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This paper is concerned with a study of the different proposed gain-function approximation
methods in the feedback particle filter. The feedback particle filter (FPF) has been introduced
in a series of papers as a control-oriented, resampling-free, variant of the particle filter. The
FPF applies a feedback gain to control each particle, where the gain function is found as a
solution to a boundary value problem. approximate solutions are usually necessary, because
closed-form expressions can only be computed in certain special cases. By now there exist
a number of different methods to approximate the optimal gain function, but it is unclear
which method is preferred over another. This paper provides an analysis of some of the
recently proposed gain-approximation methods. We discuss computational and algorithmic
complexity, and compare performance using well-known benchmark examples.
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Comparison of Gain Function Approximation
Methods in the Feedback Particle Filter

Karl Berntorp1

Abstract—This paper is concerned with a study of the dif-
ferent proposed gain-function approximation methods in the
feedback particle filter. The feedback particle filter (FPF) has
been introduced in a series of papers as a control-oriented,
resampling-free, variant of the particle filter. The FPF applies
a feedback gain to control each particle, where the gain function
is found as a solution to a boundary value problem. Approximate
solutions are usually necessary, because closed-form expressions
can only be computed in certain special cases. By now there
exist a number of different methods to approximate the optimal
gain function, but it is unclear which method is preferred over
another. This paper provides an analysis of some of the recently
proposed gain-approximation methods. We discuss computational
and algorithmic complexity, and compare performance using
well-known benchmark examples.

I. INTRODUCTION

The feedback particle filter (FPF) has been introduced
in a series of papers as a control-oriented, resampling-free,
variant of the particle filter (PF) [1]–[4]. The FPF applies
a feedback structure to each particle. It can be viewed as a
generalization of the Kalman filter to PFs. The measurement
update is implemented as a gradual transition from prior to
posterior, instead of the one-step multiplication of Bayes’
rule in conventional importance-sampling based PFs [5]. Nu-
merical studies (e.g., [6], [7]) have demonstrated significant
performance improvements over conventional PFs. The gain
function that is present in the feedback structure is in general
nonlinearly dependent on the state and found as a solution
to a constrained Poisson’s equation [8]. Usually, approximate
solutions are necessary, because closed-form expressions can
only be computed in certain special cases.

The FPF provides a numerical solution to the continuous-
time filtering problem

dxt = f(xt)dt+ dβt, (1a)
dyt = h(xt)dt+ det, (1b)

where xt ∈ Rd is the state at time t, yt ∈ Rm is the
observation, and {βt}, {et} are mutually independent Wiener
processes with covariances Q and R, respectively. The map-
pings f(·) and h(·) are given C1 functions.

The FPF estimates the posterior distribution p(xt|Yt), Yt =
{ys : s ≤ t} by N particles {xit}Ni=1, similar to the PF
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[9], [10]. For each time t, an approximation to the posterior
distribution is given by

p(xt|Yt) ≈ p̂(xt|Yt) =
1

N

N∑
i=1

δ(xt − xit), (2)

where δ(·) is the Dirac delta function.
Instead of relying on importance sampling, where particles

are generated according to their importance weight [10], [11],
the FPF is a controlled system consisting of N particles. The
ith particle has the gain feedback form

dxit = f(xit)dt+ dβit +K(xit, t) ◦ dIit , (3)

where

dIit = dyt −
1

2
(h(xit) + h̄)dt, (4)

h̄ =
1

N

N∑
i=1

h(xit), (5)

and ◦ indicates that the differential equation is expressed in
its Stratonovich form [4].

The gain function

K =
[
∇φ1(xt, t) ∇φ2(xt, t) . . . ∇φm(xt, t)

]
(6)

is obtained from a solution to the boundary value problem

∇T(p(xt|Yt)∇φj) = − 1

Rjj
(hj − h̄j)p(xt|Yt),∫

φj(xt, t)p(xt|Yt) dx = 0,

(7)

for j = 1, . . . ,m, where Rjj is the variance of the jth element
in yk, hj is the jth element of h, and similarly for h̄j . Given
K, the FPF is consistent: If the particles initially are sampled
from the correct prior, then as N →∞, p̂(xt|Yt)→ p(xt|Yt).
Algorithm 1 provides the general FPF algorithm, assuming a
sampling period ∆t.

The challenging part in the FPF is to solve (7). For the linear
Gaussian case the solution is given by the Kalman gain. In
general, however, approximate solutions are necessary. Various
different approaches to compute the approximate solution to
(7) have been proposed recently. The perhaps most basic
approximation method is to use a constant-gain approximation
[2], [6], [12], where the gain function is computed based
on the average of the particles. Learning techniques based
on dynamic programming are found in [13] and a numerical
Galerkin solution is proposed in [3], [4]. A difficulty with
the Galerkin approach is how to choose the basis functions



Algorithm 1 FPF algorithm
Initialize: Set {xi0}Ni=1 ∼ p0(x0)

1: while t ≤ Tfinal do
2: Compute K(xit, t) for i ∈ {1, . . . , N}.
3: for i← 1 to N do
4: Compute ∆Iit from (4).
5: Set x̄ = xit +K(xit, t)∆It.
6: Draw ∆β ∼ N (0, 1).
7: Set xit+∆t = x̄+ f(x̄)∆t+

√
Q∆t∆β.

