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Abstract
Rechargeable batteries supply numerous devices with electric power and are critical part in
a variety of applications. While estimation of battery’s state of charge (SoC), state of health
(SoH) and state of power (SoP) have been in research focus in the past years, prediction of
battery degradation has recently started to gain interest. An accurate prediction of the re-
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a battery should be replaced so that power interruption of the system it supplies power to
is avoided. A methodology for inferring probability distribution of the remaining number of
charge-discharge cycles of a battery, based on training dataset containing measured discharge
voltage waveforms of one or more batteries of similar type, is presented in this paper. The
methodology strongly draws on modeling discharge voltage waveforms using Dirichlet Pro-
cess Mixture Model framework and performs approximate inference using variational Bayes
approach. The experimental results corroborate that the proposed method is able to provide
useful predictions of the remaining useful life of a battery in early stages of its life.
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Abstract—Rechargeable batteries supply numerous devices
with electric power and are critical part in a variety of applica-
tions. While estimation of battery’s state of charge (SoC), state
of health (SoH) and state of power (SoP) have been in research
focus in the past years, prediction of battery degradation has
recently started to gain interest. An accurate prediction of the
remaining number of charge and discharge cycles a battery can
undergo before it can no longer hold charge and is declared
dead, is directly related to making timely decision as to when
a battery should be replaced so that power interruption of
the system it supplies power to is avoided. A methodology for
inferring probability distribution of the remaining number of
charge-discharge cycles of a battery, based on training dataset
containing measured discharge voltage waveforms of one or more
batteries of similar type, is presented in this paper. The method-
ology strongly draws on modeling discharge voltage waveforms
using Dirichlet Process Mixture Model framework and performs
approximate inference using variational Bayes’ approach. The
experimental results corroborate that the proposed method is
able to provide useful predictions of the remaining useful life of
a battery in early stages of its life.

Index Terms—rechargeable battery, remaining useful life,
charge-discharge cycle, Dirichel process mixture model, varia-
tional Bayes’, probabilistic inference

I. INTRODUCTION

Rechargeable batteries nowadays supply power to a variety
of systems such as electric vehicles, consumer electronic
devices, uninterrupted power supply (UPS) systems, etc. They
also support photo-voltaic systems and smart power grids.
Developing methods for estimating battery state of charge
(SoC), state of power (SoP) and state of health (SoH) has
been in persistent research focus in the past years [1], [2].
Predicting battery degradation over time is of utmost impor-
tance in a number of applications and has recently started
to gain research interest. More specifically, the problem is
to accurately predict how long a battery can supply its load,
usually expressed with the number of remaining charge and
discharge cycles it can undergo. This ensures that the battery
is replaced on time, thus avoiding (1) power disruptions due
to unexpected battery failure and (2) discarding the battery
before its useful life ends. A related problem, also relevant
in a number of applications, is concerned with predicting the
remaining time to discharge of a battery [12], preferably early
in the discharge cycle.

A concise review of methods for battery remaining useful
life estimation is given in [3]. In the domain of our interest, the

prognostics of battery’s state of health has been approached
from Bayesian perspective in [4]. Particle filtering is used
in a variety of contexts to estimate the remaining useful
life of a battery. As such, [5] tracks battery degradation
using a regular particle filter, [6] employs spherical cubature
particle filter, [7] designs risk sensitive particle filter, while [8]
exploits unscented particle filter. A state-of-health regeneration
phenomenon is modeled and predicted using suitably designed
particle filter [9]. On-line fault diagnosis and failure prognosis
is also approached with particle filter in [10]. In a similar
vain, diagnosis and prognosis is done using Lebesgue sampling
in [11].

In this paper, we propose an algorithm for inferring remain-
ing useful life (RUL) of a battery using Dirichlet Process Mix-
ture Model (DPMM) with variational Bayes (VB) inference.
More specifically, we cluster feature vectors representing dis-
charge voltage waveforms of one or more batteries measured
during their lifetimes. The obtained clusters indicate types of
possible aging stages a battery goes through during its life-
time. In the operational stage, upon representing a measured
discharge voltage waveform of a battery of similar type with a
feature vector, the discharge cycle is probabilistically associ-
ated with one of the clusters, i.e., aging stage. Consequently,
the remaining number of charge-discharge cycles the battery
can further undergo is predicted based on the estimated aging
stage.

