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Abstract
Hierarchical control architectures pose challenges for control, as lower-level dynamics, such
as from actuators, are often unknown or uncertain. If not considered correctly in the upper
layers, requested and applied control signals will differ. Thus, the actual and the predicted
plant behavior will not match, likely resulting in constraint violation and decreased control
performance. We propose a model predictive control scheme in which the upper and lower
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due to neglected dynamics. The contract allows to guarantee a desired accuracy, enables
modularity, and breaks complexity: Components can be exchanged, vendors do not need to
provide in-depth insights into the components’ working principle, and complexity is reduced,
as upper-level controllers do not need full model information of the lower level - the actuators.
The approach allows to consider uncertain actuator dynamics with flexible, varying sampling
times. We prove repeated feasibility and input-to-state stability and illustrate the scheme in
an example for a hierarchical controller/plant cascade.
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Tobias Bäthge ∗ Markus Kögel ∗ Stefano Di Cairano ∗∗

Rolf Findeisen ∗

∗ Laboratory for Systems Theory and Automatic Control,
Otto von Guericke University, Magdeburg, Germany.

{tobias.baethge, markus.koegel, rolf.findeisen}@ovgu.de
∗∗Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA.

dicairano@ieee.org

Abstract: Hierarchical control architectures pose challenges for control, as lower-level dynam-
ics, such as from actuators, are often unknown or uncertain. If not considered correctly in
the upper layers, requested and applied control signals will differ. Thus, the actual and the
predicted plant behavior will not match, likely resulting in constraint violation and decreased
control performance. We propose a model predictive control scheme in which the upper and
lower levels—the controller and the actuator—agree on a “contract” that allows to bound the
error due to neglected dynamics. The contract allows to guarantee a desired accuracy, enables
modularity, and breaks complexity: Components can be exchanged, vendors do not need to
provide in-depth insights into the components’ working principle, and complexity is reduced,
as upper-level controllers do not need full model information of the lower level—the actuators.
The approach allows to consider uncertain actuator dynamics with flexible, varying sampling
times. We prove repeated feasibility and input-to-state stability and illustrate the scheme in an
example for a hierarchical controller/plant cascade.
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1. INTRODUCTION

Control problems in modern applications like Automatic
Driving or the “Internet of Things” are often highly inter-
connected, as they involve combinations of supervisory
controllers and lower-level actuators, see e.g. Campbell
et al. (2010); Di Cairano and Borrelli (2016); Lucia et al.
(2016). Such hierarchical structures, spanning multiple
levels, often consist of controllers, sensors, and actua-
tors from different manufacturers. Combining components
from multiple vendors often has an impact on the avail-
able knowledge of and the communication between these
components: Exact dynamics of subsystems or neighbor-
ing components might be unknown, as companies want
to protect proprietary knowledge, or might change when
replacing a component with a model from a different
vendor. Designing model-based controllers without such
knowledge is difficult, especially in the case of Model Pre-
dictive Control (MPC). MPC schemes rely on sufficiently
correct and detailed system models for the prediction of
the future system behavior, see e.g. Maciejowski (2002);
Rawlings et al. (2017); Mayne (2014)), to achieve good
control performance.

We consider the case of unknown actuator dynamics, as
shown in Fig. 1, to outline the appearing challenges and
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Fig. 1. Nominal plant structure and hierarchical structure
including an unknown actuator.

provide an MPC strategy that overcomes these, enables
modularity, allows privacy between the components, and
breaks complexity. The unknown or uncertain dynamics
can “slow down”, delay, or modify the requested control
input, leading to a real input that is different to the
one that the controller commanded. As a consequence,
the desired optimal behavior will not be reached and
constraints might be violated, cf. Fig. 2. Neglecting this
mismatch can result in increased conservatism, higher
energy consumption, or even instability.

We propose an MPC scheme that takes the additional
dynamics—without in-depth knowledge—into account as
an additional uncertainty. The uncertainty is bounded
in form of a suitable maximum error or an accuracy



requested input
applied input

time

control
input

(a) Requested (solid, blue line)
and applied input, due to the
additional actuator dynamics
(dashed, red line).

predicted trajectory real trajectory

constraints constraint violated!

objective not 
achieved

(b) Degraded controller perfor-
mance: Accuracy is lost, con-
straints can be violated, and con-
trol energy might be increased.

