirements are encoded in such a way that
the function h(mj ,ZG

k) in (14) is differentiable, which is the
case for this paper as long as do 6= dmin in (10), a first-
order approximation of the optimal proposal can be used as
follows. The proposal (22) is in a recursive estimation context
equivalent to a measurement update using the measurement
ys. At time k − 1, each particle is by itself a state estimate
with no uncertainty, but with a propagation covariance Qk−1.

Hence, using a first-order approximation leads to an extended
Kalman filter update as

p(xk|xi
k−1,ys,mj ,Zs) ≈ N

(
xk|x̂i

k, (Σ
i
k)−1

)
, (27)

where

x̂i
k = f(xi

k−1) +Ki
s(ys − ŷ

i
s),

Σi
s =

(
Hi

s

T
R−1

s Hi
s +Q−1

s−1

)−1

,

Ki
s = Qs−1H

i
s

T
(Hi

sQs−1H
i
s

T
+Rs)

−1,

ŷi
s = h(x̂i

s,mj ,Zs), Hi
s =

∂h

∂x

∣∣∣∣
x̂i

s

,

(28)

and x̂i
s is the prediction using the motion model (1) using zero

input of particle i from time index k − 1 to s. Therefore, the
control input for each particle is

ui
k = Ki

s(ys − ŷ
i
s) + σi

s, (29)

where σi
s ∼ N (0, (Σi

s)
−1). Furthermore, by setting

Qk = BQ̄kB
T, (30)

we can design Qk such that the control inputs only act on the
longitudinal acceleration and steering rate, thereby ensuring
dynamic feasibility. The likelihood in (26) is approximated as

p(ys|xi
k−1,mj ,Zs) ≈ N

(
ys|ŷ

i
s,H

i
sQs−1(Hi

s)
T +Rs

)
.

(31)
The proposal density (27) will make the particles tend

to the driving requirements, and if Qk and Rk are chosen
wisely, the risk of violating the road constraints (6) and enter
the obstacle set (8) will be kept to a minimum. The reason
is that the weights (26) corresponding to the particles that
violate, or are close to violating, the constraints, will become
small and therefore be rejected in the resampling procedure
of the particle filter. However, this only provides statistical
guarantees on constraint satisfaction. Hence, to make sure we
do not violate the road constraints and enter the obstacle set,
we use the modified weight update

qik =

{
p(ys|xi

k−1,mj ,Zs)q
i
k−1 if (6) and (8) are satisfied

0 if (6) or (8) are violated .

(32)
With the weight update (32), which in practice performs
collision and out-of-road checking, we ensure there is no risk
of violating the road constraints and entering the obstacle set,
provided at any time step there is at least one out of the N
particles that satisfy (6) and (8).

Using the PF update equations (27)–(32) results in a more
efficient exploration of the state space than an input-based
RRT. As an example of this, Fig. 3 shows two snapshots
of samples generated by the PF updates (upper plot) and a
kinodynamic RRT (lower plot), when the EV (red) tries to
maintain the right lane of a two-lane road. The samples are
more scattered with the kinodynamic RRT, but by using the
PF updates, we can direct the samples toward a particular lane.

30 80

−190

−180

X [m]

Y [m]

30 80

−190

−180

X [m]

Y [m]

Fig. 3. Snapshots of generated samples (green) for motion planning using
the proposed PF-based sample generation (upper) and a kinodynamic RRT
(lower).

B. Determining the Tree Expansion

To allow warm-starting the motion planner, we incremen-
tally expand a tree T in the following way. At the first iteration
of the algorithm when the tree is empty, we recursively execute
the PF equations (27)–(32) to get (17). Storing the complete
representation of the PDF over the planning horizon would
imply a large memory requirement, which is problematic
given the limited memory capabilities of automotive micro-
controllers. Instead, we extract the trajectory and correspond-
ing inputs from (17) by using, for instance, the minimum
mean-square estimate

x0:T =

N∑
i=1

qiTx
i
0:T , (33a)

u0:T−1 =

N∑
i=1

qiTu
i
0:T−1. (33b)

The tree is appended with the state trajectory (33a) as vertices
V and the corresponding input transitions (33b) as edges E .
In the next iteration, we start from a state corresponding to
a vertex in the tree and again execute the PF. Since the time
is incorporated into every vertex in the tree, as long as the
obstacle prediction (8) is reliable the tree can be reused in the
next planning cycle and there is no need for the reevaluation
of nodes, which is computationally heavy when replanning
in dynamic environments [28]. Each vertex also contains a
timestamp and a cost C for reaching that node. As illustrated
in Fig. 4, the proposed method not only checks whether an
intersection with an OV occurs, but also at which time. This
is due to the way we construct the tree using the particle filter.
At the end of the tree expansion, the lowest-cost trajectory in
terms of the cost C is chosen for execution.

