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Abstract
Approximate/adaptive dynamic programming (ADP) has demonstrated great successes in the
construction of datadriven output feedback optimal control for linear time-invariant systems
and data-driven state feedback optimal control for nonlinear systems. This work investigates
data-driven output feedback optimal control design for a class of nonlinear systems. It pro-
poses to parameterize all admissible output feedback optimal control policies over accessible
signals (system output and its time derivatives). In the case that system state can be param-
eterized as functions of accessible signals, then the value function and control policy can be
parameterized over accessible signals, which allow ADP to be driven by accessible data. For a
special case,where system state, value function and control policy can be linearly parameter-
ized over a finite functional space over accessiblesignals, the policy iteration algorithm (PI)
of ADP is reduced to solve a system of linear equations. Two data-driven PIs are developed
to accomplish data-driven output feedback optimal control design. Simulation validates the
proposed methodology.
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Abstract: Approximate/adaptive dynamic programming (ADP) has demonstrated great successes in the construction of data-
driven output feedback optimal control for linear time-invariant systems and data-driven state feedback optimal control for
nonlinear systems. This work investigates data-driven output feedback optimal control design for a class of nonlinearsystems. It
proposes to parameterize all admissible output feedback optimal control policies over accessible signals (system output and its
time derivatives). In the case that system state can be parameterized as functions of accessible signals, then the valuefunction and
control policy can be parameterized over accessible signals, which allow ADP to be driven by accessible data. For a special case,
where system state, value function and control policy can belinearly parameterized over a finite functional space over accessible
signals, the policy iteration algorithm (PI) of ADP is reduced to solve a system of linear equations. Two data-driven PIsare
developed to accomplish data-driven output feedback optimal control design. Simulation validates the proposed methodology.

1 Introduction

Longstanding research on optimal control theory has re-
sulted in encouraging contributions, to name a few, dynamic
programming to determine a feedback control policy [1, 2],
minimum principle to derive and solve necessary optimality
conditions for an open-loop optimal control trajectory [3,4],
numerical optimization to compute an open-loop optimal
control trajectory [5, 6], etc. This work follows the approx-
imate/adaptive dynamic programming (ADP) approach [7]
to synthesize output feedback optimal control policy without
knowing the system dynamics. Consider a nonlinear system

ẋ = f(x) + g(x)u, x(0) = x0 ∈ Ωx

y = h(x),
(1)

wherex ∈ Ωx ⊂ Rn the system state vector,Ωx a compact
set containing the origin in its interior,u ∈ Rm the control
input,f : Rn×Rm → Rn is a vector field,g : Rn → Rn×m

consists ofm smooth vector fields, andh : Rn → R
p is a

vector ofp smooth functions. Bothf andg are unknown.
This work studies the data-driven output feedback optimal
control design to minimize the following cost functional

J(u) =

∫ ∞

0

[
y⊤Qy + u⊤Ru

]
dt, (2)

whereQ andR are positive definite matrices. If system (1)
is uniformly state observable through a virtual outputQ1/2y,
finiteness of the cost function (2) implies the system stability.

The ADP, narrowly speaking standard policy iteration al-
gorithm (PI) or value iteration algorithm (VI) [7,8], has been
widely accepted as a powerful tool to construct data-driven
feedback optimal control policies for a plethora of scenarios.
Its success has been particularly acclaimed when the system
is linear time-invariant (LTI), for example, state feedback op-
timal stabilization [9], state feedback optimal output regula-
tion [10], output feedback optimal stabilizing control [11],
output feedback optimal output regulation [12], etc. When
the system is nonlinear, its applications have been limitedto
the state feedback case, for instance, state feedback optimal

stabilization [8,13–15], and state feedback optimal stabiliza-
tion of descriptor systems [16].

