
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Object-Oriented Modeling and Control of Delta Robots

Bortoff, S.A.

TR2018-126 August 25, 2018

Abstract
In this paper we derive a dynamic model of the Delta robot that is well-suited to an object-
oriented modeling framework. The approach uses an augmented Lagrangian or Hamilto-
nian formulation together with Baumgarte’s method of index reduction, and results in a
singularity-free dynamic model that is well suited to dynamic analysis, control system syn-
thesis and time-domain simulation. The object-oriented structure enables broad application
to problems such as coordinated control and robotic assembly. We present several common
control algorithms and conduct a dynamic analysis of the Delta robot that shows that the
open-loop system is unstable for large volumes of the reachable workspace, which has funda-
mental implications on closed-loop performance.

IEEE Conference on Control Technology and Applications

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2018
201 Broadway, Cambridge, Massachusetts 02139

Object-Oriented Modeling and Control of Delta Robots

Scott A. Bortoff1

Abstract— In this paper we derive a dynamic model of the
Delta robot that is well-suited to an object-oriented modeling
framework. The approach uses an augmented Lagrangian or
Hamiltonian formulation together with Baumgarte’s method of
index reduction, and results in a singularity-free dynamic model
that is well suited to dynamic analysis, control system synthesis
and time-domain simulation. The object-oriented structure
enables broad application to problems such as coordinated
control and robotic assembly. We present several common
control algorithms and conduct a dynamic analysis of the Delta
robot that shows that the open-loop system is unstable for large
volumes of the reachable workspace, which has fundamental
implications on closed-loop performance.

I. INTRODUCTION
With their base-mounted actuators and stiff, low-mass

parallel links, Delta robots are designed to meet the need for
fast, precise, relatively light-weight pick-and-place industrial
applications. Cycle times of three cycles-per-second with
payload capacity less than 1kg is typical [1]. But Delta
robots, and parallel mechanisms more generally, offer ad-
vantages over more common serial-link manipulators, such
as lower mass and high stiffness, which will make them
attractive for applications besides pick-and-place, such as
robotic assembly. And extensions e.g. [2] to the original
design [3] are addressing kinematic limitations by increasing
the numbers of degrees of freedom.

Delta robots, and similar parallel mechanisms, have drawn
the attention of the research community for many years to
address the challenges of kinematic and dynamic modeling
and control [4], [5], [6], [7]. Unlike the kinematics of serial
chain robots [8], the forward kinematics of the Delta robot
(the function from actuated joint angles to the location
of the end effector) cannot be expressed analytically [6].
This makes formulation of dynamic (and inverse dynamic)
equations of motion more difficult.

Equations of motion can be derived using a variety of
methodologies such as the principle of virtual work, the
Newton-Euler formulation, or Lagrangian and Hamiltonian
energy-based approaches [7]. But, there is no single correct
kinematic, dynamic or inverse dynamic model of a Delta
robot (or any robot, for that matter). Different methodologies
result in different models, and each has more or less merit
depending on the use-case, e.g. some methodologies may
be more efficient for the process of model synthesis, while
others result more efficient code, and still others are more
useful for feedback control system design.

The objective of this work goes beyond a derivation of
yet another dynamic model of the Delta robot. In the long

1Author is with Mitsubishi Electric Research Laboratories, Cambridge,
MA, USA bortoff@merl.com

Proximal	
Link	1

Distal	Link	1

Distal	Link	3

Proximal	
Link	3

Distal	
Link	2

Base

End	Effector

x3

x1

x2

Fig. 1. Delta robot.

term, we are developing a more general modeling framework,
and more concretely, model libraries, that are useful for
time-domain simulation, dynamic analysis, various forms of
optimization, and control system design of not just a single
robot, but ultimately an entire assembly line, including the
robots’ tasks that go beyond pick-and-place, and at varying
degrees of detail. Our vision and indeed technical approach is
akin to the the ideas and mathematical rigor in [9] including
zooming, tearing and accusal modeling.

It is important to emphasize that modeling is expensive
and time-consuming, and we seek a framework in which we
can reuse models for a variety of different use-cases, such
as control system design at its various hierarchal levels (e.g.
low-level feedback loops and also higher-level sequences),
possibly as part of the control law itself e.g., using Model
Predictive Control, for model-based estimation, mechanism
co-design, and also for uses that are not immediately foreseen
today.

Object-oriented modeling offers a technical approach and
a set of potent tools to address these needs. In particular, the
modeling language Modelica has been developed for large-
scale, heterogeneous, dynamic systems based on the prin-
ciples of object-oriented programming, such as abstraction,
encapsulation, inheritance and hierarchy as organizational
concepts [10], [11], [12]. Its roots date back to the late
1970s [13]. Used properly, models can be built “bottoms
up” to be useful for control system design at various levels
of the hierarchy in systems as complex and vast as a robotic
assembly line.