The works most relevant to this paper are [12] and [13].
While we adopt the same empirical model for discharge
voltage waveform and generative model for feature vectors
as [12], we address a completely different problem. Namely,
we infer remaining useful life (RUL) of a battery at the
end of some discharge cycle, while [12] estimates remaining
time to full discharge of a battery at some time instant
early in the discharge cycle. In addition, [12] performs the
DPMM inference using Gibbs’ sampling, while we perform
inference using variational Bayes’. A DPMM-based algorithm
for estimating remaining number of charge-discharge cycles
of a battery is also proposed in [13]. In comparison to [13],
we use different empirical model for discharge voltage and
assume different generative model for feature vectors. Further-
more, [13] performs DPMM inference using Gibbs’ sampling,
while the models we adopt admit faster inference based on
variational Bayes’.



The paper is organized as follows. Section II describes
feature vectors used to represent battery aging. Section III
describes the approach used for inferring remaining useful
life of a battery. Section IV presents our method based on
DPMM modeling and variational Bayes’ inference. Section
V experimentally validates the proposed method. Section VI
concludes the paper.

II. FEATURE VECTORS FOR BATTERY AGING

We use experimental battery dataset collected and made
publicly available by the NASA Ames Research Center of
Excellence [18]. The dataset contains measured voltage and
current waveforms taken during charge and discharge cycles
of various batteries undergoing accelerated aging, starting from
nominal capacity of 2 Ah and ending when the capacity falls
below 1.6 Ah, at which point a battery is declared dead.
In addition to voltage and current measurements, the dataset
also contains battery capacity recording at the end of each
discharge cycle, evaluated using Coulomb counting, as well
as the battery impedance measurements. We use discharge
voltage measurements as proxy to battery aging.

A voltage waveform, recorded during a single discharge
cycle, contains few hundreds of samples. While the method
described here can, in general, be applied directly to the
recorded discharge voltage, a computationally less demanding
and analytically more tractable method results from repre-
senting each discharge voltage waveform with parameters of
an empirical model for the discharge voltage waveform. We
utilize empirical model from [12], which models the discharge
voltage V (t) as

V (t) = E0 − a1e
−a2/t − a3e

a4t + a5t, (1)

where t is the time such that t → 0 corresponds to the
beginning of the discharge cycle and E0 is the voltage of a
fully charged battery, where E0 = 4.2 V for dataset [18]. The
model parameters aj , j = 1, . . . , 5, are all real-valued and con-
stitute a feature vector a =

[
a1 a2 a3 a4 a5

]
∈ R5.

Therefore, each discharge cycle i in the dataset is represented
with feature vector ai, also referred to as the data point, by
fitting V (t), measured during that discharge cycle, with the
empirical model (1). Consequently, only five model parameters
per discharge cycle are stored instead of the whole waveform
V (t). More importantly, model training and estimation of the
battery’s remaining useful life operates over five dimensional
feature vectors ai instead of much longer discharge voltage
waveforms.

As a side note, we emphasize that direct measurements
of other quantities that depend on battery aging, or the
parameters of the corresponding empirical models can be used
for estimation of battery’s remaining useful life. The notion of
remaining useful life of a battery and outline of an approach
for its probabilistic inference are described in the following
part.

III. INFERENCE OF REMAINING USEFUL LIFE

The remaining useful life (RUL) of a battery at some time
instant is a random variable that represents the number of

charge-discharge cycles the battery can undergo from that time
instant until it can no longer hold the charge and is declared
dead. In the problem setup considered here, the battery is
being charged and discharged according to some predefined
template, and the aim is to infer the RUL at the end of a
discharge cycle, based on the measured voltage during that
discharge cycle. The charge-discharge template specifies how
a battery is charged and discharged, for example, a battery
in the NASA’s dataset is charged with current 1.5 A until its
voltage reaches 4.2 V, which is then kept constant until the
current drops below 20 mA, while the discharge is performed
with constant discharge current of 2 A until the voltage drops
below 2.5 V.

