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Abstract
In this paper we propose a novel network module, namely Robust Attentional Pooling (RAP),
that potentially can be applied in an arbitrary network for generating single vector repre-
sentations for classification. By taking a feature matrix for each data sample as the input,
our RAP learns data-dependent weights that are used to generate a vector through linear
transformations of the feature matrix. We utilize feature selection to control the sparsity in
weights for compressing the data matrices as well as enhancing the robustness of attentional
pooling. As exemplary applications, we plug RAP into PointNet and ResNet for point cloud
and image recognition, respectively. We demonstrate that our RAP significantly improves
the recognition performance for both networks whenever sparsity is high. For instance, in
extreme cases where only one feature per matrix is selected for recognition, RAP achieves
more than 60% improvement over PointNet in terms of accuracy on the ModelNet40 dataset.
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Abstract—In this paper we propose a novel network module,
namely Robust Attentional Pooling (RAP), that potentially can be
applied in an arbitrary network for generating single vector rep-
resentations for classification. By taking a feature matrix for each
data sample as the input, our RAP learns data-dependent weights
that are used to generate a vector through linear transformations
of the feature matrix. We utilize feature selection to control the
sparsity in weights for compressing the data matrices as well as
enhancing the robustness of attentional pooling. As exemplary
applications, we plug RAP into PointNet and ResNet for point
cloud and image recognition, respectively. We demonstrate that
our RAP significantly improves the recognition performance for
both networks whenever sparsity is high. For instance, in extreme
cases where only one feature per matrix is selected for recognition,
RAP achieves more than 60% improvement over PointNet in terms
of accuracy on the ModelNet40 dataset.

I. INTRODUCTION

In the past few years, we have witnessed an explosion
of deep learning research [1], such as ResNet [2] for 2D
image classification and PointNet [3] for 3D point cloud
recognition that achieve the state-of-the-art performance in the
fields, respectively. In these deep networks, the learned feature
representations are aggregated into vectors before classification
through conventional pooling, such as max or average pooling.
Pooling plays an important role in deep neural networks as it
can reduce data variance as well as computational complexity
while extracting low-level features from the neighborhood.
However, conventional pooling methods tend to learn a global
feature vector without considering the relative importance of
each individual feature.

In fact, many computer vision problems are spatially region
related. Namely, some spatial locations may contain more infor-
mation, while others include less or even irrelevant information.
For example, to classify an object in an image, only the areas
that are related to the object, both explicitly (e.g. object parts)
and implicitly (e.g. indicative background), are crucial, while
other areas can be considered as noisy background. Given an
image, instead of looking at the entire image, humans can
quickly understand the scene by attending to selective locations.
Mimicking human visual attention, spatial visual attention has
been extensively studied in recent years and deployed in various
applications, such as image classification [4], image captioning
[5][6][7], and visual question answering (VQA) [8][9][10].

While most attention models are developed for images and
videos, fewer efforts have been made for tasks with 3D point
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clouds [11][12]. Point cloud is a collection of data points
for object representation in the three-dimensional coordinate
system. Modern technology advancement in 3D laser scanners
empowers the proliferation of a large amount of point clouds
data, rendering point clouds storage, transmission, and applica-
tions in practice. Among all the data points in a point cloud, a
compact point descriptor is able to characterize the object shape
and structure. For instance, a bench is depicted by a 3D point
cloud with a large number (M ) of 3D data points. Nevertheless,
only a small set (K) of data points (K << M ) are crucial to
the object representation, such as those key points that capture
the main characteristics of the bench (e.g., back, seat, and
legs). Therefore, proper feature selection method is necessary
to replace the original large point clouds with selected and
simplified point clouds to facilitate the storage and transmission
of 3D point clouds.

In this paper, we introduce Robust Attentional Pooling
(RAP), which is simple and can be integrated with typical
deep neural networks to conduct end-to-end training for clas-
sification. RAP consists of three major components, a feature
adaptation module, an attention learning module, as well as a
feature selection module. Specifically, the feature adaptation
module is designed to transform the input data features to
assist subsequent attention learning process. Then the attention
learning module learns an attention vector which weights each
data feature discriminatively. With the learned attention vector,
feature selection is implemented to compress the data features
attentionally by ranking and selecting attention weights and
corresponding data features, generating a weighted feature
vector for further classification.