In this paper we derive Lagrangian and Hamiltonian
models for the Delta robot, showing how they are structured

into an object-oriented framework, and how it they are useful
for not just simulation but also dynamic analysis and control
system design. The mathematical model in of itself is perhaps
not very novel. It is an application of constrained Lagrangian
or Hamiltonian dynamics and Baumgarte’s method [14],
[15] of index reduction. Unlike previously published models,
which are a set of 6 nonlinear ordinary differential equations
corresponding to the 3 degrees of freedom, this method
results in 18 implicit nonlinear ordinary differential equations
in 18 variables. However, while the dimension is larger, each
equation is explicit and computationally simple. A quantified
analysis of this claim will be published in the future. For
now, the novelty is to recognize that this particular modeling
approach is well-suited to an object-oriented modeling con-
struct, and is useful for purposes beyond simulation. Further,
it is extendable to applications such as force control and
cooperative robotics, and is relatively easy to understand and
document.

In Section II we derive mathematically the dynamic model.
In Section III we show how the models are organized as a
hierarchy using the concepts of extension, encapsulation and
abstraction. In Section IV we use this model to design a va-
riety of feedback controllers, and present the results of some
simple dynamic analysis. Interestingly, one result is that the
Delta robot is open-loop unstable for a significant volume
of its usable workspace, a surprising and relevant result that
has not been reported in the literature, to our knowledge.
We conclude with some comments on our unfinished work
in Section V.

II. DYNAMIC MODEL

Consider the Delta robot pictured in Fig. 1, consisting of
three symmetric arms constrained kinematically by universal
or spherical joints at the end effector. We derive the dynamics
first by defining the dynamics for each independent arm,
assuming it is unconstrained, and then derive the dynamics
of the robot by adding a holonomic coupling constraint rep-
resenting the end effector. The resulting index-3 Differential
Algebraic Equation (DAE) is stabilized using Baumgarte’s
method, giving an index-1 DAE that is useful directly for
simulation, dynamic analysis, control system design, and is
extendable to other uses such as force control.

A. Arm Dynamics

Each arm consists of a servomotor attached rigidly a
proximal link, which is in turn attached to a distal link by an
unactuated universal joint, giving it three degrees of freedom.
Referring to Figs. 1-2 in which the fixed “world” frame
has axes labeled [x1, x2, x3], let φ = [φ1, φ2, φ3]

T be the
generalized angular position for the arm, defined as follows.
The servomotor angle is φ1, which is the rotation of the
proximal link about the x1-axis, measured with respect to
the x2-axis. The universal joint position is represented with
φ2 representing the rotation about the x1-axis measured with
respect to the x2-axis, and φ3 representing the rotation about
the x2-axis measured with respect to the x2−x3 plane. Note
that, in these coordinates, the universal joint has a singularity

Proximal
Link

Distal
Link

Gravity
Direction

End	
Effector

Base

y3 = l0 � l3 + l1 cos q1 + l2 cos q2

x3 = l2 sin q2 sin q3

x1

x2

x3

xc3

z3 = l1 sin q1 + l2 sin q2 cos q3

�1

�2

�3

Fig. 2. Delta robot arm coordinates with end effector location xc3
indicated. Note that the Cartesian coordinate frame axes are denoted x1,
x2 and x3.

Proximal	Link	1

Distal	Link	1

Distal	
Link	3

Distal
Link	2

Proximal
Link	2

End	
Effector

l0

Arm	1

Arm	2

Arm	3

Base

Proximal	
Link	3

x1

x2x3

xc3

q13

q23

q33

Fig. 3. Delta robot coordinates, bottom view, looking up. Note that the
Cartesian coordinate frame axes are denoted x1, x2 and x3.

at φ2 = 0. However, this is outside the range of motion of
the robot once the three arms are kinematically constrained
by the end effector.

Assuming that the distal links are thin rods, i.e., neglecting
the inertia of the distal link about its longitudinal axis, the
kinetic energy of each arm, including 1/3 the mass of the
end effector, is

T (φ, φ̇) =
1

2
m1ẋ

T
c1ẋc1 +

1

2
m2ẋ

T
c2ẋc2 +

1

6
m3ẋ

T
c3ẋc3

+
1

2
J1φ̇

2
1 +

1

2
J2

(
sin(φ2)

2φ̇23 + φ̇22

)
, (1)

where the position of the center of mass of the proximal link
is

xc1 =

 0.0
lc1 cos(φ1)
lc1 sin(φ1)

 , (2)

the position of the center of mass of the distal link is

xc2 =

 lc2 sin(φ2) sin(φ3)
l1 cos(φ1) + lc2 cos(φ2)

l1 sin(φ1) + lc2 sin(φ2) cos(φ3)

 , (3)

TABLE I
DELTA ROBOT PARAMETER DEFINITIONS.