Fig. 2. Influence of unknown actuator dynamics on con-
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around a “nominal” solution, requested by the controller,
and for the actuator to guarantee. Achieving the desired
accuracy error despite the actuator dynamics demands
either a reduced range of feasible control inputs or control
input changes, or an increased or decreased control input
change frequency. The actuator, as an “active” component,
provides this information to the controller in form of a
“contract”, by calculating an upper bound of the resulting
mismatch between the nominal and real dynamics.

The agreement of an accuracy and corresponding input
constraints forms a contract between the controller and
the actuator. This allows to construct a modular control
structure: The internal behavior of a control loop compo-
nent can change, e.g. when an actuator is exchanged for a
different type, model, or brand, as long as the agreed-on
contract is enforced. Furthermore, the overall complexity
is reduced, as the upper level does not need a complete
model of the lower-level actuator. It also enables hiding
proprietary information, which vendors often demand.

MPC schemes that exploit the idea of contracts for com-
plex systems exist, cf. Lucia et al. (2015) and the references
therein. We focus here on the hierarchical case, i.e., we con-
sider contracts for accuracy and input constraints between
components on different hierarchy levels. Furthermore, our
contracts are static, i.e., they do not involve a variation
in time. In comparison to Di Cairano et al. (2018), we
focus on a discrete-time formulation, with the flexibility
of different sampling times of controller and actuator. Fur-
thermore, we use a robust, tube-based MPC scheme that
allows an expansion towards additional model uncertainty.
Summarizing, the contribution of this work is an MPC
scheme that

• allows taking into account additional unknown and
uncertain actuator dynamics, by agreeing on a con-
tract, consisting of accuracy bounds and input (rate)
constraints,
• that guarantees constraint satisfaction, employing

a tube-based robust MPC controller, and that is
formulated
• in a discrete-time setting that allows for different

sampling times for actuator and controller.

Such an approach of “modularity in hierarchy”, where
model complexity is hidden or approximated by artificial
uncertainties, can be compared and further expanded to
exploiting the granularity (see e.g. Bäthge et al. (2016))
of different system models over the prediction, where dif-

ferent model complexities are captured by an extra un-
certainty. Similarities also exist to model reduction ap-
proaches and decentralized MPC without communication,
e.g. Kögel and Findeisen (2015, 2018).

The remainder of this paper is structured as follows: The
general framework is introduced in Section 2. Section 3
presents an approach to bound the error that is introduced
by the additional actuator dynamics in the control loop.
The design of a robust MPC scheme that exploits the
bound in form of a contract is presented in Section 4. A
simulation example is shown in Section 5. Section 6 closes
with a summary and suggestions for future work.

We use standard notation: For two sets A, B and a matrix
M , A ⊕ B, A 	 B, MA, × denote the Minkowski sum,
the Minkowski difference, the set multiplication, and the
Cartesian product, respectively, see e.g. Blanchini and
Miani (2015). A set S is called robust positive invariant
(RPI) under sk+1 = Ssk +ek, ek ∈ E, where E is a convex,
compact set with 0 ∈ E, if ∀sk ∈ S, ek ∈ E: sk+1 ∈ S. ai|j
denotes the value of a at time ti, calculated at time tj .

2. HIERARCHICAL CONTROL ARCHITECTURE

We consider a hierarchical control architecture in which an
upper-level controller interacts with a plant and a lower-
level actuator. The plant dynamics, which the upper-level
controller knows and can use, cf. Fig. 1, are given by

ẋ(t) = Ax(t) +Bv(t), y(t) = Cx(t) +Dv(t), (1)

where x(t) ∈ Rnx denotes the states, v(t) ∈ Rnu the inputs
applied by the actuator, and y(t) ∈ Rny the plant outputs.
The plant states, inputs, and outputs need to fulfill state,
input, and output constraints,

x(t) ∈ X, v(t) ∈ U, and y(t) ∈ Y, (2)

respectively. We assume that X, U, and Y are compact,
convex polytopes containing the origin in their interior.