To validate the effectiveness of RAP, extensive experiments
have been conducted in both point cloud classification and
image classification. The experiment results show that RAP
is able to effectively select and aggregate input data features
attentionally. The input data features can be compressed greatly
with RAP by controlling attention weight sparsity, and the
recognition performance with both point clouds and images
can be significantly enhanced when the weight vector sparsity is
high. Visualizations in both 3D and 2D domains are conducted,
demonstrating that RAP is capable of compressing data features
effectively by selecting key data features.

II. RELATED WORK

In typical deep convolutional neural networks (ConvNets),
pooling layers play an important role in nonlinear down-
sampling. Specifically, the spatial size of feature representation



is reduced through pooling operations to further reduce the
model and computational complexity. Overfitting problem can
be alleviated through pooling. Max pooling [13][14][15], aver-
age pooling [2], and stochastic pooling [16] are widely used in
various deep neural networks. In many deep networks, a global
pooling operation is implemented over the learned feature
representations in order to obtain a global feature map. For
example, global average pooling proposed in [17] was applied
in ResNet [2] prior to the final classifier. In 3D domain, a global
max pooling layer was placed prior to the classifier in PointNet
[3] for 3D point cloud classification. However, such global
pooling operations fuse the learned feature representations
without considering each location independently.

Incorporating visual attention into different computer vision
tasks not only contributes more attention to selective spatial
locations, but also facilitates the aggregation of data represen-
tations. While most of the research works are concerned with
applying attention to 2D computer vision tasks with images
[18][10][5][19] and videos [20][21], less attention mechanisms
are developed for problems in 3D domain. Some methods have
been proposed to deal with saliency detection of 3D surfaces
[22][23][24]. However, it is nontrivial to extend those methods
to unorganized 3D point clouds. A few works address saliency
problem of point sets. For instance, [25] proposed a method
to compute saliency maps by exploring local surface properties
in different scales as well as depth information. A saliency
detection technique in large point sets based on distinctness
was proposed in [11]. Nevertheless, those methods are complex
in terms of implementation and extra information are needed
besides the original point clouds. Although a number of deep
learning schemes have been developed on 3D point clouds
[26][3][27], as far as we know, deep learning based 3D visual
attention in point clouds has not been explored yet.

There are roughly three feature selection methods, i.e., filters
[28][29], wrappers [30], and sparsity-inducing feature selection
(SSFS) [31]. Filter methods select features as a pre-processing
step by applying a statistical measure of each feature, with-
out considering the interactions among features. Though filter
methods are computationally fast, they may choose redundant
features. Wrapper methods involve learning algorithms that
optimize model performances, leading to better selection results
than filters at the cost of high computational burden. SSFS
methods take the structure of features into consideration while
regularizing by the `1 norm for sparsity learning. However,
SSFS methods suffer from the problem of high dimensionality.
In contrast, we propose a deep learning based feature selection
mechanism which takes visual attention into account.

III. OUR APPROACH

A. Key Notations

We denote {(Xn, yn)}Nn=1 as a set of training data where
Xn ∈ Rd×Mn is the n-th feature matrix and yn ∈ Y is its class
label, Xnm ∈ Rd,m ∈ {1, · · · ,Mn} as the m-th row in Xn,
φ : Rd → RD as a feature mapping function, wn ∈ RMn ,∀n
as an attentional weighting vector corresponding to the n-th
training sample that consists of scalars {wnm}m=1,··· ,Mn

, f :

RD → R as the classifier, Φ,W,F as the feasible solution
spaces for the corresponding variables.

B. General Objective for Feature Selection

In this paper we are interested in optimizing the following
nonconvex problem in general:

min
φ∈Φ,{wn∈Wn},f∈F

Ω
(
φ, {wn}, f

)
+ C

N∑
n=1

`
(
yn, f

( Mn∑
m=1

wnmφ (Xnm)
))
, (1)

where Ω denotes the regularizer over variables, ` denotes a loss
function such as hinge loss, and C ≥ 0 is a predefined constant.
We call f

(∑Mn

m=1 wnmφ (Xnm)
)

decision function.
Note that Φ,W,F define the constraints on the variables.