Symbol Description (Units)
l0 Base radius (m)
l1 Length of proximal link (m)
l2 Length of distal link (m)
l3 Width of end effector (m)
lc1 Distance to proximal link center of mass (m)
lc2 Distance to distal link center of mass (m)
m1 Mass of proximal link (kg)
m2 Mass of distal mass (kg)
m3 1/3 mass of end effector (kg)
J1 Rotational inertia, proximal link (N ·m/s2)
J2 Rotational inertia, distal link (N ·m/s2)
g Acceleration due to gravity (m/s2)

the position of the center of mass of the end effector is

xc3 = ψ(φ) :=

 l2 sin(φ2) sin(φ3)
l1 cos(φ1) + l2 cos(φ2)

l1 sin(φ1) + l2 sin(φ2) cos(φ3),

 , (4)

the velocities ẋc1, ẋc2 and ẋc3 are computed by the chain
rule to be functions of φ, φ̇ and the parameters are listed
in Table I. Equation (1) is simply the expression for kinetic
energy of a spherical pendulum [16], representing the distal
link, mounted at the end of a simple pendulum representing
the proximal link. Note that the forward kinematics of the
arm are defined as ψ(φ) in (4).

The gravitational potential energy of each arm is

V (φ) = −g((lc1m1 + l1(m2 +m3/3)) sin(φ1)

+ (lc2m2 + l2m3/3) sin(φ2) cos(φ3) , (5)

where gravity points along the positive x3 axis and 1/3 of
the mass of the end effector is included in each arm. The
Lagrangian

L(φ, φ̇) = T (φ, φ̇)− V (φ) (6)

is used to define the arm equations of motion in the conven-
tional manner,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= bu, (7)

giving
m(φ)φ̈+ c(φ, φ̇) + g(φ) = bu, (8)

where m is the 3 × 3 inertia matrix, c is the 3 × 1 vector
of Coriolis and centripetal torques, g is the 3 × 1 vector of
torques due to gravity, b = [1, 0, 0]T and u is the servomotor
torque. Expressions for m, c and g are given in Appendix 1.

B. Robot Lagrangian Dynamics

Each of the three arms is identical except for a 120◦

rotation about the z-axis. To represent the dynamics of
the full robot, we sum the unconstrained Lagrangians for
each arm (6), and augment the result with the holonomic
constraints that equate the xc3 positions of the end effectors
of each arm (4) in the world coordinates. Euler’s equation
gives the constrained dynamical equations.

Referring to Fig. 3, define qi ∈ R3 for 1 ≤ i ≤ 3, to be
the generalized angular position of each of the three arms,
replacing the φ-notation used in Section II-A. Define q =
[q1, q2, q3]

T ∈ R9 and the unconstrained Lagrangian as

Lu(q, q̇) = L(q1, q̇1) + L(q2, q̇2) + L(q3, q̇3),

and form the augmented robot Lagrangian as

La(q, q̇) = Lu(q, q̇) + λTh(q), (9)

where the constraint h(q) : R9 → R6 is

h(q) =

[
ψ(q1)−Rz(2π/3) · ψ(q2)
ψ(q1)−Rz(−2π/3) · ψ(q3)

]
, (10)

the rotation matrix

Rz(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (11)

ψ is defined in (4), and λ ∈ R6 is a vector of Lagrange
multipliers. Then the Lagrangian equations of motion for the
robot are

d

dt

∂La

∂q̇
− ∂La

∂q
= λTH(q) +Bu (12)

h(q) = 0, (13)

where

H(q) =
∂h(q)

∂q
.

Defining v = q̇, (12)-(13) can be written as a set of 24 first-
order Differential Algebraic Equations (DAEs) of Index 3
[17], [18], in the variables q ∈ R9, v ∈ R2 and λ ∈ R6,

q̇ = v (14)
M(q)v̇ + C(q, v) +G(q) = λTH(q) +Bu (15)

h(q) = 0, (16)

where

M(q) = diag (m(q1),m(q2),m(q3)) ∈ R9×9,

C(q, v) = diag(c(q1, v1), c(q2, v2), c(q3, v3)) ∈ R9,

G(q) = diag(g(q1), g(q2), g(q3)) ∈ R9,

B = diag (b, b, b) ∈ R9×3.

Equations (14) - (16) are a complete dynamic model of the
Delta robot. However, the high index make them unsuitable
to direct application of most modern solvers such as DASSL
[17], and much of modern control theory. Index reduction is
discussed in Section II-D.

C. Robot Hamiltonian Dynamics

For some applications such as port-Hamiltonian analysis
[19] it is useful to have a Hamiltonian model of the robot.
This is derived in similar fashion by defining the momentum
vector p ∈ R9 and the Hamiltonian H = T+V for each arm,

augmenting the constraint (10) by the Lagrange multiplier λ
and solving the Hamiltonian equations, resulting in

M(q)q̇ = p (17)

ṗ =
1

2
v
∂M(q)

∂q
v −G(q) +Bu+HT (q)λ (18)

h(q) = 0, (19)

where the partial derivatives of M need to be computed
symbolically. This formulation has about the same compu-
tational complexity as (14)-(16), results in similar numerical
solutions using the same type of solver, but could be used
with a symplectic solver to provide speedup if desired.