8: end for
9: Set t = t+ ∆t

10: end while

embedded in the Galerkin solution. In the original paper [4],
the states were chosen as the basis functions. Continuation
schemes appear in [14]. In recent work, we proposed a method
based on proper orthogonal decomposition (POD) for basis
functions selection [15], [16]. A recently proposed kernel-
based algorithm seems promising, as it avoids the need for
basis functions [17], [18]. Yet another approach is based on
an optimal transport formulation, which currently applies to
the linear FPF [19].

In this paper, we provide an overview, discussion, and
comparison of some of the available gain-function approxi-
mation methods. In particular, we will focus on the recently
proposed constant-gain approximation [3], the POD-based
Galerkin solution [15], and the basis-free kernel algorithm
[18]. There have been comparison studies involving the FPF
before (e.g., [3], [4], [6], [7], [15]). However, these studies
have been focused on showing the relative merits between var-
ious formulations of the FPF with conventional PFs. Instead,
in this paper we provide a simulation study of different FPF
formulations. Using three examples of varying complexity,
we perform extensive Monte-Carlo simulations and discuss
the relative merits of the methods, both in terms of tracking
and computational performance. The Galerkin and kernel
approaches rely on the same type of assumptions, such as
the form of the posterior density and that the measurement
function h and its gradient are in L2 [3], [17]. We will not
focus on the mathematical details but rather investigate how
the approaches perform in practice.

Notation: Vectors and matrices are denoted with bold-face
letters as x and A, respectively, where aj is the jth column
of A. The jth element of x is denoted by xj and Aij means
the element of A on row i, column j. The variables t and
k are reserved for continuous time and discrete time step,
respectively. With δ(x − y) we mean the Dirac delta mass,
which is one when x = y and zero elsewhere. The conditional
probability density function of x given y is denoted by p(x|y),
E(x) =

∫
xp(x)dx, and x̄ = 1/N

∑N
i=1 x

i for a finite
positive integer N . Let L2(Rn, p) mean the Hilbert space of
square-integrable functions with respect to p at a given time
and let X := L2(Rn). Furthermore, ∇f is the gradient of f
with respect to x. The notation H1(Rn, p) means the function
space where the function and its first derivative (defined in

expectation) are in L2(Rn, p). The inner product between
u := u(x) and v := v(x) is 〈u,v〉 :=

∫
uTv dx. The induced

norm is ‖u‖ :=
√
〈u,u〉. In Rn, ‖u‖2 :=

√
xTx. Finally,

0n×1 is the n× 1 zero matrix.
Outline: The outline of the remainder of the paper is as

follows. Sec. II provides a summary of the Galerkin approach
to gain-function approximation, whereas the kernel-based ap-
proach is treated in Sec. III. Sec. IV contains the evaluation
of the different methods, and Sec. V concludes the paper.

II. GALERKIN APPROXIMATION OF GAIN FUNCTION

In this section we summarize the Galerkin approach to gain-
function approximation. For a richer account of the mathemat-
ical details and assumptions made, refer to [3]. The basis of the
Galerkin method is the weak formulation of (7), from which
approximations of varying complexity can be computed. A
function ∇φj is said to be a weak solution to (7) if

E((∇φj)T∇ψ) = E
(

1

Rjj
(hj − h̄j)ψ

)
(8)

for all test functions ψ belonging to H1(Rn, p) [3]. By
restricting ψ to belong to the subspace of H1(Rn, p) spanned
by {ψl}Ll=1, φj is approximated as

φj =

L∑
l=1

κj,lψl, (9)

that is, (9) is a weighted finite sum of L basis functions
{ψl}Ll=1, where {κj,l}Ll=1 are constants for a fixed tk. This
implies that the gain function for each column becomes

kj =

L∑
l=1

κj,l∇ψl. (10)

Eq. (10) leads to a finite-dimensional approximation of (8):

L∑
l=1

κj,lE
(
(∇ψl)T∇ψ

)
= E

(
1

Rjj
(hj − h̄)ψ

)
. (11)

By substituting ψ with each ψl and approximating the expec-
tation using the particle distribution, (11) becomes a linear
matrix equation for each j = 1, . . . ,m,

Aκj = bj , (12)

where
κj =

[
κj,1 · · · κj,L

]T
. (13)

Note that the equation system is the same for all particles. In
(12), element sl of A, Asl, and element s of bj , bj,s, are

Asl =
1

N

N∑
i=1

(∇ψil)T∇ψis,

bj,s =
1

RjjN

N∑
i=1

(hij − h̄j)ψis.