The RUL of a battery in operational/online stage is inferred
using training data that contains feature vectors representing
measured discharge voltage waveforms during discharge cy-
cles of one or more batteries of similar type. More specifically,
the training data D contains N pairs

D = {(a1, k1), (a2, k2), . . . , (aN , kN )}, (2)

where an is the feature vector computed from measured
voltage after some discharge cycle, while kn is the number
of remaining charge-discharge cycles left after that discharge
cycle. In the case the training data D is populated with
discharge voltage measurements from only one battery over
its useful life, N is the overall number of discharge cycles that
battery underwent during its lifetime, n is the discharge cycle
index such that n = 1 corresponds to the first discharge cycle,
while kn = N − n. In general, D may contain measurements
from more than one battery, in which case N is the total
number of measured discharge voltage waveforms, while n
indexes data points.

Given training data D, the RUL of a battery at the end of
some discharge cycle in the operational/online stage is inferred
by extracting kn’s from D whose corresponding an’s are
close in some sense to feature vector a′ representing measured
discharge voltage during that discharge cycle. This is robustly
done by clustering data from D in the training stage, and
classifying the feature vector a′ into one of those clusters in
the operational stage. Formally, assume D is clustered into
L clusters and let Kl denote the set of remaining number of
charge-discharge cycles corresponding to training data points
that constitute cluster l. More specifically, if some ai belongs
to cluster l, then the corresponding ki ∈ Kl.

Since a cluster l contains data points whose corresponding
numbers of remaining charge-discharge cycles are different
(although relatively close), the remaining useful life of points
from cluster l is represented with a probability distribution

px|l(x|l) ∝
∑
k∈Kl

g(x, k), (3)

where g(x, k) is a kernel centered at k ∈ Kl, and x is the
number of remaining charge-discharge cycles. Without loss of
generality, we use Gaussian kernel

g(x, k) = e−
(x−k)2

2σ2 , (4)



where σ2 is an appropriately selected kernel width. Other
kernel functions are possible, for example, a discrete delta
function δ(x, k) (equal to 1 if x = k and zero otherwise),
yields normalized histogram over k’s from Kl.

In the online/operational stage, measured discharge voltage
of a battery is fitted with empirical model (1), resulting in
feature vector a′. The feature vector a′ is then softly classified
into clusters l, yielding probability pa(a′ ∈ l) that a′ comes
from cluster l, l = 1, . . . , L. Finally, the remaining useful
life of the battery is evaluated as the weighted combination
of px|l(x|l), l = 1, . . . , L, where the weights are cluster
probabilities p(a′ ∈ l),

pRUL(x|a′) =

L∑
l=1

pa(a′ ∈ l) px|l(x|l) (5)

Given the described framework, it remains to specify the
method for clustering training data D. In general, the RUL
framework places on constraints on the clustering method
that can be used. However, for the reasons that will become
clear later we employ a powerful Dirichlet Process Mixture
Model (DPMM). The following section provides details on
the DPMM clustering method.

IV. DATA MODEL AND INFERENCE

This section provides details on generative model assumed
for feature vectors a’s, describes clustering of the training data
D, and outlines a method for computing class probabilities
p(a′ ∈ l) of feature points acquired in the online stage.

A. DPMM Generative Model for Data Points

We assume data points ai, i = 1, . . . , N are gen-
erated according to the Dirichlet Process Mixture Model
(DPMM) [15]–[17]. The Dirichlet Process (DP) is a generative
model specified with concentration parameter α and base
distribution H , often denoted as DP(α,H). One may think of a
DP as a probability distribution over probability distributions
such that a sample from the DP is an infinite dimensional
discrete probability distribution. The support of such discrete
probability distribution is generated according to the base
distribution H , while the values of probability masses are
controlled by the concentration parameter α. Each support
element in the DP is a cluster center of the DPMM, while
its probability mass is the corresponding cluster probability.