For instance, we can constrain each wn to be non-negative,
i.e. wnm ≥ 0,∀m. The functionality of attentional vectors w’s
is to select informative features for recognition.
Discussion: From the perspective of problem definition, math-
ematically our objective in Eq. 1 can be considered as gener-
alization of several classic machine learning problems such as
multiple instance learning (MIL) [32], multiple kernel learning
(MKL) [33], and boosting [34].

In addition, from the algorithmic perspective, Eq. 1 can be
utilized as general objective in many algorithms as well by
substituting the variables with different realizations, such as
attentional pooling [35] and attentive pooling networks [36].

C. Robust Attentional Pooling (RAP)

In general Eq. 1 defines a nonconvex optimization problem.
Traditionally this problem is solvable using alternating opti-
mization, i.e. updating one variable while fixing the rest. Note
that in order to compute the decision score, the variables in Eq.
1 have to be applied sequentially, i.e. φ → w → f , generally
speaking without considering special substitution of variables.

This sequential behavior in computing the decision function
in Eq. 1 inspires us to propose a new deep model based solver,
as illustrated in Fig. 1. Specifically,

1) Feature adaptation module is for learning φ that transfers
the original features into another space for generating
discriminative weighted features;

2) Attention learning module is for learning w that weights
informative features data-dependently. The weight vector
w with the dimension of M is learned by passing
the transformed features through a stack of two fully-
connected layers, then ReLU is operated over w;

3) Feature selection module is for selecting and aggregating
the K most informative features. To be specific, we sort
the attention vector w and select top K of them as well
as the K corresponding features, where 0 < K 6 M .
Then we do a weighted sum with the selected weights
and features, generating a single feature vector. The

⊗
in Fig. 1 denotes weighted sum;

4) Classification module is for learning f that makes deci-
sion based on the weighted feature vector from feature
selection module.



Fig. 1: RAP for visual recognition.

In the feature selection module, sorting can be written as a
sequence of max functions, and thus it is differentiable in this
sense. While selection serves as an operation to find indexes.
Therefore, given the network realization of each module,
the variables in Eq. 1 can be learned simultaneously using
back-propagation.

Visual Object Recognition Networks with RAP: Many deep
networks have been proposed for object recognition, such as
ResNet [2] for 2D images and PointNet [3] for 3D point clouds.
Such networks utilize the pooling layer to fuse the information
from different spatial locations. Though pooling operates easily
in terms of computation, it discards the difference in feature
discriminality, leading to informative features faded away. In
contrast, our RAP is developed intentionally to capture such
difference for generating discriminative weighted features by
training attention mechanism. The attentional weights can be
utilized to select informative features for further usage such as
data compression. Empirically we can introduce the attention
mechanism into ResNet or PointNet by replacing their pooling
layer with RAP for recognition.

Realization of RAP for Visual Object Recognition: Visual
data has a remarkably large amount of redundancy for recogni-
tion. For instance, in 3D point clouds, corner and edge points
will be more informative for recognition than the points on
the surface. Here we are interested in the RAP that can locate
such key points/locations in the visual data based on attention
mechanism robustly without sacrificing recognition accuracy
significantly, compared with using all the data information.

Therefore, we consider optimizing Eq. 1 under the con-
straints on w’s so that

Wn
def
= {w | w ≥ 0, ‖w‖0 ≤ K} , (2)

where ≥ here is an element-wise operator, ‖ · ‖0 denotes the
`0-norm of a vector that counts the non-zeros in the vector, and
K ≥ 0 is a predefined constant.

Fig. 1 provides us a novel general framework to construct
RAP. For instance, we can substitute each module with a net-
work as a realization of RAP. In particular, we design a specific
network architecture as shown in Fig. 1 as our RAP used in the
experiments for visual recognition. We find that empirically this

architecture has already achieved reasonably good performance
and therefore we do not fine-tune the network architecture
intensively.

IV. EXPERIMENT

To evaluate the effectiveness of proposed RAP, extensive
experiments have been conducted for both point cloud classi-
fication and image classification. To verify the effectiveness of
feature adaptation and attention learning modules, we propose
a simplified RAP called AL, by removing feature adaptation
module from RAP architecture as shown in Fig. 1.