D. Index Reduction

There are a number of methods to reduce the index of (14)-
(16) or (17)-(19) to 1 or 0 (ODE), transforming the system to
a new set of equations that is useful for simulation, dynamic
analysis and control design. A comprehensive survey is
[20]. We highlight in particular the method of “dummy
derivatives” [21], [22], [12] which has been particularly suc-
cessful in our context. It identifies a subset of the states and
represents the remainder as dependent algebraic functions. Its
advantage is that the number of dynamic states selected is
6, the minimum number required to represent the dynamics,
and no additional constraint stabilization is necessary. The
algorithm is also very robust and has been automated in tools
such as Dymola [22].

But the “dummy derivative” method has two disadvan-
tages. First, there is no single set of selected states that
covers the entire robot workspace. At least two sets of states
and state equations must be computed and realized in code,
and the solver must switch among them to compute a time-
domain simulation. This is because the forward kinematics
are not one-to-one, which cause the Jacobian of the reduced
system (not to be confused with the manipulator Jacobian)
for any one set to become singular at certain points in the
workspace. Modern tools such as Dymola use proprietary
logic to switch among the selected states and equations,
together with index 1 DAE solvers such as DASSL [17],
[23] to compute an accurate numerical solution. The second
disadvantage is that the analytic expressions for the depen-
dent states are complex due to the trigonometric functions
in the kinematics. Both of these properties adversely affect
simulation time.

Here we use Baumgarte’s method of index reduction
[20], [14], [15], which results in a single set of index 1
DAEs that covers the entire robot workspace. There are
no singularities. Importantly, this single model can be used
for dynamic analysis and model-based control design in
addition to time domain simulation. And it can be extended
to consider robotic interactions with the environment, coop-
erative control of multiple robots, and consideration of multi-
physical problems in which detailed models of servomotors,
for example, can be inserted.

In this method, the constraint (16) is replaced with a linear
combination of its first two derivatives with respect to time.

Define

z0 = h(q) (20)

z1 = ż0 =
∂H(q)

∂q
q̇ (21)

z2 = ż1 = Ḣ(q)q̇ +H(q)M−1(q)
(
λTH(q)

+Bu− C(q, q̇)−G(q)) , (22)

and replace (16) or (19) with

z2 + α1z1 + α0z0 = 0, (23)

where s2+α1s+α0 = 0 is a Hurwitz polynomial (all poles
in the open left-half plane). The model (14)-(15) and (23) or
(17)-(18) and (23), is an index 1 DAE with 18 differential
equations, 6 algebraic equations and 24 states q, v and λ, or
q, p and λ, respectively.

E. Analysis and Discussion

In this section we limit discussion to the Lagrangian
formulation, but the comments and results also hold for
the Hamiltonian formulation. It is well documented in the
numerical analysis literature that the mathematical solution to
(14)-(15) and (23) is identical to (14)-(15) and (16). Research
has focused on criteria for selection of values of αi that
might improve the numerical performance of solvers. For
our purposes it is useful to understand the structure of the
index-1 system (14)-(15) and (23) from a control theoretic
point of view.

Following [24], we define ξ = [z0, z1]
T ∈ R12 to be the

“linear” part. Then there exist coordinates η ∈ R6 which are
functions of q and v (after eliminating λ through laborious
algebraic manipulation) so that (14)-(15) and (23) can be
written locally in so-called Zero Dynamics Normal Form
[24],

η̇ = f(η, ξ, u) (24)
ξ̇ = Aξ, (25)

where the 12 eigenvalues of A are located at the roots of
(23), and the 6-dimensional zero dynamics

η̇ = f(η, 0, u) (26)

define the dynamics of the robot. In other words, there is a
6-dimensional manifold defined by ξ = 0 on which the robot
dynamics exist and evolve according to (26). The ξ-dynamics
are exponentially stable, are not controllable from u, and
once they converge to 0, do not affect q or v. This means that
if we linearize (14)-(15) and (23), we expect to see 12 poles
and zeros at the roots to (23), and these dynamics are neither
controllable nor observable. They are easily removed using
a Hankel-type model truncation, since the corresponding
Hankel singular values are all zero, and the resulting reduced
order model is 6 dimensional and equivalent to a linearization
obtained otherwise. We therefore have a model that is well-
suited to at least linear control system design and associated
dynamical analysis.

We remark that, in practice, expressions for z1 and z2 in
(21)-(22) can be computed automatically using a tool such as

Dymola. Also, because the model is an index 1 DAE (instead
of an index 0 ODE), it is not necessary to compute the inverse
of the inertia matrix for either the Lagrangian or Hamiltonian
formulations. Further, it is not necessary to compute η or f in
(24)-(25). Deriving these expressions is done to understand
the structure and properties of the 18-dimensional dynamic
equations. Indeed the model can be expressed compactly and
correctly as shown in the Appendix.

The primary disadvantages of Baumgarte’s method are
(1) that 24 equations in 24 variables are produced, instead
of the minimal six (although λ can be removed by alge-
braic manipulation, leaving 18 implicit first-order differential
equations in 18 differential variables), and (2) that numerical
solutions to (14)-(15) and (23) can drift off the constraint
manifold h = 0 when the system is in motion. For the latter
reason, Baumgarte’s original method has been criticized in
the numerical analysis literature, and modifications have been
proposed to improve its numerical performance [20]. Yet for
this application we find the drift to be very small - on the
order less than microns for typical tolerance settings. Further,
the drift is easily computable for monitoring purposes and
controllable in the sense that it is reduced by reducing the
solver tolerance. Moreover, simulation times for (14)-(16) are
an order-of-magnitude faster than the model that results from
index reduction by the dummy derivative method, despite the
fact that we require three times more equations and dynamic
states, due to the simplicity of the equations. Finally, the
model is amenable to dynamic analysis and control system
design directly and is singularity-free.