The proposed method is similar to RRT in that it builds
a tree of vertices and edges, but there are several differences.
The driving modes (2) and the subsequent sampling according
to (3) ensure that safe stopping is incorporated; samples are
drawn according to a proposal density (27), which generates
dynamically feasible trajectories (33) consistent with the mo-
tion model of the vehicle; and dynamic collision avoidance
is due to the PF based motion planning ensured by (32).
Note that in practice we generate the state trajectory (33a)
by first generating control inputs according to (29), which

OV, k = 1

OV, k = 2

OV, k = 3

EV, k = 1

EV, k = 2

EV, k = 3: Infeasible

EV, k = 2

EV, k = 3

EV, k = 4

Fig. 4. The incorporation of time in the tree expansion enables reuse of
nodes in the tree. For simplicity the EV is modeled as a point mass in the
figure. The tree splits into two branches at k = 2. The node corresponding
to k = 2 intersects with an OV, but since the OV is associated with k = 1,
the node is collision free. However, the red node at k = 3 intersects with an
OV associated with k = 3, which implies that a collision is detected and this
branch is not extended beyond k = 2, as opposed to the branch in black.

are then used to simulate the system forward in time to
obtain the state trajectories. Hence, our approach avoids the
need of steering control laws for connecting the states as
usually done in RRT, which is complicated for systems with
nonholonomic kinematic constraints. Furthermore, the input
space is typically of much lower dimension than the state
space, implying reduced computational burden for our method
when compared to sampling the state space.

C. Implementation Aspects

Because of sensing errors and unpredicted changes in the
environment, for instance due to new obstacles (7) entering
the ROI, we implement the motion planner in a receding-
horizon strategy. That is, the computed trajectory is Tf long
but is only applied for ∆t ≤ Tf , and the maximum allowed
(allocated) computation time for finding the motion plan is
δt. Fig. 5 illustrates how the tree is reused between planning
iterations. Similar to [28], we keep a committed tree, which
is the part of the tree that will be executed. In the beginning
of a planning phase, the measured EV position is obtained,
and the EV position over the allocated computation time δt
is predicted, compared, and matched with a node being the
closest node in the tree. This node becomes the root node
of the planning phase, and the part of the tree that is not a
descendant of the end node is deleted.

As for the driving mode, we sample and connect it to nodes
corresponding to the same driving mode, to avoid several
driving-mode changes in one planning phase. That is, when
sampling the driving mode mj , we start the planning from a
vertex V in the tree with the same driving mode mj .

The vehicle dynamics is discretized assuming a sampling
time Ts, which is typically determined by the update rate of the
sensor and/or the available computing power. The covariance
matrices Qk and Rk are two important design parameters.
Typically, Rk is determined from insights on which driving
requirements are most important, whereas Qk can be tuned for
a givenRk. However, it is also possible to learn the parameters
from recorded driving data. Here, recent advancements in

Matched nodesComputed tree
Committed trajectory
Executed trajectory
Predicted trajectory

Deleted branches

Fig. 5. A part of the generated tree is committed for execution. In the next
iteration, the measured EV state is used to account for the planner computation
time, by matching the predicted node to a node in the tree. The branches that
do not originate from the updated root node are deleted.

particle Markov Chain Monte Carlo methods seem particularly
interesting to explore, since the proposed motion planner can
be easily incorporated in such a learning framework [34], [35].

D. Algorithm Summary and Properties

Algorithm 1 describes the planner and the PF-based explo-
ration is given in Algorithm 2. When the computation time
exceeds δt, the safe trajectory with lowest accumulated cost
C is chosen for execution (Line 15, Algorithm 1).

Algorithm 1 Proposed Planning Method
1: Input: State estimate x̂, goal region Xgoal, tree T .
2: Propagate x̂ with the allocated time slot δt.
3: Set root node of T corresponding to x̂.
4: Delete part of T that is not a descendant of the root node.
5: Update obstacle set (8) and road constraint (6) to compute

allowed region Xfree.
6: Set tCPU ← 0
7: while tCPU ≤ δt do
8: Generate driving mode mj from (3).
9: Determine {x0:T ,u0:T−1} using Algorithm 2.

10: if x0:T is obstacle free then
11: Add x0:T as vertices Vnew to T .
12: Add u0:T−1 as edges Enew to T .
13: end if
14: end while
15: Determine lowest-cost safe state trajectory xbest and cor-

responding controls ubest.
16: Apply {xbest,ubest} for time ∆t and repeat from Line 1.

In terms of algorithm properties, the key question in PFs
is how well a function g(xk) can be approximated by ĝ(xk)
compared to the conditional expectation E(g(xk)), where

E(g(xk)) =

∫
g(xk)p(x1:k|y1:k) dx1:k, (34a)

ĝ(xk) =

N∑
i=1

qikg(xi
k). (34b)

There are several convergence proofs of PFs [5], [36], for
instance, almost sure weak convergence,

lim
N→∞

p̂(x0:k|y0:k) = p(x0:k|y0:k), (35)

Algorithm 2 Particle Filter for Trajectory Generation
Input: Propagated state x̂, driving mode mj , and T .