More specifically, a data point ai is generated by sampling
a cluster ci according to cluster probabilities πl, l = 1, . . . , L,
and then sampling from Gaussian distribution, parameterized
with the cluster center (which in turn is generated from H).
This results in data point ai being associated with cluster
ci and generated as a sample from, in our case, Gaussian
distribution with mean vector Λci and covariance matrix Σci ,

p(ai|ci,Λci ,Σci) = N (ai; Λci ,Σci) (6)

We emphasize that (Λci ,Σci) are associated with the cluster
ci. The generative model for mean vector and covariance
matrix associated with each cluster l is chosen such that the
prior p(Λci ,Σci) is conjugate to model p(ai|ci,Λci ,Σci) so

as to yield tractable approximate inference. Therefore, the
covariance matrix Σci is given by [12]

Σci = diag{s−1
ci,1

, . . . , s−1
ci,5
} (7)

where sci,k ∼ Gamma(β, γ), k = 1, . . . , 5, are independent
samples from Gamma distribution with hyperparameters β and
γ. The mean vector Λci is generated according to

p(Λci |Σci) = N (Λci ; a0, hΣci), (8)

where a0 is same across all clusters and h is a hyperparameter.
This generative model for cluster centers (Λci ,Σci) embodies
base distribution H . While the selection of H may seem
arbitrary and not much related to our original problem, we
point out that, in general, a generative model with hierarchical
structure for observed data is robust to selection of hyperpa-
rameters.

The number of clusters in the DPMM is not fixed in advance
and is inferred from data. The DPMM generates clusters
according to a stick-breaking process, wherein an imagined
unit-length stick is being broken into a growing number of
segments such that each segment represents one cluster with
probability equal to the length of the corresponding segment.
Specifically, the probability πl of cluster l is given by [15]

πl = vl

l−1∏
j=1

(1− vj), (9)

where vl ∼ Beta(1, α). Thus, at the beginning of the stick-
breaking process, we are given a unit length stick and break
a segment from it of length v1 ∼ Beta(1, α), which gives
the probability of the first cluster. The remaining segment of
length 1 − v1 is then subject to stick breaking in the second
round, so that the length of the segment obtained after breaking
a segment of length v2 ∼ Beta(1, α) is π2 = v2(1 − v1)
and is equal to the second cluster probability. The process
continues in the same manner and results in infinitely many
stick segments, the length of each is equal to one cluster
probability.

Finally, we emphasize that although the DPMM has po-
tential to generate infinitely many clusters, we observe finite
number of data points N and consequently can see only
a finite number of clusters. In fact, one may think that a
newly observed data point a comes from one of the existing
clusters, or from some previously unseen cluster. The rate at
which new clusters are created is directly related to cluster
probabilities πl and both are controlled by the concentration
parameter α. Intuitively, the larger probabilities of existing
clusters, the smaller chance a newly acquired data point comes
from unseen cluster. We model the concentration parameter as
α ∼ Gamma(s1, s2) to fully adhere to hierarchical generative
model so that the inference is less sensitive to the choice of
hyperparameters, in this case, s1 and s2 than it would be in
case α was itself a hyperparameter.



B. DPMM Approximate Inference

Given training dataset D, the goal of the training stage is
to infer posterior distribution of cluster centers Λl and Σl,
cluster probabilities implicitly given by vl, cluster indices ci
of training data points ai, and concentration parameter α.
Formally, the aim is to find

p , p({ci}Ni=1, {Λl,Σl}Ll=1, {vl}Ll=1, α|D), (10)

where L is the implicit number of clusters observed/seen in
the data. Since solving (10) using Bayes’ rule is intractable,
we need to resort to approximations. Two main approaches
for approximate inference are Markov Chain Monte Carlo
(MCMC) and variational Bayes (VB) [14]. The generative
model described in the previous part employs conjugate priors
and is thus suitable for Gibbs’ sampling, as done in [12],
because all posterior conditionals that the Gibbs’ sampler
samples from are standard distributions. Nevertheless, we
utilize the mean field approximation (MFA) algorithm, which
is the most popular VB method because the MFA is faster than
the Gibbs’ sampling. In addition, the MFA yields closed form
expressions for iterative parameter updates due to conjugacy
in the data generative model.