The upper-level controller requests a command signal
u(t) ∈ U from the actuator, which results in the applied
input v(t). Ideally,

v(t) = u(t), (3)

i.e., the requested and the applied input signals match.
However, in reality, the actuator introduces additional
dynamics, which we consider to be of the form

ż(t) = Aaz(t) +Bau(t), v(t) = Caz(t). (4)

Here, z(t) ∈ Rnz denotes the actuator states, u(t) ∈ Rnu

the inputs commanded to the actuator, and v(t) ∈ Rnu the
actuator outputs that are applied to the plant as inputs.
We assume that the actuator satisfies:

Assumption 1 (Stable actuator dynamics): The actuator
dynamics (2) are asymptotically stable, i.e., Aa is Hurwitz.

Assumption 2 (Unity gain of the actuator dynamics): The
actuator has a steady state unity gain: A constant u(t)
implies v(t)→ u(t) and ∀us : 0 = Aaz

s +Bau
s, us = Caz

s.

Note that Assumption 2 can be satisfied easily by a
suitable choice/scaling of the inputs u(t).

Remark 3 (Actuator constraints): For simplicity and as
we assume a well-behaving and stable actuator, we only
consider input constraints U for the actuator, but no
actuator state constraints.



As outlined, the exact lower-level actuator dynamics might
be unknown or unavailable, e.g. for proprietary or privacy
reasons. Thus, the upper-level controller has no knowledge
of the actuator model (2). However, it can negotiate a
“contract” with the actuator during the design phase or
at specific times during the operation phase, which defines
allowable input changes and input limits to achieve a
desired actuator-plant error.

Given this setup, we want to solve the following problem:

Problem 4 (Modular contract-based controller design): De-
sign an upper-level controller that robustly stabilizes the
lower-level plant (2) and achieves constraint satisfaction
despite limited knowledge of the actuator dynamics.

To tackle this problem, we suggest that the controller
treats the unknown actuator dynamics as an additional
uncertainty that is directly considered in the prediction.
The bounding set for the uncertainty, the accuracy, to-
gether with the necessary constraints on the control input
form an actuator-controller contract. To calculate these
sets, we derive bounds for the error that is introduced by
the additional dynamics.

Note that, for clarity of presentation, we focus on a
single actuator-controller configuration. Expansion to the
multiple-actuator case is easily possible.

3. BOUNDING THE ACTUATOR ERROR

The contract between controller and actuator is based on
an upper bound for the error that the actuator dynamics
(2) cause in comparison to the ideal actuator dynamics (3).
We assume that the upper-level controller is a sampled-
data controller based on a discrete-time model, while the
system itself operates in continuous time. To this end, we
introduce discrete-time formulations for the combined sys-
tems, which are then used to obtain a bound on the result-
ing error. By applying standard discretization techniques,
cf. Ogata (1995), using a sampling time T > 0 and a zero-
order hold u(t) = u(tk), for t ∈ [kT, kT + T ), k = 0, 1, . . .,
one obtains the following discrete-time models:

Model of the plant with ideal actuator: The ideal system,
consisting of the plant dynamics (2) and the ideal actuator
dynamics (3), is given by

x̂(tk+1) = F̂ x̂(tk) + Ĝu(tk) (5a)

ŷ(tk) = Cx̂(tk) +Du(tk). (5b)

Here, ·̂ denotes the variables of the combination of plant
and ideal actuator. This model, expanded by an error
term, forms the basis for the upper-level controller.

Model of the plant and the actuator: The real system,
combining the plant dynamics (2) and the actuator dy-
namics (2), is given by

ξ̇(t) =

(
A BCa

0 Aa

)
ξ(t) +

(
0
Ba

)
u(t), ξ =

(
x
z

)
. (6)

The corresponding discrete-time system, using the sam-
pling time T , is given by

ξ(tk+1) =

(
F Fc

0 Fa

)
ξ(tk) +

(
Gx

Gz

)
u(tk) (7a)

y(tk) = (C 0) ξ(tk) +Du(tk). (7b)

As a consequence of the made assumptions, we further-
more have:

Proposition 5 (Basic properties of the discretized sys-

tems): The matrices F̂ and F satisfy F̂ = F = eAT . If
Assumption 1 holds, then Fa = eAaT is Schur stable, there
exists an RPI set Z for the actuator dynamics, such that

Z ⊆ FaZ⊕GzU, (8)

and the steady state z∞ of the actuator for a given steady
state input u∞ satisfies

z∞ = (I − Fa)−1Gzu∞. (9)

If Assumptions 1 and 2 hold, then

∆G = Gx − Ĝ = −Fc(I − Fa)−1Gz, (10)

as, from Assumption 2, any constant u(t) = uc gives
v(t) = u(t) = uc and Bv(t) = Bu(t) = Buc (compare
linear dynamics of normal and augmented system). Then,

Ĝuc = Gxuc + Fc(I − Fa)−1Gzuc.