III. MODELICA REALIZATION

The Modelica library is organized as a hierarchy, with
partial models of the kinematics and parameter definitions at
the lowest level, full models of the arms at the intermediate
level, and models of the full robot at the highest level. The
kinematics, arm dynamics and full Lagrangian robot dynam-
ics are listed in the Appendix. For readers unfamiliar with
Modelica, the syntax is Matlab-like with a some important
differences. First, it is a declarative language, so order is
not relevant in the source code. Second, the equals sign is
not an assignment, but rather a declaration that the left-hand
side and right-hand side are constrained to be equal, as in
physics. A key operator is the derivative operator der(·)
which symbolically computes derivatives with respect to
time. This is used, for example, in the full robot model
listed in the Appendix to compute z1 and z2. The Modelica
compiler symbolically computes these derivatives, saving the
user tedious labor and making the source code compact,
readable and relatively easy to verify.

The language and library include important elements of
object-orientation. At the lowest level of the heirarchy, the
kinetics are defined in a partial model, which is reused at
higher levels. At the next level, the arm dynamics are defined.
We have both Lagrangian and Hamiltonian representations
defined. The arm dynamics are encapsulated within their
own model, because at the robot level, these details are not
relevant. At the third level, the full delta robot model is

Fig. 4. Dymola screenshot showing the Modelica deltaRobot library (left)
and an a gravity-compensating PID feedback controller (right), showing
the use of forward and inverse kinematics, gravity compensation and PID.
The library contains models of the kinematics at the lowest level, arms, and
robots at its highest level. We also have a package of controller components
and a growing library of tasks, such as assembling Lego as a “toy” problem.

defined. Arms are instantiated, and can be replaced should
the user wish to define a new type of arm. The number
of arms can be changed, by simply declaring the desired
number, and changing the few lines that define the end
effector constraint. In fact, at this level, the only equations
introduced are the stabilized constraints.

At a higher level, multiple robots can be declared, and
constraints among them defined in a manner analogous to
what we have done for the arms. This allows for analysis
of cooperative control using the same mathematics and
approach. We may also consider force control and contact
and collisions although these are beyond the present paper’s
scope. In addition to the robot models, the library contains a
package of controller components, realizing functions like
forward and inverse kinematics that are computed using
Netwon’s method directly in the language. This has a similar
hierarchy. In addition, we have developed a growing library
of assembly tasks, which are also beyond the scope of this
paper. One package includes models of Lego bricks as “toy”
assembly problems. The bricks possess 3 body dynamics that
include elastic collisions and allow for the accurate modeling
of contact, friction etc. that is necessary when modeling the
process of assembly.

For the reader interested in learning more about Mod-
elica, an approachable introduction is [25], while [10] is
more thorough and comprehensive. The texts [11] and [12]
are excellent introductions to the subjects of multi-physical
modeling and simulation.

IV. DYNAMIC ANALYSIS AND CONTROL

The model (14)-(15), (23) is useful for model-based con-
trol design and analysis, directly. Here we highlight a few
applications and examples.

A. Forward Kinematics

The forward kinematics function takes as input the three
joint measurements at the servos and computes the other
six joint angles and the location of the end effector in
world coordinates. The robot Jacobian is also computed. The
forward kinematics are one-to-one but not onto, and defined
implicitly by (10), which needs to be solved numerically.
Specifically, partition q into measured and unmeasured states
by defining y = [q11, q21, q31]

T to represent the measured
joint angles, and x = [q12, q13, q22, q23, q32, q33]

T to repre-
sent the unmeasured joint angles, and rearrange the variables
of h so that (10) can be written

h(x, y) = 0. (27)

This is easily solved using Newton’s method

∂h

∂x
(xk, y) · (xk+1 − xk) = −h(xk, y), (28)

which typically converges to 7 decimal places of accuracy in
2-3 iterations since it can be initialized close to its solution in
any real-time application. Of course each iteration requires
the solution to a 6-dimensional set of linear equations. With
the solution (x, y), the end effector location is computed
using ψ in (4), and the robot Jacobian is available as a by
product of the Newton iterations.

B. Inverse Kinematics

The inverse kinematics takes as input a location of the
end effector w ∈ R3 and computes values for the joint angles
q ∈ R9. This is not one-to-one: there is not a unique solution
for all values of w. The inverse kinematics defined implicitly
by the nine equations

ψ(q1)− w = 0 (29)
ψ(q2)− w = 0 (30)
ψ(q3)− w = 0. (31)

This can also be solved using Newton’s method in the con-
ventional manner, with some logic for choosing the desirable
solutions. Each Newton iteration involves computing the
solution to three 3-dimensional linear systems of equations,
making the complexity less than the forward kinematics.

