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Abstract
In this paper, we present algorithms for synthesizing controllers to distribute a swarm of ho-
mogeneous robots (agents) over heterogeneous tasks which are operated in parallel. Swarm is
modeled as a homogeneous collection of irreducible Markov chains. States of the Markov chain
represent the tasks performed by the swarm. The target state is a pre-defined distribution of
agents over the states of the Markov chain (and thus the tasks). We make use of ergodicity
property of irreducible Markov chains to ensure that as an individual agent converges to the
desired behavior in time, the swarm converges to the target state. To circumvent the problems
faced by a global controller and local/decentralized controllers alone, we design a controller by
combining global supervision with local-feedback-based state level decisions. Some numerical
experiments are shown to illustrate the performance of the proposed algorithms.
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Abstract— In this paper, we present algorithms for syn-
thesizing controllers to distribute a swarm of homogeneous
robots (agents) over heterogeneous tasks which are operated
in parallel. Swarm is modeled as a homogeneous collection
of irreducible Markov chains. States of the Markov chain
represent the tasks performed by the swarm. The target state
is a pre-defined distribution of agents over the states of the
Markov chain (and thus the tasks). We make use of ergodicity
property of irreducible Markov chains to ensure that as an
individual agent converges to the desired behavior in time, the
swarm converges to the target state. To circumvent the problems
faced by a global controller and local/decentralized controllers
alone, we design a controller by combining global supervision
with local-feedback-based state level decisions. Some numerical
experiments are shown to illustrate the performance of the
proposed algorithms.

I. INTRODUCTION

Autonomous robots are becoming ubiquitous and are ex-
pected to play an increasingly important role in both civilian
and military applications such as intelligence, surveillance,
reconnaissance (ISR), health care, and logistics, to name a
few. Recent advances in sensor technology and embedded
processors have allowed us to design swarm of robots which
are capable of doing various coordinated complex tasks.
Some important examples are fleets of unmanned vehicles
deployed in ocean bed for the purposes of mine-hunting or
surveillance or drug delivery techniques in humans using
micro-scale robots at pre-specified rate and locations [1], [2].
A common element in all these applications is a desirable
global behavior which can be achieved where the individual
behavior is achieved by the agents themselves and thus, is
not considered during global policy synthesis. In such large-
scale systems, it is, in general, difficult to design controller
for each agent (or robot) individually and then coordinate
their behavior, for the computational requirements. It is not
difficult to imagine that the corresponding state-space would
grow exponentially and such a system would be highly
inefficient. A critical challenge, among several others, in
these highly distributed systems is to guarantee stability and
performance with limited global information. In this paper,
we are interested in synthesis of controllers for controlling
global states of a large-scale system with the assumption that
each of the individual agents are controllable.
Related Work: Traditionally, swarm control has been stud-
ied under two broad categories: centralized control with
global information, where the controller broadcasts the poli-
cies to the swarm and decentralized control where, for
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example, some bio-inspired collective behavior laws are used
to replicate social behavior in nature. A lot of work has been
done in swarm control addressing issues of centralized and
decentralized control. Some examples of centralized control
could be found in [3]–[7].

Some distributed control approaches for swarm control
could be found in [8]–[11]. However, there are no perfor-
mance or convergence guarantees. This work is motivated
by the idea that we can augment the centralized controller
by a state-dependent feedback strategy so that the agents can
use the centralized control strategy with limited perturbation
from the same; the perturbation in the strategy depends on
the current state of an agent and the desired steady state of
the system. The distributed state-information-based feedback
control leads to a time-varying stochastic linear system. Such
time varying stochastic analysis has been been extensively
presented in consensus literature [12], [13]. It is noted that
in the following text we often call transition matrix as
Markov kernel even though kernels are generally defined for
continuous state-space (and our problem is discrete).

Contributions: We present a problem of swarm control
and propose algorithms for centralized as well as control
with distributed autonomy. In particular, this paper has the
following major contributions.