The MFA approximates the true posterior p with a distribu-
tion that factorizes over all unknown variables,

p ≈ q({ci}Ni=1, {Λl,Σl}Ll=1, {vl}Ll=1, α) =
N∏
i=1

qci(ci)

L∏
l=1

qΛi(Λi)

L∏
l=1

qΣi
(Σi)

L∏
l=1

qvl(vl)qα(α) (11)

The approximating distribution is found by minimizing the
Kullback-Liebler (KL) divergence between the two distribu-
tions, KL(q||p) [14]. Using the calculus of variations and
some algebraic manipulations yield expressions for computing
each factor in q. For example, the resulting approximating
distribution for ck is given by

log qck(ck) ∝ E
[
log p(D, {ci}Ni=1, {Λl,Σl}Ll=1, {vl}Ll=1, α)

]
,

(12)
where the expectation is taken with respect to∏
i 6=k qci

∏
l qΛl

∏
l qΣl

∏
l qvlqα, i.e., with respect to

the product of all factors in q excluding qck . The update
expressions for other factors in q are given with analogous
expressions.

The distribution under the expectation operator in (12)
is joint likelihood of the observed data D and unknown
parameters, and can be expressed as the sum of logarithm
terms by exploiting the conditional independences embedded
in the generative model. Once that is done, each factor term
in q is computed by taking the expectation of the resulting
expression with respect to the product of all other factor terms.
We omit the derivation details as they are tedious and do
not lend any particular insights. In the following, we provide
the resulting expressions for the factors in the approximating
distribution q.

The factor distributions qΛl and qΣl
that approximate

posteriors of the mean vector Λl and covariance matrix Σl

factorize, respectively, over their entries Λl,k and slk, where
k = 1, . . . , 5, such that

Λl,k ∼ N (µl,k, σ
2
l,k) and sl,k ∼ Gamma(βl,k, γl,k) (13)

Furthermore, the approximate posteriors qvl and qα are given
by

vl ∼ Beta(δl, αl) and α ∼ Gamma(s1, s2) (14)

The approximation for the posterior probability pi,l , qci(l)
that the data point ai belongs to cluster l, is evaluated as

log pi,l ∝
1

2

5∑
k=1

E[log sl,k]− 1

2
E[sl,k]E[(ai,k − Λl,k)2]

+E[log vl] +

l−1∑
n=1

E[log(1− vl)], (15)

where ai,k is the kth entry in ai. Above, given that sl,k and
vl are, respectively, Gamma and beta distributed, E[sl,k] =
βl,k/γl,k, E[log sl,k] = ψ(βl,k) − log(γl,k) and E[log vl] =
ψ(δl)− ψ(δl + αl), where ψ(x) is Digamma function.

Thus, all factors from the approximating distribution q
follow standard distributions. The parameters of those dis-
tributions are also obtained from (12) and alike expressions.
Omitting the derivation details, these parameters are iteratively
updated as

µl,k =
h
∑N
i=1 ai,kpi,l + a0,k

h
∑N
i=1 pi,l + 1

(16)

σ2
l,k =

hγl,k

βl,k(h
∑N
i=1 pi,l + 1)

(17)

βl,k = β + 0.5

(
N∑
i=1

pi,l + 1

)
(18)

γl,k = γ +
1

2h
(a2

0,k − 2a0,kµl,k + µ2
l,k + σ2

l,k)

+
1

2

N∑
i=1

pi,l(a
2
i,k − ai,kµl,k + µ2

l,k + σ2
l,k) (19)

δl = 1 +

N∑
i=1

pi,l (20)

αl =
w1

w2
+N −

N∑
i=1

l∑
k=1

pi,k (21)

w1 = s1 + L− 1 (22)

w2 = s2 −
L−1∑
k=1

(ψ(αk)− ψ(δk + αk)), (23)

where ψ(x) is the Digamma function.
The iterative routine is initialized with uniform pi,l for each

data point ai, while w1 = s1, w2 = s2 and the maximum
number of clusters to look for in the dataset is set to some
L. The hyperparameters s1, s2, β and γ are set to some
small values so that the corresponding distributions are non-
informative, while h is set so that the distribution in (8) is wide
enough. Then, αl, w1, w2, βl,k, µl,k, σ2