1: Choose a feasible node in the tree consistent with mj and
extract state x0.

2: Set {xi−1}Ni=1 ← x0, {wi
−1}Ni=1 ← 1/N ,

3: for k ← 0 to T do
4: for i← 1 to N do
5: Generate state xi

k and input ui
k using (27).

6: Update weight q̄ik using (31).
7: end for
8: if

∑N
i=1 q̄

i
k = 0 then

9: Terminate and return to Algorithm 1, Line 7.
10: end if
11: Normalize: qik ← q̄ik/

∑N
j=1 q̄

j
k

12: Set Neff ← 1/(
∑N

i=1(qik)2)
13: if Neff ≤ γN then
14: Resample particles with replacement.
15: Set qik ← 1/N, ∀i ∈ {1, . . . , N}.
16: end if
17: end for
18: Extract trajectory and inputs according to (33).

Return: {x0:T , u0:T−1}

in the sense that limN→∞ ĝ(xk) = E(g(xk)). As a con-
sequence, if the driving requirements are modeled in such
a way that the PDF of the state trajectory conditioned on
the driving requirements and accounting for the obstacle set
(8), p(x0:k|y0:k), is nonzero for all k ∈ [0, T] and reaches
the target region Xgoal, the PF approximation (33a) due to
the weight update (26) will be collision free, and will reach
the target region Xgoal. The method lacks optimality in the
traditional RRT sense. However, it finds the minimum mean-
square estimate (33a) of the state trajectory contained in the
resulting approximate PDF, which from (35) is asymptotically
optimal.

VI. SIMULATION STUDY

In this section we evaluate the proposed decision maker and
motion planner in simulation for different relevant scenarios.

A. Problem Setup

In the simulation study, an autonomous vehicle travels on
a one-way two-lane road. The road includes both straight-line
and curved road segments. The road coordinates are data from
the outer ring test track of the Japanese Automobile Research
Institute proving ground in Shirosato, Japan, and the vehicle
parameters used in the simulation study are obtained from a
real mid-size SUV, from data-sheet, precision testbenches, and
experimentally recorded data analysis. There are surrounding
vehicles maintaining either of the lanes with constant velocity.
In the simulation, the obstacle set is predicted based on an OV
vehicle model in closed-loop with a lane-tracking controller
that controls the OVs assuming a fixed lane over the planning
horizon Tf .

The goal region Xgoal is chosen such that a trajectory
is considered to have reached the region if the trajectory

TABLE II
THE PARAMETER CHOICES FOR THE SIMULATION STUDY.

Parameter Value Meaning

N 50 # particles
∆t [s] 1 Execution time
δt [s] 0.1 Computation time
Ts [s] 0.1 Discretization time
Tf [s] 5 Planning horizon
T [steps] Tf/Ts Prediction time
ts [s] 1 Smoothing time

is collision free and at least Tf long. The road boundary
constraint (6) is determined by linear interpolation of the data
points of the road, and checking for feasibility of (6) amounts
to checking if the path, with the vehicle geometry taken into
account, intersects any point on the interpolated lines. The
driving modes are sampled in the following way: First, we
iterate over all possible driving modes inM to ensure that we
exhaustively test all possibilities. Then, we sample the modes
with a uniform probability distribution. Because we test the
method on a two-lane road, only one of the options CLL and
CLR are possible when located in a given lane.

The different parameters used in the planner are shown
in Table II. Algorithm 1 is implemented in MATLAB on a
2014 i5 laptop, with Algorithm 2, where the main bulk of the
computations reside, implemented via C-coded mex-functions.
The PF prediction horizon T is dependent on the timestamp
of the node it expands from, to not predict too far ahead in the
future, and the nominal value is shown in Table II. Algorithm 1
provides a feasible trajectory faster than real time (i.e., in less
than δt s) for the considered scenario and parameters.

Driving Requirements: The driving requirements are the
same as introduced in (9), that is, (i) track the reference
velocity vnom; (ii) follow the middle lane, where the lane
is determined from the driving mode; and (iii) maintain
a minimum distance dmin, to vehicles in the same lane.
The minimum distance requirement is activated whenever the
velocity at the beginning of a planning phase will lead to a
safety distance smaller than ds m in less than δt s. We assume
left-hand traffic, and the cost function C for each node is
a combination of the norm of the mid-lane error from the
left lane, the distance to obstacles, and deviations from the
reference velocity.

B. Results
We illustrate the method on two scenarios. The first illus-

trative example concerns a situation where there is a slower
moving vehicle ahead of the EV. The second example concerns
a situation when the road is blocked, and the motion planner
must slow down to avoid a collision.