1) We present a closed-form solution to the swarm control
problem presented in an earlier publication [4].

2) Additionally, we present a framework where we aug-
ment the global controller with a local information-
based feedback controller to reduce the movement of
agents to achieve the desired state.

II. PRELIMINARIES AND NOTATIONS

In this section, we provide some preliminary concepts
and notations that facilitate understanding of the concepts
presented in the sequel. We denote the cardinality of any set
Φ by |Φ|.

Definition II.1. A finite-state homogeneous Markov chain
is a triple G = (Q,P,p[0]), where Q is the set of states
with |Q| = M ∈ N, P is the |Q|× |Q| stationary probability

matrix such that ∀ i, j ∈ {1, . . . ,M}, Pij = 0 with
M∑
j=1

Pij =

1, and p[0] ∈ [0, 1]|Q|,
M∑
i=1

p
[0]
i = 1, is the initial distribution

over the states.

Definition II.2. A finite-state homogeneous Markov chain
G = (Q,P,p[0]), with |Q| = M, M ≥ 2, is called
irreducible if, for any (i, j), 1 ≤ i, j ≤ M , there exists a



finite positive integer k(i, j) such that the ijth element of
the kth power of P is strictly positive, i.e., Pkij > 0. In this
case, the stochastic transition matrix P is also an irreducible
matrix [14].

The transition matrix of a finite Markov chain is always a
stochastic matrix [14]. Any stochastic transition matrix K has
at least one unity eigenvalue, and all the eigenvalues of K are
located within or on the unit disc. For any M×M irreducible
stochastic matrix K with M > 1, the diagonal terms are
strictly less than unity, i.e., Kii < 1 ∀i. Upon unity sum
normalization, the left eigenvector P = [P1, P2, . . . , PM ]
corresponding to the unique unity eigenvalue of K is called
the stationary probability vector, where

∑
i

Pi = 1, and Pj >

0 ∀ j ∈ {1, 2, . . . ,M} [14] such that PK = P .
Next we present a brief review of language measure

theory [15], [16] which is later used to synthesize the
distributed architecture for the problem discussed in this
paper.

A. Review of Language Measure of a Probabilistic Finite
State Automata

This section summarizes the concept of signed real mea-
sure of probabilistic finite state automata (PFSA) and its role
for optimal control of PFSA. While the theories of language
measure and the associated optimal control are developed
in [15], this section introduces pertinent definitions and
summarizes the essential concepts that are used in the sequel.

Definition II.3. (PFSA) A probabilistic finite state automa-
ton (PFSA) over an alphabet Σ is a quintuple

G , (Q,Σ, δ,Π,χ), where

• Q is the nonempty finite set of states, i.e., |Q| ∈ N;
• δ : Q×Σ? → Q is the transition map that satisfies the

following conditions: ∀q ∈ Q ∀s ∈ Σ ∀w ∈ Σ?

δ(q, ε) = q; and δ(q, ws) = δ
(
δ(q, w), s

)
.

• Π : Q × Σ? → [0, 1] is the morph function of state-
specific symbol generation probabilities, which satisfies
the following conditions: ∀q ∈ Q ∀s ∈ Σ ∀w ∈ Σ?

Π(q, s) ≥ 0;
∑
s∈Σ Π(q, s) = 1; and

Π(q, ε) = 1; Π(q, ws) = Π(q, w)×Π(δ(q, w), s).
• χ : Q → [−1, 1]|Q| is the vector-valued characteristic

function that assigns a signed (normalized) real weight
to each state.

The (|Q| × |Q|) state transition probability matrix P is
defined as

P = [Pjk], where Pjk ,
∑

s∈Σ: δ(qj ,s)=qk

Π(qj , s) ∀qj , qk ∈ Q

Note: P is a non-negative stochastic matrix [14]. It is also
noted that a PFSA induces a Markov chain M = (Q,P, p[0])
where p[0] is the one-hot vector representing the initial state
of the PFSA.