Remark 6 (Flexible sampling time): In principle, there is
no need to use a constant input signal for the full sampling
time T in the actuator. One could use a faster sampling
time, e.g. h = T

H , H ∈ N, allowing a faster actuator
controller of the form

uc(t) =



K1

(
z(tk)

u(tk)

)
, t ∈ [tk, tk + h)

K2

(
z(tk + h)

u(tk + h)

)
, t ∈ [tk + h, tk + 2h)

... .

(11)

Here, uc is the command sent to the plant in this case,
which can be reformulated in a similar form as (7).

The controller does not know the actuator dynamics (2).
Thus, the predicted state at the next time instant, x̂(tk+1),
will in general not match the real state x(tk+1), even if
x̂(tk) = x(tk). To account for this mismatch, we introduce
an artificial disturbance w(tk) that will capture the error.
We aim to find a set W such that

∃w(tk) ∈W : x(tk+1) = Fx(tk) + Fcz(tk) +Gxu(tk)

= F̂ x(tk) + Ĝu(tk)︸ ︷︷ ︸
=x̂(tk+1)

+w(tk). (12)

In other words, the set-based dynamics

x̃(tk+1) = F̂ x̃(tk) + Ĝu(tk) + w(tk), w(tk) ∈W, (13)

outer-bound the behavior of the real system.

We first establish a way to find such a set W and that the
error approaches zero as the input goes to zero:

Proposition 7 (Bounding the actuator error): Under As-
sumption 1 and if z(t0) ∈ Z, where Z satisfies (8), a W
such that (12) holds is given by

W = FcZ⊕∆GU. (14)

Furthermore, if u(tk)→ 0, then w(tk)→ 0.

Proof. Exploiting equation (12) and Proposition 5, it is
clear that

w(tk) = x(tk+1)− x̂(tk+1) = Fcz(tk) + ∆Gu(tk).

This yields equation (14) using the bounds on z(tk) and
u(tk). Furthermore, note that Fa is Schur stable. Thus,
u(tk) → 0 in (7) implies z(tk) → 0, thus, Fcz(tk) +
∆Gu(tk)→ 0. 2



Therefore, the error w caused by the actuator vanishes for
small inputs u. In general, however, the error caused by
the actuator can be large.

To further decrease the actuator uncertainties, it is possi-
ble to restrict the rate of input changes,

∆u(tk) = u(tk)− u(tk−1) ∈ ∆U, (15)

where ∆U is a compact, convex polytope containing the
origin.

Considering input change constraints ∆U allows to derive
results similar to Proposition 7. To do so, we define the
difference between actuator state steady state at ti and
the applied input u(ti−1):

∆z(ti) = z(ti)− (I − Fa)−1Gzu(ti−1). (16)

This enables the establishment of the following:

Proposition 8 (Error in ∆u formulation): Let Assump-
tions 1 and 2 and ∆z(t0) ∈ ∆Z hold, where ∆Z satisfies

∆Z ⊆ Fa∆Z⊕−Fa(I − Fa)−1Gz∆U. (17)

If ∆u(ti) ∈ ∆U, i = 0, . . . , k, then a W leading to
satisfaction of (12) is given by

W = Fc∆Z⊕∆G∆U. (18)

Proof. Proposition 5 and (16) yield

∆Gu(ti−1) = −Fc(I − Fa)−1Gzu(ti−1)

= Fc(∆z(ti)− z(ti)).
(19)

Thus, we obtain from (12) that

w(ti) = Fcz(ti) + ∆G(u(ti−1) + ∆u(ti))

= Fc∆z(ti) + ∆G∆u(ti),
(20)

which establishes (18) using the bounds on ∆z(ti) and
∆u(ti).