A. RAP in point cloud classification

Datasets: RAP for point cloud classification is evaluated on
three datasets, including 2D point clouds and 3D point clouds.
Following [37], MNIST handwritten digits are converted to
2D point clouds by taking image coordinates of all non-
zero pixels. Two 3D point clouds datasets are utilized for
evaluation, including ModelNet40 [38] and ShapeNet [39].
ModelNet40 is a 3D CAD benchmark dataset, including 9843
training instances and 2468 testing instances from 40 object
classes. ShapeNet benchmark contains 16881 instances of 16
categories of 3D shapes.

Configuration and training: In RAP based point cloud
classification network, we apply feature extraction module
to extract point features following [3]. Then the extracted
point features are input to RAP for feature selection. We take
PointNet for comparison, which selects K data points randomly
from M data points (M = 256 for MNIST, M = 1024 for
ModelNet40 and ShapeNet) for classification. While RAP and
AL select K out of M data points attentionally. Specifically,
the features of M data points are passed over to the feature
adaptation module in RAP. Then, attention mechanism is
implemented to learn attention vectors (each with M attention
weights) based on transformed features. By ranking and
selecting the top K attention weights, the features of K data
points are selected and aggregated through weighted sum. The
output of RAP and AL module is a global feature vector,
which is fed to the classifier. Feature adaptation module
and attention learning module are composed of a stack of
fully-connected layers, as shown in Fig. 1. ReLU and tanh are



used as activation functions, dropout and batch normalization
are performed for regularizations. Training hyperparameters
are set to be the same as that in PointNet [3], except that RAP
and AL apply a different dropout value (0.5). Batch size is
32 and learning rate is 0.001. Each experiment is run for 250
epochs, taking 6 to 8 hours on a single NVIDIA GPU.

Experiment results: The experiment results of point cloud
classification on MNIST, ShapeNet, and ModelNet40 are sum-
marized in Table. I, Table. II and Table. III, respectively. It
can be seen that when fewer data points are selected, RAP
and AL outperform PointNet. Specifically, from Table. I and
Table. II we can see that by selecting K = 4 data points, RAP
and AL are capable of achieving comparable performance with
PointNet when it utilizes all the M data points. Therefore,
the experiment results indicate that RAP and AL can select
point clouds effectively and robustly. RAP achieves better
performance than AL when the weight sparsity increases. When
the weight sparsity becomes increasingly high, AL tends to
perform better than RAP in the end. RAP and AL are slightly
inferior to PointNet when the weight sparsity is low (larger K).

K PointNet AL RAP
256 98.6 ± 0.0 98.2 ± 0.0 98.2 ± 0.3
128 98.0 ± 0.0 98.3 ± 0.0 98.3 ± 0.0
64 96.3 ± 0.0 97.7 ± 0.0 98.3 ± 0.0
32 91.3 ± 0.1 98.1 ± 0.0 98.4 ± 0.0
16 80.3 ± 0.1 97.9 ± 0.0 98.2 ± 0.0
8 63.1 ± 0.2 97.8 ± 0.0 98.3 ± 0.0
4 44.8 ± 0.1 97.8 ± 0.0 98.1 ± 0.0
2 30.8 ± 0.1 98.3 ± 0.0 97.4 ± 0.1
1 21.4 ± 0.1 98.2 ± 0.0 95.7 ± 0.5

TABLE I: Point cloud classification results on MNIST

K PointNet AL RAP
1024 98.6 ± 0.0 98.2 ± 0.0 98.2 ± 0.0
512 98.5 ± 0.0 98.3 ± 0.0 98.1 ± 0.1
256 98.6 ± 0.0 98.1 ± 0.0 98.0 ± 0.1
128 98.4 ± 0.0 97.5 ± 0.1 97.5 ± 0.0
64 98.2 ± 0.1 98.1 ± 0.0 98.0 ± 0.0
32 97.3 ± 0.2 97.8 ± 0.0 97.9 ± 0.0
16 95.4 ± 0.1 98.0 ± 0.1 98.2 ± 0.1
8 89.2 ± 0.2 98.2 ± 0.0 97.3 ± 0.1
4 74.0 ± 0.3 98.1 ± 0.0 97.9 ± 0.1
2 60.2 ± 0.4 98.2 ± 0.0 97.9 ± 0.2
1 48.6 ± 0.2 97.9 ± 0.1 94.1 ± 0.3

TABLE II: Point cloud classification results on ShapeNet

RAP visualizations on 3D point clouds: To further demon-
strate that RAP has the capability of selecting key point features
of point clouds, the selected data points with RAP on some
examples from ModelNet40 are visualized in Fig. 2. Note that
different colors in Fig. 2 imply different z coordinate values
for each data point in the point cloud.