To the best knowledge of authors, the endeavor in resolv-
ing data-driven output feedback optimal control for nonlin-
ear systems turns out to be vain. This paper tackles data-
driven output feedback optimal control design by making the
following contributions

(i) proposes parameterizations of admissible output feed-
back optimal control policies which permits the ex-
ploitation of ADP: the control policyu is parameter-
ized overy and its time derivatives up to a certain or-
der. Such parameterizations are supported by estab-
lished work on high gain and sliding mode observers;

(ii) reveals that as long as system statex can be parameter-
ized as functions ofy and its time derivatives, then the
ADP can be applied without knowingx;

(iii) offers exemplary parameterizations of the value func-
tion V and controlu overy and its time derivatives;

(iv) reduces the differential equations in PI into a system of
linear equations to solve forV andu; and develops two
algorithms to implement data-driven PI;

(v) performs simulation validation.

The remainder of this paper is structured as follows. Sec-
tion 2 formulates feedback optimal control problems. Re-
parameterizations and data-driven PI are presented in Sec-
tion 3. Simulation validation is performed in Section 4. Sec-
tion 5 offers future research directions and conclusion.

2 Preliminaries

Definition 2.1 (Admissible state feedback control)A
state feedback control policyu(x) ∈ Ux ⊂ C1[0, T ] is
admissible if, for any initial conditionx0 ∈ Ωx, the resultant
closed-loop system is stable. Correspondingly,Ux is called
the admissible state feedback control set.

Definition 2.1 assumes state feedback. It makes the
state feedback optimal control problem exposed to well-
established theories, e.g. dynamic programming. Defining
Ux as the set of all admissible state feedback control poli-
cies, we assume thatUx is not empty, i.e.,Ux 6= ∅.



It is without loss of generality to take the cost function (2)
with T = ∞. For such a case, an admissible state feedback
control policy should yield a finite value of the cost function,
and a stable closed-loop system. The state feedback optimal
control problem for system (1) can be formulated as follows.

Problem 2.2 (State feedback optimal control problem)
Given system(1), find u∗(x∗) ∈ Ux which minimizes the
cost function(2), i.e.u∗(x∗) = argminu(x)∈Ux

J(u(x)).

According to dynamic programming, the optimal control
solutionu∗(x) to Problem 2.2 can be obtained by solving the
Hamilton-Jacobi-Bellman (HJB) equations

0 = min
u∈Ux

{∇V (f + gu) + (h(x))⊤Qh(x) + u⊤Ru}, (3)

with V (x(∞)) = 0 and∇V = ∂V/∂x. A closed-form
solution of HJB is notoriously difficult to establish. Instead,
ADP techniques, e.g. PI and VI, are exploited to acquire an
approximate solution [7,8,17]. Due to the similarity between
PI and VI, this work concerns itself with PI.

PI for system (1) with state measurements is summarized
in the following two iterated steps, withi = 0, 1, · · · . As-
sume that an admissible control policyu0(x) is known.

(i) Policy evaluation: Solve for the positive definite func-
tion Vi(x) satisfying

∇Vi(f(x) + g(x)ui(x)) + y⊤Qy

+ u⊤i (x)Rui(x) = 0, ∀x ∈ Ωx,
(4)

where∇Vi = ∂Vi(x)/∂x is a row vector.
(ii) Policy improvement: Update the control policy

ui+1(x) = −
1

2
R−1(∇Vig)

⊤. (5)

As a system of first order linear partial differential equa-
tions (PDEs), the closed-form solution of (4) remains diffi-
cult to establish. Instead, an approximate solution is practi-
cally of interest. Given parameterizations ofui andVi, (4)
can be casted into algebraic equations, and the approximate
solution can be computed. The two steps (4)-(5) shall be
repeated until the convergence is attained.

Given an initial admissible state feedback control policy
u0(x), PI generates a sequence of control{ui} which pos-
sesses the following properties

(i) ui leads to a stable closed-loop system;
(ii) the closed-loop system performance measured by the

cost function improves, i.e.,J(ui+1) ≤ J(ui);
(iii) it is guaranteed to converge asi→ ∞.

Turning to the output feedback case, we restrict ourselves
by assuming the following controller parameterizations.

Definition 2.3 (Admissible output feedback control)
A dynamic output feedback control policyu(z) ∈ Uz ⊂
C1[0, T ] with z = [y, ẏ, . . . , y(my)] ∈ Rnz is admissible
if, for any initial conditionx0 ∈ Ωx, the resultant closed-
loop system is stable. Correspondingly,Uz is called the
admissible output feedback control set.