We skip some definition and details for brevity. Interested
readers are refered to [16] for details about the same. We
present definition of language induced by a PFSA before
presenting the definition of the real measure for the same.

Definition II.4. (Language) Let (Q,Σ, δ,Π,χ) be a PFSA.
The language generated by all words, which terminates at a
state qk ∈ Q after starting from qj ∈ Q, is defined as

L(qj , qk) , {w ∈ Σ∗ : δ?(qj , w) = qk} (1)

The language generated by all words, which may terminate
at any state q ∈ Q after starting from qj ∈ Q, is defined as

L(qj) ,
⋃
q∈Q

L(qj , q) (2)

Definition II.5. (Language Measure) Let L(qj , qk) and
L(qj) be languages on a PFSA (Q,Σ, δ, π,χ) and let
θ ∈ (0, 1) be a parameter. A signed real measure µjkθ :
2L(qj ,qk) → R (that satisfies the requisite axioms of measure
[17]) is defined as

µjkθ (L(qj , qk)) ,
∑

w∈L(qj ,qk)

θ(1− θ)|w|π(qj , w)χ(qk) (3)

The measure of the language L(qj) is defined as

νjθ(L(qj)) ,
∑
qk∈Q

µjkθ (L(qj , qk)) (4)

The language measure of the PFSA (Q,Σ, δ, π,χ) in
Eq. (II.5) is expressed vectorially as

νθ = θ[I− (1− θ)P]−1χ (5)

where P is the state transition matrix (see Definition II.3) and
the inverse on the right side exists for all θ ∈ (0, 1) [15].
Furthermore, as θ → 0+, the matrix θ[I − (1 − θ)P]−1

converges to the Cesaro matrix P , limk→∞
1
k

k−1∑
j=0

Pj .

Then, the limiting measure vector ν0 is obtained as [15]

ν0 , lim
θ→0+

νθ = lim
θ→0+

θ[I− (1− θ)P]−1χ = P χ (6)

where I is the (|Q| × |Q|) identity matrix.
The limiting language measure νj0 sums up to the limiting

real measure of each string starting from state qj , given the
weighting function, χ.

III. PROBLEM FORMULATION

Consider a set of N robots to be allocated among M
heterogeneous tasks which are operated in parallel. The
number of robots performing task i ∈ {1, . . . ,M} at a time
epoch k is denoted by n

[k]
i . The desired number of robots

for task i is denoted by ndi . We assume that ndi > 0 for
all i ∈ {1, . . . ,M}. Then, to make the system scalable in
the number of agents, we define the population fraction at
any task i as p[k]

i = n
[k]
i /N . The state of the swarm is then

defined as p[k] = [p
[k]
1 , . . . , p

[k]
M ]. The desired state of the

swarm is given by the fraction of agents at the individual
tasks which is denoted by the vector pd = [pd1, . . . , p

d
M ]. It

is noted that since ndi > 0 ∀i ∈ {1, 2, , . . . ,M}, thus we
have that pdi > 0 ∀ i ∈ {1, . . . ,M}.

Assumption III.1. |Q| = M <∞ i.e., the number of tasks
operated in parallel are finite.

Next we formalize the definition of an agent and swarm
before we state the formal problem.



Definition III.1. (Agent in Swarm Modeling): An agent
is a connected digraph R = (Q,E), where each state
i ∈ Q represents a distinct predefined behavior (i.e., a
heterogeneous task), and E ∈ {0, 1}|Q|×|Q| is a matrix such
that Eij = 1 implies there exist a controllable transition
from state i to j (implying the connectivity of the tasks).