C. Gravity Compensation

One popular control scheme is to cancel the effect of
gravity on the manipulator with an inner loop, and then close
an outer feedback loop with a linear PD or PID compensator.
The gravity compensating feedback is computed as the
solution to the 9-dimensional linear set of equations[

u
λ

]
· [B HT (q)] = G(q), (32)

where in any real-time application q is computed via the
forward kinematics from the joint measurements y. A model
of this feedback scheme is shown in Fig. 4.

D. Feedback Linearization

A feedback linearizing control law can be defined as
follows. Let

w1 = ψ(q1) (33)

denote the location of the end effector. Symbolically differ-
entiate this twice

w2 = ẇ1 = dψ(q1)v1 (34)
ẇ2 = ˙dψ(q1)v1 + dψ(q1)v̇1. (35)

Solving (15) for v̇ and substituting the result into (35) gives

ẇ2 = α(q) + β(q) · u
from which the control law

u =
1

β(q)
(−α(q)− k1w1 − k2w2 + wr)

renders the system linear from wr to w1. Expressions for
α and β can be computed automatically. They will require
inversion of the inertia matrix M , which is not difficult
because it is block diagonal.

E. Linear Control Design and Analysis

The model (14)-(15), (23) enables dynamic analysis and
linear model-based design methodologies. By this we mean
that a linearization can be computed symbolically (using
tools such as Dymola or OpenModelica) and evaluated
numerically, and the resulting linear system can be used
for frequency-domain analysis and design, for example, or
any similar methodology. By way of example, we compute
the linearization at two equilibria, using parameters values
measured from a Delta robot that we have constructed in
our laboratory. Pole-zero plots are shown in Fig. 5. First,
notice that there are 12 pole-zero cancellations at s = −5
corresponding to the dynamics of (23), as expected. These
do not affect the input-output behavior and can be eliminated
from the system by a Hankel norm-based truncation. In the
top plot, the robot is linearized at the equilibria qi1 = π/4
for 1 ≤ i ≤ 3, i.e, the proximal links have identical angles
of π/4 rad. We see poles corresponding to a lightly damped,
stable response, as we might expect. In the bottom plot, the
robot is linearized when the proximal links are at an angle
of 0 rad. Perhaps surprisingly, the second configuration is
open-loop unstable. Note that both of these configurations
are well within the reachable workspace. (The unstable root
crosses into the right-half plane at an angle of approximately
qi1 = 22◦, for our robot.) It should be noted that this kind of
instability is neither uncommon, nor is it a unique property
of parallel-link mechanisms. For example, the Acrobot [26]
has a similar property even near its pendant configurations.

Of course, the closed-loop can be stabilized using a PID
controller for each axis, which is very common in practice.
It is also notable that a gravity-compensating inner loop (32)
will render all equilibrium solutions in the robot workspace
exponentially stable. But the fact remains that the open-loop
system, regardless of the feedback controller used, is unstable
for a significant range of its workspace. This has important

Fig. 5. Pole-zero plot of the system in equilibrium with q1 = π/4 rad
(top) and q1 = 0 rad (bottom) for all three proximal links. In both plots
there are 12 pole-zero pairs at s = −5 corresponding to the uncontrollable,
unobservable dynamics of (23). In the top plot the 6 poles of the zero
dynamics are all near s = −0.5±j5.5, giving the system a lightly damped
response. The bottom plot shows 4 poles at approximately s = −2 ± j,
moving slightly from the top configuration, one at s = −6.5, and the
unstable pole at s = 5.2.

consequences. For example, stabilizing feedback gains have
lower limits [27]. In some applications such as fine force
control, it is common practice to reduce feedback gains to
maintain stability during contact. But this clearly has limits.
A careful control designer must be aware of this property,
which it is not at all obvious without model-based analysis.

V. CONCLUSIONS

In this paper we derived a dynamic model for the delta
robot that uses an augmented Lagrangian formulation to-
gether with Baumgarte’s method of index reduction. The
model is well structured for implementation in an object-
oriented framework, and can be used directly for control
system synthesis, model-based design and dynamic analysis,
and also time-domain simulation. Importantly it is extendable
to study problems such as cooperative control and robotic
assembly.

The reader familiar with Delta dynamic models may be
dismayed that this approach requires the calculation of the
full set of 9 joint angles for simulation or control. For a real-
time control application this must be done numerically and
requires the solution to a set of linear equations associated
with Newton iterations, or example. But with advances in
solver algorithms, we do not feel that this is a significant
impediment to either model-based design or real-time imple-
mentation, and it facilitates investigation of new methods of
control for new purposes, with a clear and easy to understand
technical approach.

Future work includes the development of the task library
and its use in developing new control algorithms especially
for robotic assembly. Contact and collisions are central to this
study, and this work lays a firm foundation that can scale up
to ultimately very large scale factory automation settings.