Remark 2.4 Definition 2.3 assumes dynamic output feed-
back. Particularly, the controller is parameterized by out-
put and its time derivatives, which can be estimated through

dynamic estimators including high gain observer [18] and
sliding mode-based exact differentiators [19, 20]. With the
dynamic estimator, an admissible output feedback control
policy is implemented asu(ẑ). It is apparent thatu(ẑ) does
not necessarily stabilize the closed-loop system, even ifu(z)
is admissible [21]. This topic however falls outside of the
scope of this work, and is left for future research. Another
interesting topic is to analyze the robustness of the resultant
output feedback optimal control policyu∗(z∗)

DefiningUz as the set of all admissible output feedback
control policies, we assume thatUz is non-empty. The out-
put feedback optimal control problem for system (1) can be
formulated as follows.

Problem 2.5 (Output feedback optimal control problem)
Given system(1), findu∗(z) ∈ Uz which minimizes the cost
function(2), i.e.u∗(z∗) = argminu(z)∈Uz

J(u(z)).

3 Main Results

This section is dedicated to solve Problem 2.5. Differ-
ent from the state feedback case where (4)-(5) during PI are
parameterized overx, we need to re-parameterize equations
overz to perform the output feedback control synthesis.

3.1 PI Parameterizations

We briefly recall parameterizations of the control policy
ui(x) and value functionVi(x) employed in the standard PI
(driven by state measurements), wherei is the iteration in-
dex.

Let {φVj (x)}
N
j=1 with φVj : Rn → R and{φV g

j (x)}qj=1

with φV g
j : Rn → Rm be two sets of linearly indepen-

dent, continuously differentiable functions and vector fields,
respectively. In addition, we assume thatφVj (0) = 0,

∀ 1 ≤ j ≤ N andφV g
j (0) = 0, ∀ 1 ≤ j ≤ q.

Assumption 3.1 Provided thatui(x) ∈ Ux, andui(x) ∈

span{φV g
1 (x), · · · , φV g

q (x)}, then,

Vi(x) ∈ span{φV1 (x), · · · , φ
V
N (x)},

ui+1(x) ∈ span{φV g
1 (x), · · · , φV g

q (x)},

whereVi(x) andui+1(x) are obtained from(4) and(5).

Thanks to (5), Assumption 3.1 implies

(∇Vig)
⊤ ∈ span{φV g

1 (x), · · · , φV g
q (x)},

and the existence of sets of weights{θVi,1, · · · , θ
V
i,N},

{θV g
i,1 , · · · , θ

V g
i,q }, and{θV g

i+1,1, · · · , θ
V g
i+1,q}, such that

Vi(x) =

N∑

j=1

θVi,jφ
V
j (x)

ui(x) =

q
∑

j=1

θV g
i,j φ

V g
j (x)

ui+1(x) =

q
∑

j=1

θV g
i+1,jφ

V g
j (x).

Remark 3.2 When Assumption 3.1 is not satisfied, these
weights can still be numerically obtained based on neural



network approximation methods, such as the off-line approx-
imation using Galerkin’s method [17]. In addition, for un-
certain nonlinear systems, these weights can be trained us-
ing ADP-based online learning methods [8, 22]. When ap-
proximation methods are used,Ωx has to be a compact set
to guarantee the boundedness of the approximation error.

3.2 PI Re-Parameterizations

We next re-parameterizeui(x) andVi(x) over z so that
data-driven PI can be driven by accessible signalsz instead
of x. For simplicity, the following assumption is introduced.

Assumption 3.3 The statex can be represented by func-
tions ofy and its up tomyth time derivatives, i.e.,

x = x(y, . . . , y(my)).

Assumption 3.3 seems restrictive, but might be relaxed by
introducing alternative parameterizations of admissibleout-
put feedback controllers in Definition 2.3. We identify sev-
eral classes of nonlinear systems which satisfy Assumption
3.3: input-output linearizable systems, and flat systems. Re-
laxation of Assumption 3.3 could be an interesting topic for
future research.