1) Overtaking: In the overtaking situation, the desired
velocity is set to vnom = 25 m/s and the minimum distance
corresponds to 3 s headway time, dmin = 3vx. However,
because of the smoothing time ts used in the particle prediction
(22), the vehicle will start to slow down before the minimum
distance is reached.

Figs. 6 and 7 show snapshots of a situation where the
autonomous vehicle (red) catches up with a vehicle (blue)

−20 0 20

1600

1640

X [m]

Y [m]

Fig. 6. A situation where the EV (red) must decide whether to switch lane
or to stay behind the obstacle (blue). The particles generated in the planning
phase are in green, and the chosen nodes are indicated in red. Snapshots
of the EV and OV trajectories every third discretization step are shown in
increasingly darker color.

−460 −420 −380

1750

1770

X [m]

Y [m]

Fig. 7. An overtaking situation, see Fig. 6. The vehicle reenters the left lane
and concludes the overtaking maneuver.

and eventually overtakes it. The particles generated within
one planning phase are shown in green, and the lowest-cost
trajectory is in red. There are two sets of trajectories computed,
one where the vehicle maintains the left lane and one where
the autonomous vehicle initiates overtaking of the slower
moving vehicle. These two sets correspond to driving mode
m2 (stay in lane), m3 (change lane left), and m4 (change
lane right). In Fig. 6, to stay in the left lane would demand
a decreased velocity, which is penalized in the cost function.
Hence, the motion planner prefers to change lane, given that
it can maintain a velocity close to the speed limit. In Fig. 7,
the EV reenters the left lane since that lane is again obstacle
free.

The corresponding determined velocity profiles are shown in
Fig. 8. In this figure there is a tendency to compute velocities
below the reference velocity. This will usually be the case
unless the value in the covariance matrix Rk related to the
reference velocity is set to a very small number. The reason
is that is usually easier to closely track the middle lane if
the velocity is decreased. Since in our approach the particle
filter computes the asymptotically optimal PDF, the minimum
mean-square estimate (33) is extracted from that PDF, and
the mass of the PDF will be slightly concentrated to a lower
velocity, the result is the observed behavior.

2) Blocked Lanes: In this driving situation the road is
blocked by two slower moving vehicles driving at approx-

125 126 127 128

23

24

25

Time [s]

vx [m/s]

145 146 147 148

23

24

25

Time [s]

vx [m/s]

Fig. 8. Planned velocities (red) corresponding to Fig. 6 (top) and Fig. 7
(bottom) with vnom = 25 m/s (dashed black).

X [m]

Y [m]

Fig. 9. Snapshots when both lanes are blocked by slow vehicles, so the only
possibility is to slow down. The left plot corresponds to 90 s, the middle plot
to 125 s, and the right plot to 135 s in Fig. 10. See Fig. 6 for notation.

imately 20 km/h, one in each lane, so the motion planner
must decrease the velocity and wait for an opening to become
available to overtake the vehicles. In this scenario, we set
the desired velocity to vnom = 13.89 m/s, corresponding
to 50 km/h and the minimum distance corresponds to 3 s,
dmin = 3vx. However, because of the smoothing time ts used
in the particle prediction (22), the vehicle starts slowing down
before the minimum distance is reached.

Fig. 9 displays three snapshots of the situation and Fig. 10
shows the planned velocity profile. For Fig. 9, in the left plot
there is no safe path to change lane. In the middle plot it is
possible to change lane, which would imply better tracking of
the reference velocity. However, the motion planner considers
the risk, encoded in the cost function, too high so it chooses
to maintain the right lane. In the right plot, there is enough
space between the two cars to safely overtake the vehicle in
the right lane. The right plot corresponds to the time instant
marked lane change in Fig. 10.

In the simulations we set the allocated computation time to
0.1 s. However, this choice was quite arbitrary and not limited

40 60 80 100 120

0

5

10

15

Time [s]

vx [m/s]

vnom
Obstacle vx
vplanner
Lane change

Fig. 10. Planned velocity (red) for the blocked-lane scenario in Fig. 9. Both
lanes are blocked by slow vehicles, so the only possibility is to slow down and
maintain the velocity of the leading OV until an opening appears. A safety
margin 3 s is imposed.

TABLE III
AVERAGE SOLUTION TIME, NUMBER OF NODES THAT CAN BE GENERATED
IN THE ALLOCATED COMPUTATION TIME, AND TIME FOR GENERATING A

MINIMUM REQUIRED NUMBER OF NODES, FOR 100 ITERATIONS.