ACKNOWLEDGMENT

We gratefully acknowledge Akihiko Imagi, Masahiko Kur-
ishige, Mitsunori Saito and Tamon Yamazaki of the Ad-
vanced Technology Center, Mitsubishi Electric Corporation,
Japan, for their strong collaboration and unwavering support
of this work.

APPENDIX

Arm kinematics are defined in the following partial Mod-
elica model.
partial model deltaArmKinematics

deltaArmParameters p; // Record of parameters
Real q[3], psi[3], dpsi[3,3];

equation
// End effector location in world coordinates...
psi[1] = p.L2*sin(q[2])*sin(q[3]);
psi[2] = p.L1*cos(q[1]) + p.L2*cos(q[2]) + p.L0 - p.L3;
psi[3] = p.L1*sin(q[1]) + p.L2*sin(q[2])*cos(q[3]);

// Gradient of end effector location ...
dpsi[1,1] = 0.0;
dpsi[1,2] = p.L2*cos(q[2])*sin(q[3]);
dpsi[1,3] = p.L2*sin(q[2])*cos(q[3]);
dpsi[2,1] =-p.L1*sin(q[1]);
dpsi[2,2] =-p.L2*sin(q[2]);
dpsi[2,3] = 0.0;
dpsi[3,1] = p.L1*cos(q[1]);
dpsi[3,2] = p.L2*cos(q[2])*cos(q[3]);
dpsi[3,3] = -p.L2*sin(q[2])*sin(q[3]);
end deltaArmKinematics;

Arm dynamics are defined in the following Modelica
model, extending the kinematics model. Extension allows
multiple different models to be expressed, such as a Hamil-
tonian model, reusing the kinematics model.
model deltaRobotArmLagrange

extends deltaArmKinematics;
Real v[3], tau[3];

protected
Real M[3,3];
Real C1[3], C2[3], C3[3], C4[3], C5[3], C6[3];
Real G[3];

equation
// Inertia Matrix...
m[1,1]=p.J1+p.LC1ˆ2*M1+p.L1ˆ2*(p.M2+p.M3);
m[1,2]=p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*(cos(q[1])*cos(q[2])*cos(q[3])+sin(q[1])*sin(q[2]));

m[1,3]=-p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*cos(q[1])*sin(q[2])*sin(q[3]);
m[2,1]=m[1,2];
m[2,2]=p.J2+p.M2*p.LC2ˆ2+p.M3*L2ˆ2;
m[2,3]=0.0;
m[3,1]=m[1,3];
m[3,2]=0.0;
m[3,3]=(p.J2+p.M2*p.LC2ˆ2+p.M3*p.L2ˆ2)*sin(q[2])ˆ2;

// Centripetal and Coriolis vectors...
c1[1]=0.0;
c1[2]=p.L1*(p.LC2*p.M2+p.L2*p.M3)*(cos(q[1])*sin(q[2])...

-cos(q[2])*cos(q[3])*sin(q[1]));
c1[3]=p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*sin(q[1])*sin(q[2])*sin(q[3]);
c2[1]=p.L1*(p.LC2*p.M2+p.L2*p.M3)*(cos(q[2])*sin(q[1])...

-cos(q[1])*cos(q[3])*sin(q[2]));
c2[2]=0.0;
c2[3]=0.0;
c3[1]=-(p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*cos(q[3])*cos(q[1])*sin(q[2]));
c3[2]=-(p.J2+p.LC2ˆ2*p.M2+p.L2ˆ2*p.M3)....

*cos(q[2])*sin(q[2]);
c3[3]=0.0;
c4[1]=0.0;
c4[2]=0.0;
c4[3]=0.0;
c5[1]=-2.0*p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*cos(q[1])*cos(q[2])*sin(q[3]);
c5[2]=0.0;
c5[3]=(p.J2+p.LC2ˆ2*p.M2+p.L2ˆ2*p.M3)*sin(2.0*q[2]);
c6[1]=0.0;
c6[2]=0.0;
c6[3]=0.0;

// Gravity vector...
G[1]=-p.g*(p.LC1*p.M1+p.L1*(p.M2+p.M3))*cos(q[1]);
G[2]=-p.g*(p.LC2*p.M2+p.L2*p.M3)*cos(q[2])*cos(q[3]);
G[3]= p.g*(p.LC2*p.M2+p.L2*p.M3)*sin(q[2])*sin(q[3]);

// Arm Dynamics...
der(q) = v;
m*der(v)+c1*v[1]ˆ2+c2*v[2]ˆ2+c3*v[3]ˆ2+c4*v[1]*v[2]...

+c5*v[2]*v[3]+c6*v[1]*v[3]+G+p.DAMPING.*v = tau;

end deltaRobotArmLagrange;

Below is the Lagrangian robot model. Note that the
derivatives of h are computed automatically.
model deltaRobotLagrange

Arms.deltaRobotArmLagrange arm1, arm2, arm3;
Real lambda[6];
Real h0[6], h1[6], h2[6];
Input Real u[3];
parameter Real POLE = 5.0;

protected
constant Real Rot2[3,3] = Utilities.RotZ(2.0*PI/3.0);
constant Real Rot3[3,3] = Utilities.RotZ(-2.0*PI/3.0);
constant Real B[3] = {1, 0, 0}; // input torque vector

equation
// tau = HˆT(q) * lambda...
arm1.tau=transpose(arm1.dpsi)*lambda[1:3]...