Remark 3.4 With Assumption 3.3, all admissible state feed-
back control policy can be re-parameterized as functions of
z, i.e.,Ux ⊂ Uz. A simple treatment of Problem 2.5 is to
searchu(z) overUx instead ofUz. In the case that the map
betweenz andx is globally diffeomorphic, Problems 2.2 and
2.5 are equivalent, sinceUx = Uz.

The forthcoming discussion is contingent on linear param-
eterizations ofx overz. Let{φxj (z)}

S
j=1 with φzj : Rnz → R

be a set of linearly independent, continuously differentiable
functions. Assume thatφxj (0) = 0, ∀ 1 ≤ j ≤ S.

Assumption 3.5 Provided thatx ∈ Ωx, then,

xi ∈ span{φx1(z), · · · , φ
x
S(z)},

wherexi is theith component ofx.

Assumption 3.5 suggests there exist a set of weights
{θxi,1, · · · , θ

x
i,S} for 1 ≤ i ≤ n, such that

x =





S∑

j=1

θx1,jφ
x
j (z), . . . ,

S∑

j=1

θxn,jφ
x
j (z)





⊤

.

For brevity, we denote

ΘV
i = [θVi,1, . . . , θ

V
i,N ] ∈ R

N

ΘV g
i (x) = [θV g

i,1 , . . . , θ
V g
i,q ] ∈ R

q

Θx
i (z) = [θxi,1, . . . , θ

x
i,S ] ∈ R

S

ΦV (x) = [φV1 (x), . . . , φ
V
N (x)]⊤ ∈ R

N

ΦV g(x) = [φV g
1 (x), . . . , φV g

q (x)]⊤ ∈ R
q×m

Φx(z) = [φx1(z), . . . , φ
x
S(z)]

⊤ ∈ R
S .

Hence,Vi(x) = ΘV ΦV (x), ui(x) = ΘV gΦV g(x), andx =
ΘxΦx(z), where

Θx =






Θx
1
...

Θx
n




 =






θx1,1 . . . θx1,S
...

. . .
...

θxn,1 . . . θxn,S




 .

Next we re-parameterizeΦV (x),ΦV g(x) as functions of
Φx(z). For illustration purpose, assume that each compo-
nent ofΦV (x),ΦV g(x) is a polynomial function ofx, for in-
stance,ΦV (x) = [x21, . . . , xixj , . . . ]

⊤. The termxixj takes
the following parameterizations

xixj = Θx
i Φ

x(z)Θx
jΦ

x(z) = (Θx
i ⊗Θx

j )(Φ
x(z)⊗ Φx(z)),

where⊗ represents the Kronecker product. Similarly

xki = (Θx
i ⊗ · · · ⊗Θx

i )(Φ
x(z)⊗ · · · ⊗ Φx(z)).

As a result,ΦV (x) takes the following representation

ΦV (x) = [x21, . . . xixj , . . . , x
4
1, . . . ]

⊤ = ΘV,zΦV,z(z),

where

ΘV,z =

















Θx
1 ⊗Θx

1 0 . . . 0
...

...
...

...
Θx

i ⊗Θx
i 0 . . . 0

...
...

...
...

0 Θx
1 ⊗Θx

1 ⊗Θx
1 ⊗Θx

1

... 0
...

...
...

...
0 0 0 ∗

















ΦV,z(z) =








Φx(z)⊗ Φx(z)
Φx(z)⊗ Φx(z)⊗ Φx(z)⊗ Φx(z)

...
Φx(z)⊗ · · · ⊗ Φx(z)







.

One can similarly re-parameterizeΦV g(x) =
ΘV g,zΦV g,z(z). In the end, re-parameterizations ofu
andV arrive at the following formula

u(z) = −
1

2
R−1ΘV gΦV g(x) = −

1

2
R−1Θ̄V gΦ̄V g(z)

V = ΘV Φ(x) = Θ̄V Φ̄V (z),

whereΘ̄V g = ΘV gΘV g,z, Θ̄V = ΘV ΘV,z.