The matrix E in Definition III.1 specifies state transitions
of the agent R’s state. An agent can only transition to
the tasks it is directly connected with in a single hop
(or a controllable movement). It is possible to associate
probabilities with the transition of an agent between tasks
based on the requirements at the tasks or the preference of
the robot. The probabilities of the state transitions constitute
a finite-state irreducible Markov chain, with the irreducibility
property following from the connectedness of the agent
graph. Thus the behavior of an agent can be represented
by an irreducible Markov chain G = (Q,P,p[0]), where P
represents a stochastic matrix such that Pij > 0 if and only
if Eij = 1; p[0] represents its initial state (which could be a
one-hot vector representing the initial task of the agent).

Definition III.2. (Swarm): In the sense of Definition III.1,
a homogeneous swarm S is defined to be a collection of
independent identical agents R = (Q,E), each of which is
represented by some (finite-state) irreducible Markov chain
G = (Q,P,p[0]). Formally,

S = {Gα : α ∈ X}
such that Gα = G, and X is an index set (finite, countable
or uncountable). The state of the swarm is defined by the
distribution of robots over the tasks i.e., p[k]). The swarm
dynamics is represented by the following equation:

p[k+1] = p[k]P (7)

where Pij represents the probability with which an agent
decides to switch from task i to task j.

Following Definition III.2, let S = {Gα : α ∈ X}, be
a homogeneous swarm, where Gα = (Q,P,p[0]) is the
irreducible Markov chain corresponding to the uncontrolled
agent and a known target state pd for the swarm, where
|Q|∑
i=1

pdi = 1, and pdj > 0∀j ∈ {1, . . . ,M}. The swarm

dynamics is governed by equation (7).
With the above definitions in mind, we now define the first

problem we present in this paper.

A. Central Controller Design

Imagine a swarm of robots where the initial state of the
swarm is p[0] and the desired state is represented by pd.
The goal of the central controller is to achieve the desired
distribution of agents over the tasks. This can be achieved in
a probabilistic setting by using a Markov kernel for transition
between tasks such that the desired state is the stationary
distribution over the states of the swarm. Thus, given a
desired state distribution pd, the problem is to synthesize
a Markov kernel P? given any initial kernel P such that the
following conditions hold.

1)
M∑
j=1

P?ij = 1 .

2) P?ij > 0 if and only if Pij > 0 for any i, j ∈ 1, . . . ,M .
3) P? is an irreducible matrix.
4) lim

k→∞
‖p[0](P?)k − pd‖∞ = 0.

B. Central Control with Distributed Autonomy

In this problem, we want to have a local-information-
based policy for the agents which could be calculated as a
perturbation to the central control policy P?. The perturbed
policy could be derived as a function of p

[k]
i , the desired

state pdi and the neighboring states p
[k]
j where j is such that

Eij = 1. It results in time varying stochastic policies for the
agents depending on their current state and local information.
We denote the perturbed local policies by P̃

[k]
at an instant k.

Also, we want only λ fraction of the agents to switch between
the tasks at steady state when compared to the number of
agents switching tasks under the central policy. Then, the
local-information-based perturbed policy has to satisfy the
following conditions.

1)
M∑
j=1

P̃
[k]

ij = 1.

2) P̃
[k]

ij > 0 if and only if P?ij > 0 for any i, j ∈ 1, . . . ,M ..

3)
|Q|∑
j=1

P̃
[k]

ij = 1.

4) lim
k→∞

‖p[0]
k∏
i=0

P̃
[i] − pd‖∞ = 0

5) lim
k→∞

P̃
[k]

ij = λP?ij for i 6= j and lim
k→∞

P̃
[k]

ii = λP?ii +

(1− λ)

It is noted that the irreducibility of P̃
[k]

follows from condi-
tion (1) and the fact that P? is an irreducible matrix. At this
point, we would like to clarify that condition 5 implies that
the robots stay at the same task with an increased probability
of (1−λ) and thus, the probability to switch task at any state
is reduced by fraction λ.

It is also noted that both problems are related to synthesis
of Markov kernels such that the stationary distribution of
the underlying Markov chain achieves the desired state of
the swarm in the asymptotic limit.