N Mean CPU time # nodes 50 nodes

20 0.032 s 160 0.029 s
50 0.037 s 115 0.035 s
100 0.051 s 87 0.044 s
200 0.068 s 61 0.073 s
500 0.145 s 35 0.154 s
1000 0.276 s 30 0.234 s

by the required computation time for the proposed method
using the parameters in Table II. We conclude the simulation
study with a computation-time analysis. To generate a motion
that lasts for Tf s with a discretization time Ts s, a minimum of
Tf/Ts = 50 nodes need to be generated. Table III displays the
average computation time for finding a solution to the motion-
planning problem when using the parameters in Table II with
a varying number of particles. Also shown are the number of
nodes that can be generated in the maximum allowed com-
putation time δt = 0.1 s with a varying number of particles,
and how long time it takes to generate the minimum required
number of nodes (for the parameter setup in Table II) with
a varying number of particles. When analyzing the results, it
should be remembered that what we report is an over-estimate
of the algorithm execution time, due to the overhead in the
MATLAB interpreter, the overhead introduced by the context
switch and the transfer of the variables from MATLAB to C,
and due to the overhead introduced by the time-measuring
function (tic-toc). Nevertheless, Table III indicates that the
proposed method can indeed generate a feasible trajectory
within the allocated computation time slot, and that N = 50 is
not an upper limit. Note also that the method in the presented
examples finds valid solutions also when N < 20.

VII. EXPERIMENTAL RESULTS

In this section we evaluate the proposed motion planner on
an experimental setup. We use the Hamster platform [37] in

Fig. 11. The Ackermann-steered mobile robot used in the experiments. A
camera from the Optitrack motion-capture system is in the top right.

combination with an Optitrack motion-capture system [38] to
track the robot, see Fig. 11. The Hamster is a 25 × 20 cm
mobile robot for research and prototype development. It is
equipped with sensors commonly available on full-scale re-
search vehicles, such as Lidar, inertial measurement unit, GPS
receiver, camera, and motor encoders. It uses two Raspberry
PI3 for processing. The Hamster is robot operating system
(ROS) compatible, hence allowing to be integrated in a ROS
network. The robot uses Ackermann steering and is therefore
kinematically equivalent to a full-scale vehicle, and its dy-
namics, such as the suspension system, resembles that of a
regular vehicle. Hence, it presents itself as a good platform for
verifying dynamic feasibility and for testing the performance
of the motion planner in a realistic situation. The Optitrack
system is a camera-based (see top right of Fig. 11) motion-
capture system that tracks markers attached to the robot
with below centimeter-level accuracy. When scaled according
to the size of the Hamster, its precision is approximately
equivalent to those of high-precision localization systems used
in autonomous vehicle research such as Trimble Applanix or
OXTS RT-3003.

We use three Hamsters in the experimental validation, one
acts as the EV and two of them act as obstacles. The objective
is to avoid the obstacles while circulating a two-lane closed
circuit, with the left lane as preferred lane. The inputs to the
robot are the desired steering angle and velocity. We use the
steering angle and velocity computed by the motion planner
and feed them to PID-controllers that track the velocity and
lateral position error from the motion plan, given the respective
reference commands. The obstacles are commanded to track
the middle of either of the lanes with a constant velocity, and
also use PID controllers for this task. The current position
of the OV is obtained from the Optitrack while the velocity
is estimated. The OV prediction model is based on a simple
lateral controller that approximates, but is not exactly equal
to, the PID controller.

We have implemented a high-level target-point generator
to produce the goal region Xgoal. The target point is deter-
mined by checking for a feasible point in either of the lanes
Tfvnom m ahead of the current position of the EV, by taking
the dynamic obstacles into account. Preference is given to
the left lane in case both lanes are unoccupied. The goal
region is a circle with radius 0.1 m from the target point. The

TABLE IV
THE PARAMETER CHOICES FOR THE EXPERIMENTAL STUDY.

Parameter Unit Value Meaning

N - 100 # particles
∆t s 0.6 Execution time
δt s 0.1 Computation time
Ts s 0.3 Discretization time
Tf s 5 Planning horizon
T - Tf/Ts Prediction time
ts s 1.8 Smoothing time
δmax deg 15 Maximum steering angle
δ̇max deg/s −10.5 Maximum steering rate
v̇x,max m/s2 0.2 Maximum acceleration

road boundary constraint (6) is given by an analytic function
expressed as super-ellipses, and checking for feasibility of (6)
amounts to checking inequalities. The driving modes in this
scenario are chosen to be consistent with the lane in which
the target point occurs, that is, the motion planner only plan
trajectories in the lane of the target point.

The different parameters in the planner, symmetric input
constraints, and symmetric state constraints are shown in
Table IV. Algorithm 1 is implemented in MATLAB, with
Algorithm 2 embedded as C-coded mex-functions. MATLAB
acts as a ROS node executed from a standard Linux desktop
and sends the reference command to the EV vehicle controllers
executing on the built-in Raspberry PI3. The OV controllers
operate in their respective Raspberry PI3. The PF prediction
horizon T is dependent on the timestamp of the node it
expands from, not to predict too far ahead in the future, and
the nominal value is shown in Table IV. From Table IV we
also see that the vehicle controller tracks the same plan for
two consecutive time steps, by which time an updated plan
arrives.