3.3 Data-Driven PI

With aforementioned re-parameterizations, we can rewrite
(4)-(5), where the newly parameterized equations comprise
of unknown parameters andz. More precisely, linear pa-
rameterizations permit us to reduce the newly parameterized
equations to a system of linear equations. Assume that sys-
tem (1) is subject to control

u(z) = −
1

2
R−1Θ̄V gΦ̄V g(z)

︸ ︷︷ ︸

K(z)

+v(t),

wherev(t) ∈ Rm. The resultant closed-loop system is

ẋ = f(x) + g(x)K(z) + g(x)v(t). (6)

Remark 3.6 The cost function of the closed-loop system(6)
is time-varying and takes the following values att andt+ δ

Vv(t, x(t)) =

∫ ∞

t

(y⊤Qy + u⊤Ru)dt

Vv(t, x(t + δ)) =

∫ ∞

t+δ

(y⊤Qy + u⊤Ru)dt.



The cost functionVv does not satisfy(4), due to the time-
varying signalv(t). Instead, it satisfies the following time-
varying differential equations

−
∂Vv
∂t

= ∇Vv(f+gK+gv)+y⊤Qy+(K+v)⊤R(K+v),

which is non-trivial to solve. Also, solvingVv is not helpful
to derive the control policy in the form ofu(z).

To synthesize the output feedback optimal control policy
u∗(z∗) via ADP, it is relevant to solve the value function
V (z), which corresponds to the closed-loop system with the
controlu = K(z), i.e.,

ẋ = f(x) + g(x)K(z). (7)

This fact implies the constraint thatK(z) andV satisfy the
following equations

∇V (f(x) + g(x)K(z)) =

− (y⊤Qy + (K(z))⊤RK(z)).
(8)

Basic idea of the following derivation is to inferV (z)
and∇V g from output trajectories of the closed-loop system
(6). Along the trajectory of the closed-loop system (6), the
change ofV during the time interval[t, t+ δ] is given by

dV (t) = V (x(t+ δ))− V (x(t))

= Θ̄V {Φ̄V (z(t+ δ))− Φ̄V (z(t))}

=

∫ t+δ

t

(∇V (x)(f(x) + g(x)K(z) + g(x)v(t)))dt

Taking (8) into account, we rearrangedV (t) and have

Θ̄V {Φ̄V (z(t+ δ))− Φ̄V (z(t))}

=

∫ t+δ

t

(∇V g(x)v(t) − (y⊤Qy + (K(z))⊤RK(z)))dt

= Θ̄V g

∫ t+δ

t

Φ̄V g(z)v(t)dt

−

∫ t+δ

t

(y⊤Qy + (K(z))⊤RK(z))dt.

This is reduced to one linear equation

Θ̄Ψ(t) = ρ(t),

whereΘ̄ = [Θ̄V , Θ̄V g], and

Ψ(t) =

[
∆ΦV

ψ(t)

]

ρ(t) =

∫ t+δ

t

(y⊤Qy + (K(z))⊤RK(z))dt

∆ΦV (t) = Φ̄V (z(t))− Φ̄V (z(t+ δ))

ψ(t) =

∫ t+δ

t

Φ̄V g(z)v(t)dt.

(9)

Θ̄ is a vector of unknown parameters. By collecting data
during intervals[t, t + δ, ], [t + δ, t + 2δ], . . . , [t + (Mj −
1)δ, t + Mjδ] with N + q ≤ Mj < ∞, one can form a
system of linear equations

Θ̄Ψ = ρ, (10)

whereΨ = [Ψ(t),Ψ(t + δ), . . . ,Ψ(t + Mjδ)] and ρ =
[ρ(t), ρ(t + δ), . . . , ρ(t +Mjδ)]. As long asΨΨ⊤ is non-
singular,Θ̄ is uniquely determined as̄Θ = ρΨ⊤(ΨΨ⊤)−1.

Algorithm 1 provides detailed steps of data-driven PI.