IV. PROPOSED ALGORITHMS

In this section we present the proposed approach for
estimation of the Markov kernels described in section III.
As described earlier in section III, we first present a solution
to III-A and then to III-B. Solutions are presented as psuedo-
codes in Algorithms 1 and 2. Proofs of the underlying
Theorems are being skipped for brevity.

A. Algorithm for Central Controller Synthesis

This section presents a closed-form solution to solve the
control problem described in section III-A. Let pd be the
desired state of the swarm with initial state p[0]. Let P be an
irreducible stochastic matrix for G and let p̃ be its unique
stationary probability distribution vector. Then, a Markov
kernel which achieves the desired distribution over the swarm



Algorithm 1: EstimatingMarkovKernel
1 for i ∈ {1, . . . . ,M} do
2 d̂i =

p0i
pdi

;

3 for i ∈ {1, . . . . ,M} do
4 Normalize di = d̂i∑M

i=1 d̂i
;

5 return {di}i=1,...,M ;
6 return Π? = diag(d)Π− diag(d) + I
7 . I represents the identity matrix of the same size as Π

in the asymptotic limit could be obtained using the following
transformation of the matrix P.

Pij 7−→ diPij , i 6= j

Pij 7−→ diPij + (1− di), i = j

where, di ∈ (0, 1) ∀i ∈ {1, 2, . . . ,M} where the vector
d = [d1, . . . , dM ] is given by the following expression.

[d1, . . . , dM ] = [d̂1, . . . , d̂M ]/

M∑
i=1

d̂i (8)

where [d̂1, . . . , d̂M ] = [p
[0]
1 , . . . , p

[0]
M ]X−1 where, X−1 =

diag(pd1, . . . , p
d
M )−1. The vector pd and p[0] denote the final

and initial distribution of the swarm, respectively. The vector
d in equation (8) gives the closed form solution to the itera-
tive Algorithm 1 in [4]. This helps in greatly simplifying the
controller synthesis complexity which is useful for swarms
with a large number of states or tasks performed in parallel. It
is noted that the perturbations preserve the original topology
of the graph representing the connectivity of the tasks. For
convenience of presentation, the transformation is presented
as a psuedo-code in Algorithm 1.

Next, we present a lemma and consequently a theorem
(for brevity we skip the analysis) which show correctness of
our approach.

Lemma IV.1. We define a perturbation of the irreducible
stochastic matrix Π as follows:

Π̂ = DΠ−D + I (9)

where, D = diag(di) i ∈ {1, . . . ,M}, where di ∈ (0, 1)
and I is an identity matrix of size M ×M . Then Π̂ is a
stochastic irreducible matrix.

Theorem IV.1. Let pd ∈ RM be an element-wise positive
probability vector and let Π ∈ RM×M be an irreducible
stochastic matrix with a strictly positive stationary probabil-
ity vector, p. Then, ∃ a diagonal matrix D ∈ RM×M with
Dii ∈ (0, 1) such that Π? = DΠ−D + I is an irreducible
stochastic matrix with stationary probability vector pd.

Theorem IV.1 guarantees the existence of a solution for
the desired matrix. The diagonal elements of the matrix D
is given by Equation (8). The psuedo code to estimate a
feasible Markov kernel is presented in Algorithm 1. Proofs
are being skipped here for brevity.

Remark IV.1. In Lemma IV.1, we show that under the
perturbations described, we retain the irreducibility of the
stochastic matrix and through Theorem IV.1 guarantees the
existence of a possible perturbation so that the perturbed

irreducible stochastic matrix attains the desired distribution
for the swarm. It is noted that the solution is not unique;
however, this gives a closed-form solution for controller
synthesis.