When fewer points are selected, for example, 256, 128, 64
and 32 points, the visualization results imply that RAP tends
to select those crucial points that capture the key features of
the objects’ shapes. By taking the desk in Fig. 2 (second row)
for example, RAP is able to select 128 out of 1024 data points

K PointNet AL RAP
1024 88.9 ± 0.1 88.4 ± 0.1 88.2 ± 0.0
512 88.8 ± 0.1 87.8 ± 0.1 88.1 ± 0.1
256 88.6 ± 0.1 87.6 ± 0.1 88.0 ± 0.1
128 87.3 ± 0.1 87.6 ± 0.1 87.6 ± 0.1
64 85.2 ± 0.1 85.6 ± 0.3 87.0 ± 0.2
32 82.2 ± 0.1 86.3 ± 0.2 87.3 ± 0.1
16 73.4 ± 0.1 85.4 ± 0.1 86.3 ± 0.0
8 54.6 ± 0.2 84.1 ± 0.1 85.1 ± 0.2
4 33.2 ± 0.2 85.2 ± 0.2 83.4 ± 0.4
2 19.6 ± 0.3 86.4 ± 0.0 78.4 ± 0.3
1 11.3 ± 0.1 83.6 ± 0.2 74.0 ± 1.8

TABLE III: Point cloud classification results on ModelNet40

which correspond to the desk’s legs as the most informative
parts.

B. RAP in image classification

Datasets: RAP based image classification is evaluated on
CIFAR10 dataset [40], which consists of 50000 labeled training
images and 10000 labeled test images from 10 classes. To
evaluate the effectiveness of RAP on image classification,
ResNet50 for image recognition [2] is deployed for image
feature extraction. In our experiments, image features are
extracted in two ways. The first set of image features are
learned with ResNet50 which is pretrained on ImageNet
[41]. In addition, we extract image features from finetuned
ResNet50 on CIFAR10 with mean image subtracted.

Configuration and training: In RAP and AL based image
classification network, the extracted image features with
ResNet50 prior to global average pooling layer with the shape
of 7 × 7 × 2048 are reshaped to 49 × 2048 and input to the
subsequent RAP and AL modules, here M = 49. We take
ResNet50 as our baseline model, which selects the features
of K (0 < K 6 49) locations randomly and pools them
with global average pooling. While RAP and AL select and
aggregate image features data-dependently, generating a single
feature vector for classification. Similarly, dropout and batch
normalization are used for regularization, ReLU and tanh are
applied for nonlinearity. Batch size is 250 and learning rate is
0.001. We run each experiment for 100 epochs, taking 4 to 6
hours on a single GPU.

Experiment results: Table. IV and Table. V present the
experiment results of image classification. It can be seen from
Table. IV that with finetuned ResNet50 for feature extraction,
RAP achieves comparable results with ResNet50 and AL
when all the image features are deployed for classification.
When the features of K locations are selected, AL model
achieves better performance than ResNet50 while RAP
outperforms ResNet50 and AL model. As shown in Table.
V, when with pretrained ResNet50 for feature extraction, AL
model gains better performance than ResNet50 and RAP is
superior to ResNet50 and AL model. The experiment results
not only demonstrate that RAP and AL are effective and
robust in attention learning and feature selection for image
classifications, but also verify the effectiveness of feature



Fig. 2: RAP visualizations examples with point clouds on ModelNet40: left to right, K = 1024, 512, 256, 128, 64, 32.

adaptation module in RAP architecture for image classification.