Algorithm 1: Data-driven PI

Initialize i = 0, j = 0, t0 = 0, δ,Mj ,Mi, Θ̄
V g
0 ;

Define an initial admissible output feedback control policy

K0(z) = −
1

2
R

−1Θ̄V g
0 ΦV g(z).

ts = t0;
for i ≤Mi do

Initialize ts = ts + jδ;
j = 0,Ψ = ∅, ρ = ∅;
while j ≤Mj do

t = ts + jδ;
Let vj(t) be a vector of small constants over[t, t+ δ];
ui(z) = Ki(z) + vi(t);
calculateΨ(t), ρ(t) according to (9);
UpdateΨ = [Ψ,Ψ(t)], ρ = [ρ, ρ(t)];
j = j + 1;
if det(Ψ(Ψ)⊤) 6= 0 then

Solve (10) forΘ̄;

UpdateKi+1 = − 1

2
R−1Θ̄V g

i ΦV g(z);
break;

i = i+ 1;
if |Θ̄i−1 − Θ̄i| < ǫ then

break;

return Θ̄i−1;

In Algorithm 1, i is the index for PI,Mi is the maximum
number of iterations,j tracks episodes of measurements to
form well-conditioned linear equations (10),andMj indi-
cates the maximum number of episodes.

Algorithm 1 determines̄ΘV andΘ̄V g jointly. Intuitively,
the deduction ofΘ̄V and Θ̄V g relies on decoupling im-
pacts ofK(z) and v on ρ(t) into ∆ΦV (t) andψ(t). Al-
thoughK(z) is a stabilizing control policy,vi(t) ought to be
small enough, compared withK(z), to avoid de-stabilize the
closed-loop system (6). This means that∆ΦV (t) might be
much larger thanψ(t). Eventually the matrixΨ may suffer
from ill-conditionedness.

We propose Algorithm 2 as an alternative to implement
the data-driven PI more reliably. Basic idea is to determine
V (z) through output trajectories of the closed-loop system
(7); and then work out∇V g by utilizing output trajectories
of the closed-loop system (7). Algorithm 2 splits data-driven
PI into three steps: fori = 0, 1, . . .

(i) Policy evaluation: applyui(z) = Ki(z) and measure
the output of system (7) to construct linear equations

Θ̄V
i ∆ΦV = ρ, (11)

where∆ΦV = [∆ΦV ,∆ΦV (t)], ρ = [ρ, ρ(t)]; solve
(11) for Θ̄V

i ;
(ii) Gradient determination: resolvēΘV g

i by forming and
solving the following linear equations

Θ̄V g
i ΨV g = ρ− Θ̄V

i ∆ΦV , (12)



whereΨV g = [ψ(t), . . . , ψ(t + Mjδ)] and∆ΦV =
[∆ΦV (t), . . . ,∆ΦV (t+Mjδ)] are generated by output
of system (6);

(iii) Policy improvement: update the control policy:

Ki+1(z) = −
1

2
R−1Θ̄V g

i ΦV g(z). (13)

Readers are referred to Algorithm 2 for details.

Algorithm 2: Decomposition-based Data-driven PI

Initialize i = 0, j = 0, t0 = 0, δ,Mj ,Mi, Θ̄
V g
0 ;

Define an initial stabilizing control policy

K0 = −
1

2
R

−1Θ̄V g
0 ΦV g(z).

ts = t0;
for i ≤Mi do

Initialize ts = ts + jδ;
j = 0, ρ = ∅,∆ΦV = ∅;
ui(z) = Ki(z);
while j ≤Mj do

t = ts + jδ;
Calculate∆ΦV (t), ρ(t) according to (9);
Update∆ΦV = [∆ΦV ,∆ΦV (t)], ρ = [ρ, ρ(t)];
if det(∆Φ(∆Φ)⊤) 6= 0 then

Solve (11) forΘ̄V
i ;

break;

j = j + 1;

j = 0,ΨV g = ∅, ρ = ∅,∆ΦV = ∅;
while j ≤Mj do

Let vi(t) be a vector of small constants over[t, t+ δ];
ui(z, t) = Ki(z) + vi(t);
t = ts + jδ;
Calculate∆ΦV (t),Ψ(t), ρ(t) according to (9);
UpdateΨV g = [ΨV g, ψ(t)],∆ΦV =
[∆ΦV ,∆ΦV (t)], ρ = [ρ, ρ(t)];
j = j + 1;
if det(ΨV g(ΨV g)⊤) 6= 0 then