Using (7), (22), and (16), we obtain

∆z(ti+1) = Faz(ti) +Gzu(ti)− (I − Fa)−1Gzu(ti)

= Faz(ti)− Fa(I − Fa)−1Gzu(ti)

= Fa∆z(ti)− Fa(I − Fa)−1Gz∆u(ti),

(21)

leading to (17). 2

Thus, to achieve the desired actuator accuracy error, we
need to enforce input and input rate constraints in the
upper-level controller. We do so using an MPC scheme in
input-change formulation, as often done in MPC, see e.g.
Maciejowski (2002): The input u(tk) can be written as a
sum of input changes and the input of the actuator at the
time shortly before the initial time t = 0, i.e.,

u(tk) = u(t−1) +

k∑
i=0

∆u(ti). (22)

Here, u(t−1) = limt→0− z(t) is the actuator state just
before t = 0.

Remark 9 (Uncertain actuator dynamics): We assume
that the dynamics to establish the contract in the actuator
are exactly known, which in practice, however, is often not
the case. A straightforward extension to cover “multiplica-
tive uncertainties” is to assume that the matrices Fa, Fc,
Gx, and Gz are given by

Fa =

V∑
i=1

λiFa
i, Fc =

V∑
i=1

λiFc
i, (23a)

Gx =

V∑
i=1

λiGx
i, Gz =

V∑
i=1

λiGz
i, (23b)

where λi ≥ 0 and
V∑
i=1

λi = 1. Fa
i, Fc

i, Gx
i, and Gz

i form

the corners defining the uncertainty.

It is easy to show that W ⊆ Wi, i = 1, . . . , V , where Wi

are the sets obtained from Proposition 7 (or Proposition 8)
for the matrices Fa

i, Fc
i, Gx

i, and Gz
i. This allows to

determine a bound on w(tk) such that equation (12) holds
for such multiplicative uncertainties (23).

As an immediate consequence, a bounding set W can
be obtained from (14). W then needs to be the desired
accuracy bound Wrequest that the upper-level controller
wants to be guaranteed. During the contract negotiation,
the actuator obtains a request Wrequest from the controller.
This can be rejected or confirmed by suitable sets U, ∆U,
and W. The controller can then certify whether it accepts
the sets U and ∆U or asks for a different Wrequest.

4. CONTROLLER DESIGN

We use a tube-based controller in the upper level to achieve
constraint satisfaction, exploiting the controller-actuator
accuracy-input contract. In tube-based MPC, the set of
perturbed trajectories is bounded by a “tube” around the
nominal trajectory, cf. Mayne et al. (2005, 2006).

To consider the input rate constraints, we embed the input
rate in virtual dynamics,

x̃ =

(
x̂k
uk−1

)
, ỹ =

(
yk

uk − uk−1

)
=

(
C 0
0 −I

)
x̃+

(
D
I

)
u,

for which we enforce the constraints Ỹ = Y × ∆U. Here,
Y are general “output” constraints.

The resulting tube-based MPC scheme solves

min
xk,uk

J(xk,uk) (24)

in a receding-horizon fashion, where

xk =
{
xk|k, . . . , xk+N |k

}
, (25a)

uk =
{
uk|k, . . . , uk+N−1|k

}
, (25b)

and N ∈ N, N > 1, is the length of the prediction horizon,
and where the cost function is given by

J(xk,uk) = xTk+N |kPxk+N |k +

k+N−1∑
i=k

xTiQxi + uTiRui

(25c)

with positive definite weighting matrices Q, P , and R. The
dynamics and constraints are given by

xi+1|k = F̂ xi|k + Ĝui|k, i = k, . . . , k +N − 1, (25d)

xk|k = {x(tk)} ⊕ D, (25e)

xi|k ∈ X̃, i = k, . . . , k +N − 1, (25f)

ui|k ∈ Ũ, i = k, . . . , k +N − 1, (25g)

Cxi|k +Dui|k ∈ Ỹ, i = k, . . . , k +N − 1, (25h)

xk+N |k ∈ T. (25i)



D describes the constraint back-off that provides a safety
margin, X̃, Ũ, and Ỹ are tightened constraint sets for
states, inputs, and outputs, and T is the terminal set.
Suitable choices for these sets that guarantee repeated
feasibility and stability will be given below.