B. Algorithm for Distributed Autonomy

In the last section, we presented a closed form solution to
the controller synthesis problem described in Section III-A.
It was based on the knowledge of global state of the swarm
and the synthesized controller has asymptotic convergence
and global stability guarantees. However, it might lead to un-
necessary movement of agents at steady state. Furthermore,
in the absence of any feedback, a swarm cannot react to any
unforeseen changes events which might lead to changes in
requirement of agents at different states. It is desirable that
the robots (agents) should have some degree of autonomy
to choose their action based on their current state and local
state information of the swarm. This forms the motivation of
the problem described in Section III-B. In this section, we
present a framework to allow distributed autonomy to the
robots so that they can decide to follow the global policy
in a probabilistic fashion while retaining global stability. We
define the degree of autonomy as the fraction of the times an
agent decides to follow the global policy against the policy
of staying in the same state.

The local feedback-based policy represents the probability
with which an agent decides to either follow the global policy
or stay in its current state. The goal is to achieve a pre-
defined percentage of activity at steady-state. To formulate
the problem of distributed autonomy in the setting of lan-
guage measure theory, we augment the states of the Markov
chain (that represents the swarm) with characteristic weights
(see Definition II.3 in Section II). Please see Section II
for more information on the characteristic weights. The
characteristic weights of the states are defined as follows:
χ

[k]
i = pdi − p

[k]
i .

The vector χ[k] = [χ
[k]
1 , χ

[k]
2 , . . . , χ

[k]
M ]T thus contains the

information about the deficit or excess of agents at the
individual tasks (or the states of the swarm). A positive
value of χ[k]

i would suggest deficit of agent in state i and
a negative value suggests excess of agents. As mentioned
earlier, the goal is to achieve a certain fraction, λ, of original
activity level at steady state. During the transient phase, some
states with positive characteristic weights observe higher
(than steady-state) activity rates than states with negative
characteristic weights. It is presented more formally next.

To estimate a measure for goodness of a swarm state,
we estimate value functions for each state as the expecta-
tion of characteristic weights over the states. The expected
value of the characteristic weights for the Markov chain
(that represents the swarm) is calculated using the language
measure theory as discussed in Section II. The expectation,
parameterized by a parameter θ ∈ (0, 1), of the characteristic
weights of an irreducible Markov chain with stochastic
matrix P is calculated by the following recursive equation



Algorithm 2: EstimatingDistributedPolicy
1 for i ∈ {1, . . . . ,M} till convergence do
2 for j ∈ Nb(i) do
3 . Nb(i) represents the neighborhood of state i
4 νi ←

∑
j∈Nb(i)

(1− θ)Pijνj + θχi;

5 µ = ν − χ;
6 for i ∈ {1, . . . . ,M} do
7 fk(µi) = 1

1+( 1
λ
−1)exp(−βkµi)

;

8 return {fk(µi)}i=1,...,M ;

(we drop the superscript k for simplicity).

νi ← (1− θ)
∑

j∈Nb(i)

Pijνj + θχi (10)

where, Nb(i) is the neighborhood of the agent i. We use
θ = 0.02 for the computation of the expectation. This is
guided by the fact that the optimal value function is achieved
in the asymptotic limit as θ goes to zero (see Section II).
Interested readers are referred to earlier publications [15] for
further discussion on choice of the parameter θ. The measure
νi is the discounted expected value of χ for agents starting
in state i. Clearly, ν = 0 if χ = 0. Convergence of the
expected weights follow from the fact that χ is a constant
vector and P is a row stochastic matrix. All the states
(i.e., tasks) synchronously calculate their own νi and then
broadcast it to their neighbors. This is repeated recursively
till the expectations converge. Based on the measure defined
in equation 10, we define a quantity, µ = ν − χ.

The quantity µi represents the difference between the
characteristic weight for state i and the expected value of
the χ for agents starting in state i. As such, a positive value
of µi would mean that the states to which the agents can
go from that state have higher expected reward than their
current state and hence, such states are expected to have
higher activity. An activation function is defined according
to the following sigmoid function

fk(µ
[k]
i ) =

1

1 + ( 1
λ − 1)exp(−β[k]µi)

(11)

where, λ ∈ (0, 1) and β[k] ∈ R+ are parameters. λ denotes
the steady state activity level for the agents. β[k] is a scaling
factor for µ[k]

i . Clearly, fk(µ
[k]
i ) ∈ (0, 1) for all µ[k]

i ∈ R.
The sigmoid functions are used to design smooth (i.e., the
feedback rate is differentiable) feedback controllers.