Solve (12) forΘ̄V g
i ;

Update the control policy according to (13);
break;

i = i+ 1;
if |Θ̄i−1 − Θ̄i| < ǫ then

break;

return Θ̄i−1;

4 Simulation

Consider a second order nonlinear system

ẋ =

[
−x1 + x2
−x2 − dx32

]

+

[
0
1

]

u

y = Cx,

(14)

whereC = [1, 0]. The objective is to minimize the cost
function (2) with the weightQ = 1000, R = 1. Let z =
[y, ẏ]⊤. Parameterizations ofx overz give

x = [y, ẏ + y]⊤ =

[
1 0
1 1

]

︸ ︷︷ ︸

Θx

[
y
ẏ

]

︸︷︷︸

Φx(z)

.

Assumption 3.3 is verified. Note thatΘx is not required dur-
ing the process of data-driven PI. For comparison, we solve
both the standard PI and data-driven PI for two cases:

(i) Case 1:d = 0, i.e., system (14) is LTI;
(ii) Case 2:d = 1, i.e., system (14) is nonlinear.

Both the standard PI and data-driven PI take the same pa-
rameterizations ofV andu overx, i.e.,

ΦV (x) = {x21, x
2
2, x1x2, x

4
1, x

4
2, x

2
1x

2
2} ∈ R

6

ΦV g(x) = {x1, x2, x
3
1, x

3
2, x1x

2
2, x

2
1x2} ∈ R

6.

Assumption 3.1 holds for the above choices ofΦV (x) and
ΦV g(x). Re-parameterizations for data-driven PI give

Φ̄V (z) =

[
Φx(z)⊗ Φx(z)

Φx(z)⊗ Φx(z)⊗ Φx(z)⊗ Φx(z)

]

Φ̄V g(z) =

[
Φx(z)⊗ Φx(z)

Φx(z)⊗ Φx(z)⊗ Φx(z)

]

,

which can be greatly simplified by taking system properties
into account. In this example, considering thatx is a linear
function ofz, we can down select the basisΦ̄V (z) as follows

x42 ∈ span{z41 , z1z
3
2 , z

2
1z

2
1 , z

3
1z2, z

4
2}

x21x
2
2 ∈ span{z41 , z

3
1z2, z

2
1z

2
1},

andΦ̄V (z) is {z21 , z
2
2 , z1z2, z

4
1 , z

4
2 , z1z

3
2 , z

3
1z2, z

2
1z

2
2} ∈ R8.

Similarly we have

x32 ∈ span{z31 , z1z
2
2 , z

2
1z2, z

3
2}

x1x
2
2 ∈ span{z31 , z

2
1z2, z1z

2
2}

x21x2 ∈ span{z31 , z
2
1z2},

which impliesΦ̄V g(z) = {z1, z2, z31 , z1z
2
2 , z

2
1z2, z

3
2} ∈ R6.

One can verify Assumption 3.1 forΦV (z) andΦV g(z). With
expressions of̄ΦV (z) and Φ̄V g(z), Algorithm 2 is imple-
mented to solve Problem 2.5.

Note that PI assumes the knowledge off, g andx, whereas
data-driven PI merely requiresz. For both cases, data-driven
PI and standard PI begin with the same initial control policy,
albeit with different parameterizations,u = −2z1− 2z2 and
u = −2x2, respectively. Simulation results for Case 1 and
Case 2 are summarized by Figs. 1-4 and Figs. 5-8, respec-
tively. Figs. 1 and 5 show the values of the cost function (2)
by simulating the closed-loop systems with control policies
generated by PI and data-driven PI, respectively. Figs. 2 and
6 illustrate the errors between the cost function (2) evalu-
ated by simulating the closed-loop systems and the approxi-
mate value functions obtained by PI and data-driven PI. Note
that when evaluate the cost function, the closed-loop systems
start from the same initial conditionsx(0) = [−1, 1]⊤. Figs.
3 and 7 depict trajectories ofx1 andu of the closed-loop
systems with three distinct control policies: the initial con-
trol policy u0(x), the state feedback optimal control policy
u∗(x) by PI, and the output feedback optimal control policy
u∗(z) by data-driven PI. Figs. 4 and 8 visualize the approxi-
mate value functions obtained by PI and data-driven PI.
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Fig. 1: Case 1: Values of the cost function (2) over iterations
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Fig. 3: Case 1: State and control trajectories
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Fig. 4: Case 1: Error between approximate value functions