l,k, γl,k and pi,l, where



l = 1, . . . , L, k = 1, . . . , 5 and i = 1, . . . , N are iteratively
updated according to (16)–(23). The iterative updates are
run predefined number of iterations or until convergence is
established. We note that some other ways of initializing the
iterative routine and ordering in updating the factor parameters
are also possible, however we believe the presented one is most
suitable. Overall, the iterative procedure results in approximate
posterior distributions of unknown parameters, conditioned on
data D. The next problem addressed in the following part is to
compute cluster probabilities of a feature vector a′, acquired
in the operational stage, based on clustering results of data D.

C. Cluster Probabilities of Test Data Points

In the testing/operational stage, measured voltage during
some discharge cycle is fitted using the empirical model (1)
and represented with feature vector a′. Classifying a′ into
clusters discovered in the training stage consists of computing
cluster probability distribution pa(a′ ∈ l), l = 1, . . . , L. The
cluster probability is computed as

pa(a′ ∈ l) =

∫
p(a|l,Λl,Σl)qΛl(Λl)qΣl

(Σl)dΛldΣl. (24)

Since qΛl(Λl) and qΣl
(Σl) factorize into products of con-

stituent factors, the cluster probability is after a few steps of
algebraic manipulations further given by

pa(a′ ∈ l) =

5∏
k=1

EΛl,k,Σl,k [N (a′k; Λl,k,Σl,k)]

=

5∏
k=1

EΛl,k,sl,k

[√
sl,k

2π
e−

sl,k
2 (a′k−Λl,k)2

]
(25)

where Σl,k = s−1
l,k and a′k is the kth entry in a′.

The expectation in (25) is computed using the law of iterated
expectations, where the expectation with respect to sl,k is
computed first and expressed in terms of Gamma function
of first kind Γ(). Skipping the algebraic manipulations, this
results in

pa(a′ ∈ l) =
1

(2π)5/2

5∏
k=1

γ
βl,k
l,k Γ(βl,k + 0.5)

Γ(βl,k)
×

EΛl,k

[
1

(γl,k + 0.5(a′k − Λl,k)2)
βl,k+0.5

]
(26)

Since the expectation in (26) is not given in a closed form, it
is computed numerically by sampling Λl,k ∼ N (µl,k, σ

2
l,k).

This concludes the computation of cluster probability dis-
tribution pa(a′ ∈ l). Substituting the resulting distribution
into (5) yields probability distribution pRUL(x|a′) of the re-
maining useful life of a battery at the end of the discharge
cycle corresponding to feature vector a′.

V. EXPERIMENTAL RESULTS

The experimental testing of the described methodology is
performed using battery data from NASA Ames Research
Center of Excellence [18]. The measured discharge voltage
waveforms of two selected batteries are represented with

parameters (feature vectors) that fit the specified empirical
model (1). The feature vectors a of one battery, labeled as
battery B6 in the NASA’s dataset, are part of the training data
D, while the feature vectors corresponding to the other battery,
labeled as B5 in the NASA’s dataset, are used to testing.

We start by clustering data points from D using the DPMM
generative model and the approximate inference, as detailed
in Section IV. For that purpose, we set h = 5 so that the
distribution that generates feature vectors a is wide enough.
The mean feature vector a0 is set to the mean of all feature
vectors from D. The hyper-parameters of Gamma distributions
in the DPMM model are chosen so that the distributions are
non-informative, s1 = γ = 10−7 and s2 = β = 1+10−7. One
of the outputs from the DPMM inference routine are cluster
probabilities pi,l, representing the probability that a feature
vector ai is generated from cluster l. They are shown in Fig. 1
such that its vertical slice is a resulting cluster probability
distribution of the corresponding feature vector. We note that
cluster indices have no particular meaning and some of them
contain no data. In fact, out of L = 20 clusters that the
inference procedure is initialized with, the result indicates the
existence of only 10 clusters. Notably, most feature vectors
are associated with high probability (close to 1) with only one
cluster.

Fig. 1. DPMM data clustering probabilities of the training data (battery B6).