K PointNet AL RAP
49 95.6 ± 0.0 95.6 ± 0.0 95.6 ± 0.0
32 94.8 ± 0.0 95.2 ± 0.0 95.5 ± 0.0
16 86.2 ± 0.0 93.7 ± 0.1 95.0 ± 0.0
8 69.5 ± 0.0 88.8 ± 0.0 94.7 ± 0.0
4 63.0 ± 0.0 74.6 ± 1.9 94.2 ± 0.0
2 50.6 ± 0.0 60.4 ± 3.7 74.5 ± 0.6
1 42.8 ± 0.1 48.9 ± 0.0 63.8 ± 0.3

TABLE IV: Image classification results on Finetuned CIFAR10 features

K PointNet AL RAP
49 90.5 ± 0.1 91.1 ± 0.1 92.0 ± 0.0
32 89.1 ± 0.0 90.7 ± 0.1 92.1 ± 0.1
16 74.2 ± 0.1 88.6 ± 0.1 91.0 ± 0.1
8 57.2 ± 0.0 80.8 ± 0.1 89.7 ± 0.1
4 50.3 ± 0.0 65.0 ± 0.1 88.4 ± 0.1
2 39.8 ± 0.1 52.8 ± 0.1 85.7 ± 0.1
1 34.6 ± 0.1 45.4 ± 0.1 79.6 ± 0.1

TABLE V: Image classification results on Pretrained CIFAR10 features

RAP visualizations on images: Visualizations of learned at-
tention masks for CIFAR10 test images with RAP are presented
in Fig. 3. Specifically, Fig. 3a shows five examples of CIFAR10
test images, while Fig. 3b and Fig. 3b show the learned
attention masks for the 5 test images with pretrained and
finetuned ResNet50, respectively. Attention heatmaps are used
to present the attention masks, where the brighter the areas
are, the more attention being paid to. From learned attention
masks (both pretrained and finetuned cases) we can see that the
important areas that describe the key objects in the images have
received more attention, indicating that RAP can effectively
learn good attention masks for 2D images.

V. CONCLUSIONS

This paper presents Robust Attentional Pooling (RAP), a
novel pluggable network module for feature selection in 3D

(a) CIFAR10 test images

(b) Attention masks(pretrained)

(c) Attention masks(finetuned)

Fig. 3: RAP visualization examples with CIFAR10.

and 2D visual recognition. RAP is characterized with a feature
adaptation module, an attention learning module and a feature
selection module. Attention learning module learns a data-
dependent attention vector over transformed features output
from feature adaptation module. Features are then selected in
the feature selection module by sorting and selecting sparse
attention weights and corresponding features, based on which
a single weighted feature vector is generated for classification.
Extensive experiments have been conducted for point cloud
classification and image classification by plugging RAP to
PointNet and ResNet50. Compared with conventional pooling
functions in PointNet and ResNet, RAP is an attentional
pooling module. Experiment results and visualizations validate
the capability of RAP in effectively learning attention vectors
and significantly compressing data features while maintaining
good performance. When the sparsity of attention weights is
high, RAP enhances the recognition performance in both tasks
and outperforms PointNet and ResNet50, achieving much better
classification performance.



REFERENCES

[1] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[3] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” arXiv preprint
arXiv:1612.00593, 2016.

[4] B. Zhao, X. Wu, J. Feng, Q. Peng, and S. Yan, “Diversified visual atten-
tion networks for fine-grained object classification,” IEEE Transactions
on Multimedia, vol. 19, no. 6, pp. 1245–1256, 2017.

[5] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, “Image captioning with
semantic attention,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4651–4659.

[6] J. Lu, C. Xiong, D. Parikh, and R. Socher, “Knowing when to look:
Adaptive attention via a visual sentinel for image captioning,” arXiv
preprint arXiv:1612.01887, 2016.

[7] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International Conference on Machine Learning,
2015, pp. 2048–2057.

[8] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach,
“Multimodal compact bilinear pooling for visual question answering and
visual grounding,” arXiv preprint arXiv:1606.01847, 2016.

[9] J. Lu, J. Yang, D. Batra, and D. Parikh, “Hierarchical question-image
co-attention for visual question answering,” in Advances In Neural
Information Processing Systems, 2016, pp. 289–297.

[10] H. Xu and K. Saenko, “Ask, attend and answer: Exploring question-
guided spatial attention for visual question answering,” in European
Conference on Computer Vision. Springer, 2016, pp. 451–466.

[11] E. Shtrom, G. Leifman, and A. Tal, “Saliency detection in large point
sets,” in Proceedings of the IEEE International Conference on Computer
Vision, 2013, pp. 3591–3598.

[12] J. Leroy, N. Riche, M. Mancas, and B. Gosselin, “3d saliency based on
supervoxels rarity in point clouds,” Hamburg, Germany, 2015.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[14] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in European conference on computer vision. Springer, 2014,
pp. 818–833.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[16] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep
convolutional neural networks,” arXiv preprint arXiv:1301.3557, 2013.