The state-based perturbation to the central control policy
P? of the swarm is then defined by the following equations.

P?ij 7−→ b
[k]
i P?ij , i 6= j

P?ij 7−→ b
[k]
i P?ij + (1− bi), i = j (12)

where, b[k]
i = fk(µ

[k]
i ), where µ[k]

i is given by equation (10).
Clearly, lim

k→∞
fk(µ

[k]
i ) = λ if lim

k→∞
µ

[k]
i = 0. Thus, the

feedback matrix for at epoch k is given by,

P̃
[k]

ij = b
[k]
i P?ij , i 6= j

P̃
[k]

ij = b
[k]
i P?ij + (1− b[k]

i ), i = j (13)

Thus the idea is that based on the state of a task and

the neighboring tasks, an agent can probabilistically decide
whether to follow the global policy or stay in the same
task. At steady state, ν = χ = 0 and thus, fk(µ

[k]
i ) = 0

for all i ∈ {1, . . . ,M}. The policy is then given by P̃ =
λP? + (1− λ)I (It is easy to see that P̃ satisfies pP̃ = p).
At steady state (or the desired state), this should lead to λ
fraction of agents staying in their task by deciding against the
global policy to switch. At every iteration, the agent activity
level b[k]

i decides the probability with which the agents in
task i decide against the global policy and stay in the same
task; this results in overall reduced activity. The algorithm
is also presented as a psuedo-code in Algorithm 2. Rigorous
analysis of the proposed algorithm are skipped and will be
provided in a future extended publication.

Fig. 1: The tasks modeled as a graph with its connectivity
topology. Initially all the agents are in the state marked in
red.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present some numerical results based on
the proposed algorithms described in sections IV-A and IV-B.
We consider a task allocation problem which consists of the
35 tasks being operated in parallel. The connectivity of tasks
is represented as a graph which is shown in Figure 1. Each
node of the graph (or a task) is connected to 8 neighboring
nodes (or tasks) except for the ones on the edges which are
connected to either 5 or 3 nodes (see Figure 1).

Initially all the agents are located at the same task which is
marked in red in the graph. The agents need to be distributed
uniformly over all the tasks at steady state. In Figure 2
we show the results obtained for the central controller. The
system converges to the desired distribution monotonically
(see Figure 2a) ; however, there is a lot of activity at steady
state which is undesirable (see Figure 2b).

Next we consider the distributed control which is calcu-
lated as perturbation to the central control policy discussed
earlier. For the distributed control, the parameter θ is selected
to be 0.02 and the desired activity level is taken to be λ = 0.2
i.e., only 20% of the agents should move at steady state when
compared to the movement shown in Figure 2b.

This particular case shows the use of proportional feed-
back given by β[k] = γ/k where γ = 600. In Figure 3, we
show the results of the stable distributed proportional con-
troller. As seen in Figure 3a, the error norm asymptotically
converges to zero. Figure 3b shows the agent activities at
steady state reaches λ fraction of the activity achieved by
the central control policy. Compared to the central control,
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Fig. 2: Convergence of system states and agent activity
obtained by the central control policy

the distributed controller is slower (as seen by the error con-
vergence rates in Figures 2 and 3a). However, the distributed
controller is able to achieve the target state with reduced
movement of agents and maintains reduced activity at steady
state.

VI. CONCLUSIONS AND FUTURE WORK

Swarm control problems are difficult due to the large
state-space of the system. In this paper, we modeled swarm
as a homogeneous collection of irreducible Markov chains.
We presented a solution that uses a mix of centralized and
decentralized control. In future research, we would like to
investigate the use of reinforcement learning for correcting
unmodeled dynamics.
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