Each feature vector in D is paired with the number of
charge-discharge cycles that remain from the cycle that feature
vector corresponds to until the end of the battery’s useful life.
The number of remaining charge-discharge cycles associated
with feature vectors from the same cluster versus cluster index
is shown in Fig. 2. As expected, most clusters cover a range of
the number of remaining number of charge-discharge cycles.
The exception is cluster 1 which contains 4 data points from
D whose corresponding remaining number of cycles cover
relatively wide range, indicating that this cluster effectively
collects outliers and is thus not useful for RUL estimation.
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Fig. 2. Remaining number of charge-discharge cycles versus cluster index.

Each feature vector from the test data is softly classified
into clusters identified in the training stage, as detailed in
Section IV-C. The resulting clustering probability distributions
are shown in Fig. 3. As can be observed, most of the test
data points are, with probability close to one, associated with
one cluster. Also, a fairly large number of test data points get
clustered in a particular cluster (the one with index 20).

Fig. 3. Clustering of feature vectors from the test data (battery B5).

The RUL probability distribution is inferred at the end of
each charge-discharge cycle of the testing data using (5) and
the results shown in Fig. 3. We use σ2 = 4 for the parameter
in the Gaussian kernel (4) such that if a certain feature vector
is associated with the remaining number of charge-discharge
cycles k, it can also be associated with the remaining number
of cycles k − 1 and k + 1, with relatively high probability.
The RUL distribution at the end of the 10th charge-discharge
cycle of the tested battery B5 is shown in Fig 4, where

the true number of remaining charge-discharge cycles is 99.
Similarly, the RUL distribution at the end of the 80th cycle is
shown in Fig. 5, where the true number of remaining cycles
is 29. We observe that the RUL distributions in Figs. 4 and 5
are concentrated around the corresponding true numbers of
remaining cycles and fairly accurately predict the remaining
useful life of the tested battery at the tested time instants.
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Fig. 4. Predicted probability distribution of the RUL at the end of 10th
charge-discharge cycle. The true number of remaining cycles is 99.
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Fig. 5. Predicted probability distribution of the RUL at the end of 80th
charge-discharge cycle. The true number of remaining cycles is 29.

Finally, we evaluate a hard estimate of the number of
remaining charge-discharge cycles of the test battery at the
end of each discharge cycle by taking the mean of the
corresponding RUL distribution. The absolute estimation error
is shown in Fig. 6. As can be observed from the plot, with
only few exceptions, the estimation error is below 20 charge-
discharge cycles even at the beginning of battery’s life. In fact,
the time span from the beginning until the mid of the battery’s
useful life is essentially where the proposed methodology



provides useful estimates. As the battery gets closer to the end
of its useful life, the estimated remaining number of charge-
discharge cycles becomes unreliable. We hypothesize that as
the battery approaches its end of life the model parameters do
not capture all the subtleties in the discharge voltage waveform
so as to aid accurate prediction of the remaining number
of cycles. Further consideration of this issue and effort to
find better empirical model for this regime are left as future
research.
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Fig. 6. Absolute estimation error of the remaining number of charge-discharge
cycles of test battery B5.

VI. CONCLUSION

This paper presents a methodology for inferring probability
distribution of the remaining number of charge-discharge
cycles a battery can undergo before it is declared dead.
Accurate prediction of the remaining useful life is important
in numerous applications since it ensures making timely
decision as to when a battery should be replaced such that
power interruptions of the system it supplies are avoided. The
methodology is based on Dirichlet process mixture model,
which is used to cluster feature vectors that represent discharge
voltage waveforms of one or more batteries of similar type
measured over their life spans. The inference of the DPMM
generative model is performed using variational Bayes, which
is faster and provides better means to check for convergence
than sampling-based inference methods. In the operational
stage, the discharge voltage of a battery is measured and
fitted using the selected empirical model. The obtained feature
vector is then classified into one of the DPMM clusters
and the probability distribution of the remaining useful life,
expressed as the number of remaining charge-discharge cycles,
is inferred. The developed method is tested with experiments,
which show that it provides useful predictions of the remaining
number of charge-discharge cycles of a battery relatively early
in its life.
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