[17] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[18] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola, “Stacked attention
networks for image question answering,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 21–
29.

[19] C. Cao, X. Liu, Y. Yang, Y. Yu, J. Wang, Z. Wang, Y. Huang, L. Wang,
C. Huang, W. Xu et al., “Look and think twice: Capturing top-down visual
attention with feedback convolutional neural networks,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2956–2964.

[20] M. Zanfir, E. Marinoiu, and C. Sminchisescu, “Spatio-temporal attention
models for grounded video captioning,” in Asian Conference on Computer
Vision. Springer, 2016, pp. 104–119.

[21] C. Hori, T. Hori, T.-Y. Lee, K. Sumi, J. R. Hershey, and T. K. Marks,
“Attention-based multimodal fusion for video description,” arXiv preprint
arXiv:1701.03126, 2017.

[22] X. Chen, A. Saparov, B. Pang, and T. Funkhouser, “Schelling points on 3d
surface meshes,” ACM Transactions on Graphics (TOG), vol. 31, no. 4,
p. 29, 2012.

[23] R. Gal and D. Cohen-Or, “Salient geometric features for partial shape
matching and similarity,” ACM Transactions on Graphics (TOG), vol. 25,
no. 1, pp. 130–150, 2006.

[24] Y.-S. Liu, M. Liu, D. Kihara, and K. Ramani, “Salient critical points
for meshes,” in Proceedings of the 2007 ACM symposium on Solid and
physical modeling. ACM, 2007, pp. 277–282.

[25] O. Akman and P. Jonker, “Computing saliency map from spatial infor-
mation in point cloud data,” in Advanced Concepts for Intelligent Vision
Systems. Springer, 2010, pp. 290–299.

[26] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015, pp.
922–928.

[27] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” arXiv preprint
arXiv:1706.02413, 2017.

[28] X. Liu, A. Krishnan, and A. Mondry, “An entropy-based gene selection
method for cancer classification using microarray data,” BMC bioinfor-
matics, vol. 6, no. 1, p. 76, 2005.

[29] J. Zheng, W. Yang, and X. Li, “Training data reduction in deep neural
networks with partial mutual information based feature selection and
correlation matching based active learning,” in Acoustics, Speech and
Signal Processing (ICASSP), 2017 IEEE International Conference on.
IEEE, 2017, pp. 2362–2366.

[30] K.-B. Duan, J. C. Rajapakse, H. Wang, and F. Azuaje, “Multiple svm-rfe
for gene selection in cancer classification with expression data,” IEEE
transactions on nanobioscience, vol. 4, no. 3, pp. 228–234, 2005.

[31] J. Gui, Z. Sun, S. Ji, D. Tao, and T. Tan, “Feature selection based on
structured sparsity: A comprehensive study,” IEEE transactions on neural
networks and learning systems, 2017.

[32] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector machines
for multiple-instance learning,” in NIPS, 2003, pp. 577–584.

[33] M. Gönen and E. Alpaydın, “Multiple kernel learning algorithms,” JMLR,
vol. 12, no. Jul, pp. 2211–2268, 2011.

[34] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” in European conference on
computational learning theory. Springer, 1995, pp. 23–37.

[35] R. Girdhar and D. Ramanan, “Attentional pooling for action recognition,”
in NIPS, 2017, pp. 33–44.

[36] C. d. Santos, M. Tan, B. Xiang, and B. Zhou, “Attentive pooling
networks,” arXiv preprint arXiv:1602.03609, 2016.

[37] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Neighbors do help:
Deeply exploiting local structures of point clouds,” arXiv preprint
arXiv:1712.06760, 2017.

[38] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1912–1920.

[39] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, A. Lu, Q. Huang,
A. Sheffer, L. Guibas et al., “A scalable active framework for region
annotation in 3d shape collections,” ACM Transactions on Graphics
(TOG), vol. 35, no. 6, p. 210, 2016.

[40] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge,” International Journal of Computer Vision, vol.
115, no. 3, pp. 211–252, 2015.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-124.pdf
	Robust Attentional Pooling via Feature Selection
	page 2
	page 3
	page 4
	page 5
	page 6