The input that is commanded to the actuator and thus
the system is given by

u(tk) = u?k|k +K(x(tk)− x?k|k). (26)

Here, ·? denotes the optimal solution of the optimization
problem (25) and K is the tube controller.

To achieve robust stability and constraint satisfaction, we
require:

Assumption 10 (Conditions on sets D, X̃, Ũ, Ỹ, and T):
The constraint back-off set D satisfies

D ⊇ (F̂ + ĜK)D⊕W. (27)

The sets X̃, Ũ, and Ỹ contain a neighborhood of the origin
and satisfy

X̃ = X	 D, Ũ = U	KD, Ỹ = Y	 (C +DK)D. (28)

T contains a neighborhood of its origin and satisfies

(F̂ + ĜK)T ⊆ T, T ⊆ X̃, CT +DT ⊆ Ỹ, KT ⊆ Ũ. (29)

One can use tailored toolboxes like MPT3 (Herceg et al.,
2013) and PnPMPC (Riverso et al., 2013) to compute
these sets.

Assumption 11 (Conditions on the tube control gain): The
control gain K is such that the control laws

u(tk) = Kx̂(tk), u(tk) = Kx(tk) (30)

asymptotically stabilize systems (5) and (7), respectively.

Assumption 11 appears in similar fashion in works related
to decentralized MPC. The control gain K can be calcu-
lated using a linear-quadratic regulator (LQR) design.

Provided that these assumptions hold, we can establish
recursive feasibility:

Theorem 12 (Recursive feasibility): Let Assumptions 1,
10, and 11 and z(t0) ∈ Z hold, where Z satisfies (8). If
input rate constraints are used, let ∆z(t0) ∈ ∆Z hold,
where ∆Z satisfies (17). Then, the closed-loop system (7),
(26) is recursively feasible, i.e., if (25) is feasible at t0,
then for any k ≥ 0, (25) is feasible and the constraints are
satisfied: u(tk) ∈ U, x(tk) ∈ X, and y(tk) ∈ Y.

Proof. For clarity and due to space limitations, we only
sketch the proof. The conditions of Proposition 8 are
satisfied. Thus, the closed-loop system states satisfy (13).
Following standard tube-based MPC ideas, we can guaran-
tee recursive feasibility and constraint satisfaction robustly
w.r.t. the artificial disturbance w. 2

If the sets D, X̃, Ũ, Ỹ, and T are convex, closed polytopes,
then (25) is a convex quadratic program, which can be
solved efficiently, see e.g. Boyd and Vandenberghe (2004);
Rawlings et al. (2017); Lucia et al. (2016). Alternatively,

one might choose D, X̃, Ũ, Ỹ, and T as ellipsoids, in which
case (25) is a convex quadratically-constained quadratic
program, for which, by now, efficient, tailored solution
approaches exist, as well.

To establish stability, we need further assumptions on the
terminal penalty in the cost function:

Assumption 13 (Terminal penalty): The terminal penalty
P in the cost function (25c) satisfies

P = (F̂ + ĜK)TP (F̂ + ĜK) +Q+KTRK. (31)

Using this and Theorem 12, we can establish stability:

Theorem 14 (Asymptotic stability): Let Assumptions 1,
10, 11, and 13 and z(t0) ∈ Z hold, where Z satisfies (8).
If (25) is feasible at t0, then the closed-loop system (7),
(26) is asymptotically stable.

Proof. (Sketch). Theorem 12 guarantees recursive fea-
sibility and constraint satisfaction. Moreover, with the
assumptions made for x0|0 = x(t0), the LQR controller
is locally admissible. Together with the fact that all con-
straint sets in the optimization problem (25) are compact,
∃c1 > 0 s.t. ‖x?0|0‖ ≤ c1‖x(t0)‖ and ‖u?0|0‖ ≤ c1‖x(t0)‖.

This allows, similar to standard tube-based MPC, to show
that the nominal state x?k|k is asymptotically stable.