The driving requirements are the same as introduced in
Sec. VI, with the nominal velocity vnom = 0.4 m/s and with
a minimum headway distance dmin = 3vx to vehicles.

A. Results

In the experimental evaluation we use a six minutes long
data set. There are two obstacles, one in each lane, both with
the constant reference velocity vnom = 0.2 m/s. Because one
of the OVs is in the inner lane, they have different lap times
and both regular lane change situations and situations when
both lanes are blocked occur.

Fig. 12 shows snapshots of a situation when the two
obstacles block both lanes. The sequence of snapshots lasts
for about 100 s. The EV (red) positions correspond to the true
positions as measured by the Optitrack system and the green
dots are the particles generated for the planning phase. First, a
trajectory that overtakes the OV in front of the EV is computed
(t = 24 s). Then, the EV stays in the right lane behind the
OV until an opening appears (t = 74 s), and finally the EV
moves back to the preferred lane (t = 82 s).

Inspection of Fig. 12 gives an indication of how well the
tracking controllers follow the path and velocity profile. Given
a well-designed tracking controller, the tracking errors quan-
tify how good the motion planner is at generating dynamically

−0.5 0.5

1

2

3

t = 15 [s]

X [m]

Y [m]

−1.5 −0.5

2

3

4 t = 24 [s]

−1.5 −0.5

1

2

3

4

t = 27 [s]

−1.5 −0.5 0.5

−1

0

1

t = 41 [s]

0.5 1.5

−1

0

1

t = 52 [s]

−1.5 −0.5 0.5

2

3

4

t = 74 [s]

−1.5 −0.5

0

1

2

3

t = 81 [s]

−1.5 −0.5

0

1

2

3

t = 82 [s]

Fig. 12. Eight snapshots from the experimental validation. The EV in red, obstacles in blue, and particles from the motion planner in green. In every figure,
snapshots of the EV and OVs are shown every 0.5 s in increasingly darker colors.

feasible trajectories. To give a measure of this, Fig. 13 displays
the lateral control and velocity error for the whole experiment.
The corresponding desired velocity vnom = 0.4 m/s from the
driving requirements, the velocity profile vplanner from the mo-
tion planner, and the measured velocity vmeas obtained from
the motor encoder, as well as the reference steering profile
and resulting steering angles, are in Fig. 14. Throughout, the
position error is within a few centimeters and the velocity
error is mostly within 2 cm/s. There are a few occasions where
the errors spike. For instance, at approximately 75 s both the
position and velocity error increase sharply. The reason for this
can be found in the plot in Fig. 12 corresponding to t = 74 s,
where the planner finds a gap between the two obstacles. Here,
the planner initiates a sharp turn as well as an acceleration. By
looking at the corresponding velocity and steering references
to the controller in Fig. 14, it is clear that there are significant
changes in reference commands, which the decoupled lateral
and longitudinal PID-controllers cannot track precisely, given
also model approximations. Furthermore, from the lower plot
in Fig. 14 we see that the steering angle saturates several
times throughout the experiments, because of the sharp turns in
the track. This also contributes to the position errors. Further
improvements are possible by coordinating longitudinal and
lateral control by more advanced control methods, such as
MPC. However, the results in Figs. 13 and 14 show that the
controller can track the trajectories from the motion planner,
that is, that the planner computes dynamically feasible and
realistic trajectories, with good instantaneous tracking results
even using decoupled PID-controllers. Fig. 15 shows the path
of the EV for the entire experiment.

0 50 100 150 200 250 300

−0.05

0

0.05

0.1

0.15

Time [s]

pe [m]

0 50 100 150 200 250 300

−0.1

0

0.1

Time [s]

vx [m/s]

Fig. 13. The lateral control error (upper) and velocity error (lower) for the
whole experiment corresponding to Fig. 12.

VIII. CONCLUSION

We proposed a particle-filtering based strategy for real-time
decision making and motion planning of autonomous vehi-
cles. An enabling observation was that driving requirements
typically can be formulated beforehand. By formulating the
allowed deviations from the requirements as a probability
distribution, our method uses the requirements to guide the
particles to the statistically preferable regions in the state
space, which gives an efficient implementation. The sampling-

−460 −420 −380

1750

1770

X [m]

Y [m]

Fig. 14. Velocity and steering profiles for the experimental validation, which
are the inputs to the low-level controllers. The upper and mid plots show the
velocities for the whole experiment and the time span corresponding to the
snapshots in Fig. 12, respectively. The velocity tracking controller stays close
to the velocity profile determined by the motion planner (red), indicating that
the motion planner computes realistic target velocity and acceleration profiles.
For the lower plot, the sharp turns in the track results in that the planner (red)
at times stays close to the steering-angle bounds, or even saturate, hence the
robot steering angle (blue) will also saturate.