+transpose(arm1.dpsi)*lambda[4:6]+B*u[1];
arm2.tau=-transpose(Rot2*arm2.dpsi)*lambda[1:3]+B*u[2];
arm3.tau=-transpose(Rot3*arm3.dpsi)*lambda[4:6]+B*u[3];

// Baumgarte’s method of index reduction...
h0=cat(1,arm1.psi-Rot2*arm2.psi,arm1.ps -Rot3*arm3.psi);
h1=der(h0);
h2=der(h1);
zeros(6) = h2 + 2.0 * POLE * h1 + POLEˆ2 * h0;

end deltaRobotLagrange;

REFERENCES

[1] J. Brinker and B. Corves, “A survey of parallel robots with delta-like
architecture,” in Proceedings of the 14th IFToMM World Congress,
Oct. 2015.

[2] J. Brinker, N. Funk, P. Ingenlath, Y. Takeda, and B. Corves, “Com-
parative study of serial-parallel delta robots with full orientation
capabilities,” IEEE Robotics and Automation Letters, vol. 2, no. 1,
pp. 920–926, April 2017.

[3] R. Clavel, “Device for the movement and positioning of an element
in space,” U.S. Patent 4, 976, 582, Dec. 11 1990.

[4] P. Guglielmetti, “Model-based control of fast parallel robots: A global
approach in operational space,” Ph.D. dissertation, Ecole Polytech-
nique Federale de Lausanne, 1994.

[5] S. St. and C.-C. D. C., “Dynamic analysis of clavel’s delta parallel
robot,” in Proceedings of the 2003 International Conference on
Robotics and Automation, 2003, pp. 4116–4121.

[6] J.-P. Merlet and C. Gosselin, Springer Handbook of Robotics.
Springer, 2008, ch. Parallel Mechanisms and Robots.

[7] J. Brinker, B. Corves, and M. Wahle, “A comparative study of inverse
dynamics based on clavel’s delta robot,” in Proceedings of the 14th
IFToMM World Congress, Oct. 2015.

[8] M. M. Spong and M. Vidyasagar, Robot Dynamics and Control.
Wiley, 2004.

[9] J. C. Willems, “The behavioral approach to open and interconnected
systems: Modeling by tearing, zooming and linking,” IEEE Control
Systems Magazine, vol. 27, pp. 46–99, December 2007.

[10] P. Fritzon, Principles of Object Oriented Modeling and Simulation
with Modelica 3.3: A Cyber-Physical Approach. Wiley, 2015.

[11] F. E. Cellier and J. Greifeneder, Continuous System Modeling.
Springer, 1991.

[12] F. E. Cellier, Continuous System Simulation. Springer, 2006.
[13] H. Elmqvist, “A structured model language for large continuous

systems,” Ph.D. dissertation, Lund Institute of Technology, 1978.
[14] J. W. Baumgarte, “Stabilization of constraints and integrals of motion

in dynamic systems,” Computer Methods in Applied Mechanics and
Engineering, vol. 1, pp. 1–16, 1972.

[15] ——, “A new method of stabilization for holonomic constraints,”
ASME Journal of Applied Mechanics, vol. 50, pp. 869–870, 1983.

[16] L. D. Landau, Course of Theoretical Physics: Volume 1 Mechanics.
Butterworth-Heinenann, 1976.

[17] K. E. Brenan, S. L. Cambell, and L. R. Petzold, Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equations. SIAM,
1996.

[18] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Anal-
ysis and Numerical Solution. European Mathematical Society, 2006.

[19] A. van der Schaft, Surveys in Differential-Algebraic Equations I.
Springer, 2013, ch. Port-Hamiltonian Differential-Algebraic Systems,
pp. 173–226.

[20] O. A. Bauchau and A. Laulusa, “Review of contemporary approaches
for constraint enforcement in multibody systems,” Journal of Compu-
tational and Nonlinear Dynamics, 2007.

[21] S. E. Mattsson and G. Söderlind, “Index reduction in differential
algebraic equations using dummy derivatives,” SIAM Journal on
Scientific Computing, vol. 14, no. 3, 1993.

[22] B. Bachmann, “Mathematical aspects of object-oriented modeling
and simulation,” in Proceedings of the 5th International Modelica
Conference, 2006.

[23] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations Com-
puter Methods for Ordinary Differential Equations and Differential-
Algebraic Equations. SIAM, 1998.

[24] A. Isidori, Nonlinear Control Systems. Springer-Verlag, 1989.
[25] M. Tiller, Introduction to Physical Modeling with Modelica. Springer,

2001.
[26] S. A. Bortoff and M. W. Spong, “Pseudolinearization of the acrobot

using spline functions,” in Proceedings of the IEEE Conference on
Decision and Control, 1992, pp. 593–598.

[27] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design. Wiley, 2005.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-126.pdf
	Object-Oriented Modeling and Control of Delta Robots
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