Considering the dynamics of the plant and actuator, we
can furthermore derive that

∆ξ(tk) = ξ(tk)−
(
x?k|k

0

)
(32a)

∆ξ(tk+1) = F̃∆ξ(tk) + G̃u?k|k +

(
∆x?

0

)
, (32b)

where

∆x? = F̂ x?k|k + Ĝu?k|k − x
?
k+1|k+1,

F̃ =

(
F Fc

0 Fa

)
+

(
Gx

Gz

)
(K 0) , G̃ =

(
Gx − Ĝ
Gz

)
,

and where F̃ is Schur stable. Note that the ∆ξ dy-
namics are input-to-state stable (ISS) in terms of the
nominal state and input, and ∃c2 > 0 s.t. ‖∆ξ(t0)‖ ≤
c2

∥∥∥(x(t0)T z(t0)T
)T∥∥∥, which implies that ∆ξ is asymptot-

ically stable. Thus, the overall system is stable. 2

Summarizing, we have established repeated feasibility and
stability of the complete controller-actuator-plant system.

5. SIMULATION EXAMPLE

To illustrate the approach, we consider a double integrator
as the plant, given by

ẋ(t) =

(
0 1
0 0

)
x(t) +

(
0
1

)
v(t), y(t) = (1 0)x(t). (33)

The actuator is described by the first-order system

ż(t) = −20z(t) + 20u(t), v(t) = z(t). (34)

Corresponding discrete-time formulations (5) and (7) are
obtained using a sampling time T = 0.3, and states, con-
trol inputs, and control input changes are box-constrained:

X =

[(
−10
−10

)
,

(
10
10

)]
, U = [−2, 2] , ∆U = [−0.4, 0.4] .

The weighting matrices in the cost function are chosen as
Q = ( 1 0

0 1 ) and R = 1000. They are used to calculate the
tube controller gain K as the corresponding LQR gain and
terminal penalty P to satisfy Assumption 13.

We consider that the MPC controller should bring the

plant from the initial state x(t0) = (−7.7 5.7)
T

to the
origin. The initial state for the actuator is z(t0) = 0.



The simulation results are obtained from solving optimiza-
tion problem (25) in a receding-horizon manner in MAT-
LAB. The problem is formulated with YALMIP (Löfberg,
2004). MPT3 (Herceg et al., 2013) and PnPMPC (Riverso
et al., 2013) are used to determine the required sets.

Fig. 3 shows the trajectories of plant and actuator states,
as well as control inputs. All constraints are satisfied
and the plant is successfully stabilized at the origin. The
feasible region for the plant states is shown in Fig. 4.
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Fig. 3. Simulation results for the closed loop, consisting of
the plant (5), the designed controller, and either the
“ideal” actuator (subscript i) or the real actuator (5)
(subscript r). Top to bottom: Evolution of the plant
states, evolution of the actuator states, and control
input u for the ideal system and the real system.
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Fig. 4. Region of plant states x for which the optimization
problem is feasible.

6. SUMMARY AND OUTLOOK

We considered the problem of hierarchical control, where
the upper-level controller does not have a detailed model
of the lower level. As a special case, we presented a Model
Predictive Control scheme that stabilizes a system con-
sisting of known plant dynamics and an actuator, whose
dynamics are unknown to the MPC controller. To achieve
stability and constraint satisfaction, the controller and
the actuator agree on “contract” during the design phase.
This contract consists of a bound on the error resulting
from the unknown intermediate actuator. To achieve the
desired accuracies, the actuator provides bounds on the
allowable inputs and input changes. First, we derived a

robust positive invariant set for the error bound, in a
discrete-time setting. With this bound, we setup a tube-
based MPC scheme to guarantee constraint satisfaction
and stability. The simulation example provided further
insights into the control scheme.

With this, we offer a method to improve controller perfor-
mance in settings where not all information is available,
e.g. due to privacy, legal, or modularity reasons. This is
often the case in industrial applications, where different
manufacturers might consider internal actuator dynam-
ics as proprietary knowledge. Furthermore, the approach
allows constructing modular controller-actuator-plant cas-
cades, in which actuators can be exchanged—e.g. for other
models or vendors with different system dynamics—as long
as they satisfy the same accuracy contract.

Future work and potential extensions will consider non-
linear dynamics for plant and actuator as well as various
descriptions of uncertainty.
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