−1.5 −0.5 0.5 1.5

−1

0

1

2

3

X [m]

Y
[m

]

Fig. 15. Measured path for the entire experiment.

based formulation allows to discard particles that have a risk of
collision. The implementation is based on a receding-horizon
strategy to provide feedback in the planning and for warm
starting the next iteration.

An observation from our simulation study is that the planner
is able to provide a motion lasting several seconds within
fractions of a second, which hints at real-time feasibility
of the approach. Although our experimental evaluation was
done on a small-scale robotics platform, it shows that the
planner provides drivable trajectories that can be tracked even
with simple decoupled PID controllers. These results reinforce
that the planner is able to provide drivable trajectories for a
number of different scenarios, such as lane following, lane
change, obstacle avoidance, and traffic-jam situations. It is
future work to also show applicability to city scenarios, such
as in intersections.

REFERENCES

[1] S. M. Broek, E. van Nunen, and H. Zwijnenberg, “Definition of
necessary vehicle and infrastructure systems for automated driving,” Eur.
Commission, Tech. Rep. 2010/0064, Jun. 2011.

[2] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, 2016.

[3] K. Berntorp and S. Di Cairano, “Joint decision making and motion
planning for road vehicles using particle filtering,” in IFAC Symp.
Advances in Automotive Control, Kolmården, Sweden, Jun. 2016.

[4] ——, “Particle filtering for online motion planning with task specifica-
tions,” in Amer. Control Conf., Boston, MA, Jul. 2016.

[5] D. Crisan and A. Doucet, “A survey of convergence results on particle
filtering methods for practitioners,” IEEE Trans. Signal Process., vol. 50,
no. 3, pp. 736–746, 2002.

[6] R. Douc, E. Moulines, and J. Olsson, “Long-term stability of sequential
Monte Carlo methods under verifiable conditions,” The Annals of
Applied Probability, vol. 24, no. 5, pp. 1767–1802, 2014.

[7] S. M. LaValle, Planning Algorithms. Cambridge, UK: Cambridge
University Press, 2006.

[8] J. Nilsson, P. Falcone, M. Ali, and J. Sjöberg, “Receding horizon
maneuver generation for automated highway driving,” Control Eng.
Pract., vol. 41, pp. 124–133, 2015.

[9] N. Murgovski and J. Sjöberg, “Predictive cruise control with autonomous
overtaking,” in Conf. Decision and Control, Osaka, Japan, 2015.

[10] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision avoidance
and stabilization for autonomous vehicles in emergency scenarios,” IEEE
Trans. Control Syst. Technol., vol. PP, no. 99, pp. 1–13, 2016.

[11] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Borrelli,
“Linear model predictive control for lane keeping and obstacle avoidance
on low curvature roads,” in Int. Conf. Intell. Transp. Syst., The Hague,
Netherlands, 2013.

[12] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning
and tracking for vehicle collision avoidance based on model predictive
control with multiconstraints,” IEEE Trans. Veh. Technol., vol. 66, no. 2,
pp. 952–964, 2017.

[13] H. Guo, C. Shen, H. Zhang, H. Chen, and R. Jia, “Simultaneous
trajectory planning and tracking using an MPC method for cyber-
physical systems: A case study of obstacle avoidance for an intelligent
vehicle,” IEEE Trans. Ind. Informat., 2018.

[14] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the Urban challenge,” J. Field R,
vol. 25, no. 8, pp. 425–466, 2008.

[15] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke et al., “Junior:
The Stanford entry in the Urban challenge,” J. Field R., vol. 25, no. 9,
pp. 569–597, 2008.

[16] N. J. Nilsson, Principles of Artificial Intelligence. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1980.

[17] A. Stentz, “The focussed D* algorithm for real-time replanning,” in Int.
Joint Conf. on Artificial Intelligence, Montreal, Quebec, Canada, 1995.

[18] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown
terrain,” IEEE Trans. Robot., vol. 21, no. 3, pp. 354–363, 2005.

[19] S. Anderson, S. Peters, T. Pilutti, and K. Iagnemma, “An optimal-
control-based framework for trajectory planning, threat assessment, and
semi-autonomous control of passenger vehicles in hazard avoidance
scenarios,” Int. J. Vehicle Autonomous Systems, vol. 8, no. 2/3/4, pp.
190–216, 2010.

[20] K. Berntorp, “Path planning and integrated collision avoidance for
autonomous vehicles,” in Amer. Control Conf., Seattle, WA, May 2017.

[21] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.

[22] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-
based algorithms for optimal motion planning,” in Int. Conf. Robotics
and Automation, Karlsrühe, Germany, May 2013.

[23] O. Arslan, E. A. Theodorou, and P. Tsiotras, “Information-theoretic
stochastic optimal control via incremental sampling-based algorithms,”
in Symp. Adaptive Dynamic Programming and Reinforcement Learning,
Orlando, FL, Dec. 2014.