For both cases, data-driven PI converges within a few it-
erations. As shown in Figs. 1 and 5, the PI and data-driven
PI converge at the same rate for Case 1, while the latter is
a little slower than the former for Case 2. All figures cor-
roborate that results of data-driven PI largely coincide with
the standard PI. Due to distinct parameterizations, both PI
and data-driven PI produce seemingly different results as far
as the value function and optimal control policy concerned.
Particularly, for Case 1, the data-driven PI outputs parameter
values of the approximate value function as follows

Θ̄V = [253.6421, 6.0806, 61.2778, 0, 0, 0, 0, 0]

Θ̄V g = [61.5654, 12.4323, 0, 0, 0, 0],

while the standard PI gives ΘPI =
[198.4449, 6.0806, 49.1166, 0, 0, 0]. By applyingz1 = x1
andz2 = x2 − x1, one can tell that both standard PI and
data-driven PI yield almost the analogous approximate value
functions. This fact is also confirmed by Fig. 4, where the
error between two approximate value functions obtained
by standard PI and data-driven PI is at the order of10−7.
Data-driven PI ends up with the following output feedback
control policy

u∗(z) = −0.5(61.5654z1 + 12.4323z2).

Fig. 2 indicates how well the true value function is approx-
imated by the standard PI and data-driven PI. According to
Fig. 2, choices of basisΦV for both cases fully capture the
true value function, a quadratic function ofx.

Figs. 5-8 correspond to Case 2. PI and data-driven PI
converge to approximate value functions with the following
parameters

Θ̄V = [260.4370, 5.6808, 60.3622, 6.4532,

− 1.4969,−1.8005,−1.4759,−0.2357]

Θ̄V g = [60.0728, 11.2592,−1.3712,

− 3.6079,−4.3631,−0.9119]

ΘPI = [235.3647, 7.2802, 42.6616,

4.0927,−0.3399, 0.3626].

Data-driven PI results in the following output feedback opti-
mal control policy

u∗(z) = −0.5(60.0728z1 + 11.2592z2 − 1.3712z31

− 3.6079z21z2 − 4.3631z1z
2
2 − 0.9119z32).

Figs. 6 and 8 expose a surprising but interesting phe-
nomenon: the approximate value function result from data-
driven PI gives rise to much less approximation error that the
PI case. It is partially ascribed to the fact thatΦV (z) is two
dimension higher thanΦV (x).
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Fig. 5: Case 2: Values of cost function (2) over iterations
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Fig. 6: Case 2: Errors between the cost function (2) and
approximate value functions over iterations
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Fig. 7: Case 2: State and control trajectories
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Fig. 8: Case 2: Approximate value functions

5 Conclusion and Future Work

This paper conducted data-driven output feedback opti-
mal control design for a class of nonlinear systems, by the
exploitation of approximate/adaptive dynamic programming
techniques. It established two sufficient conditions to facil-
itate data-driven policy iteration algorithm (PI): all admis-
sible output feedback optimal control policies are param-
eterized over system output and its time derivatives; sys-
tem state can be represented as functions of system out-
put and its time derivatives. For the case when system
state, value function and admissible output feedback con-
trol policy can be linearly parameterized over a finite func-
tional space defined over system output and its time deriva-
tives, the data-driven PI is reduced to solve a system of
linear equations. Two implementations of data-driven PIs
are developed to fulfill the synthesis of data-driven output
feedback optimal control. Future work includes optimal-
ity/convergence/robustness analysis and relaxing limitations
of this work, e.g. , more general parameterizations of all ad-
missible output feedback optimal control policies.
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