[24] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman et al., “A perception-
driven autonomous urban vehicle,” J. Field R., vol. 25, no. 10, pp. 727–
774, 2008.

[25] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” J. Guidance, Control, and Dynamics,
vol. 25, no. 1, pp. 116–129, 2002.

[26] J. Hwan Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli,
P. Tsiotras, and K. Iagnemma, “Optimal motion planning with the half-
car dynamical model for autonomous high-speed driving,” in Amer.
Control Conf., Washington, DC, Jun. 2013.

[27] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[28] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore, “Real-
time motion planning with applications to autonomous urban driving,”
IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1105–1118, 2009.

[29] O. Arslan, K. Berntorp, and P. Tsiotras, “Sampling-based algorithms
for optimal motion planning using closed-loop prediction,” in Int. Conf.
Robotics and Automation, Singapore, May 2017.

[30] T. Gu and J. M. Dolan, “On-road motion planning for autonomous
vehicles,” in Int. Conf. Intell. Robotics and Applications. Springer,
2012, pp. 588–597.

[31] T. Gillespie, Fundamentals of vehicle dynamics. Society of Automotive
Engineers, Inc., 1992.

[32] A. Carvalho, S. Lefévre, G. Schildbach, J. Kong, and F. Borrelli,
“Automated driving: The role of forecasts and uncertainty - a control
perspective,” Eur. J. Control, vol. 24, pp. 14–32, 2015.

[33] R. Rajamani, Vehicle Dynamics and Control. Springer-Verlag, 2006.
[34] F. Lindsten, M. I. Jordan, and T. B. Schön, “Particle Gibbs with ancestor

sampling.” J. Machine Learning Res., vol. 15, no. 1, pp. 2145–2184,
2014.

[35] K. Berntorp and S. Di Cairano, “Particle Gibbs with ancestor sampling
for identification of tire-friction parameters,” in IFAC World Congress,
Toulouse, France, Jul. 2017.

[36] X. L. Hu, T. B. Schön, and L. Ljung, “A general convergence result
for particle filtering,” IEEE Trans. Signal Process., vol. 59, no. 7, pp.
3424–3429, July 2011.

[37] Cogniteam, “The Hamster,” 2018, [accessed 8-January-2018]. [Online].
Available: www.cogniteam.com/hamster5.html

[38] Optitrack, “Prime 13 motion capture,” 2018, [accessed 23-January-
2018]. [Online]. Available: http://optitrack.com/products/prime-13

Karl Berntorp received the M.Sc. degree in En-
gineering Physics in 2009 and the Ph.D. degree in
Automatic Control in 2014, from Lund University,
Lund, Sweden. In 2014 he became a research scien-
tist at the Mitsubishi Electric Research Laboratories
in Cambridge, MA. His research is on statistical
signal processing, sensor fusion, and optimization-
based control, with applications to automotive,
aerospace, transportation systems, and communica-
tion systems. His work includes design and imple-
mentation of nonlinear filtering, constrained control,

and motion-planning algorithms. Dr. Berntorp is the author of more than 35
peer-reviewed international papers and several patents, and he is a founder/co-
founder of two engineering consultancy companies.

Tru Hoang received the Bachelors degree in
Mechanical Engineering from Boston University
in 2015. After receiving his Masters degree in
the Aerospace Engineering from the University of
Michigan in 2017, he joined MERL for an internship
in the Mechatronics group. He is currently working
as an Algorithm Engineer at Aptiv. His research in-
terests are optimal planning and control of intelligent
vehicles.

(SM’08) Stefano Di Cairano received the Master
(Laurea), and the PhD in Information Engineering
in ’04 and ’08, respectively, from the University of
Siena, Italy. He has been visiting student at the Tech-
nical University of Denmark and at the California
Institute of Technology. During 20082011, he was
with Powertrain Control R&A, Ford Research and
Adv. Engineering, Dearborn, MI. Since 2011, he
is with Mitsubishi Electric Research Laboratories,
Cambridge, MA, where he is now the Senior Team
Leader for Optimization-based Control, and a Senior

Principal Researcher in Mechatronics. His research is on optimization-based
control strategies for complex mechatronic systems, in automotive, factory au-
tomation, transportation systems and aerospace. His research interests include
model predictive control, constrained control, networked control systems,
hybrid systems, optimization.

Dr. Di Cairano has authored/co-authored more than 130 peer reviewed
papers in journals and conference proceedings and 25 patents. He was the
Chair of the IEEE CSS Technical Committee on Automotive Controls 2012-
2015, is the Chair of IEEE Standing Committee on Standards since 2016, and
an Associate Editor of the IEEE Transactions on Control Systems Technology.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-164.pdf
	Motion Planning of Autonomous Road Vehicles by Particle Filtering
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