A. Constant-Gain Approximation
A computationally cheap way to approximate the gain

function is done by choosing the coordinates in the Galerkin
approach as basis functions, that is, {ψl}Ll=1 = {xl}nl=1. If the
states are the test functions, we have

∇ψl =
[
01×l−1 1 01×L−l+1

]T
. (14)

Hence, A in (12) becomes the identity matrix, and we end up
with an approximation that is the same for all particles, the
constant-gain approximation:

K ≈
[
c1 · · · cm

]
R−1,

cj :=
1

N

N∑
i=1

(
hij − h̄j

)
xit.

(15)

The FPF resulting from using (15) is hereafter denoted by
FPF. The constant-gain approximation is the best constant
approximation of K in the mean-square sense, but it is not
individualized for each particle.

The FPF using the constant-gain approximation has com-
plexity O(N). The gain computation is summarized in Algo-
rithm 2, which should be used on Line 2 in Algorithm 1. Note
that for the continuous-discrete time case, the measurement
update in Algorithm 1 (i.e., Lines 4–5) should additionally be
discretized [2].

Algorithm 2 Constant-gain approximation
Input: {xit}Ni=1, {h(xit)}Ni=1

Output: K
1: Determine h̄ using (5).
2: Compute K from (15).

B. Proper Orthogonal Decomposition for Gain Computation
In this section, we describe the POD-based gain-function

approximation method. The objective in POD is to obtain
compact representations of high-dimensional data, such as
in large-scale dynamical systems [20]. Suppose the goal is
to approximate a vector field θ(x, t). The vector field θ is
represented by a sum of orthonormal basis functions,

θ =

∞∑
j=1

aj(t)ϕj(x),

where aj are time-dependent coefficients and {ϕj}∞j=1 ∈ X
is the basis. The coefficients are uncorrelated and computed
as aj = 〈θ,ϕj〉. In POD, we seek an optimal basis in the
sense that if θ is projected onto {ϕj}Lj=1, the average energy
content retained is greater than if projected onto any other set
of L basis functions. This can be formulated as

maximize
ϕ∈X

|〈θ,ϕ〉|2
‖ϕ‖2

. (16)

Using a first-order variation of the cost function, it can
be shown that solving (16) amounts to solving the integral
eigenvalue problem∫

R(x,x′)ϕ(x′) dx′ = αϕ(x), (17)

where R is the auto-correlation function and α is the eigen-
value. Typically, discretization is performed both in space and
time. The discretized version of R̄ in (17) is the covariance
matrix Σ, and (17) amounts to solve a matrix eigenvalue prob-
lem. For sufficiently many discretization points, the sample
covariance matrix is a reliable approximation of Σ. Assuming
a subtracted mean, the sample covariance matrix is given by

Σ =
1

M − 1
XXT, (18)

where X is the matrix containing the data and M is the
number of time-discretization points.

The POD approach relies on the observation that the set of
particles, when simulated forward in time, gives information
about the time evolution of the system. Consequently, at each
simulation step (i.e., time-discretization point), the N particles
are stacked in a column matrix as

x′ :=
[
(x1)T · · · (xN )T

]T ∈ RnN . (19)

Eq. (19) is a snapshot of the state space using the particle
cloud from the FPF. The POD approach uses the M latest
snapshots of the particle cloud. The average for each snapshot
is subtracted from (19) and the resulting data is stacked column
wise, leading to

X =

x
1
1 · · · x1

M
...

...
xN1 · · · xNM

 ∈ RnN×M . (20)

Singular value decomposition (SVD) [21] is used to find the
principal directions of the set of particle clouds in (20). X is
decomposed as

X = USV T, (21)

where U ∈ RnN×nN is an orthonormal matrix containing
the left singular vectors of X , S ∈ RnN×M consists of
min(nN,M) nonnegative singular values σj in decreasing
order on the diagonal, and V ∈ RM×M is orthonormal
and contains the right singular vectors. Only the eigenvectors
corresponding to the most significant singular values are
used. Thus, the first r ≤ min(nN,M) columns from U are
extracted to form Û , which is decomposed as

Û =

u
1
1 · · · u1

r
...

...
uN1 · · · uNr

 ∈ RnN×r, (22)

where the matrix S containing the singular values is truncated
similarly. The decomposition (22) gives r orthonormal eigen-
vectors of the data. Multiplying Q = Û Ŝ results in

Q =

σ1u
1
1 · · · σru

1
r

...
...

σ1u
N
1 · · · σru

N
r

 =

q
1
1 · · · q1

r
...

...
qN1 · · · qNr

 . (23)

The interpretation of V in POD is that column m, vm,
determines the time modulation of eigenvector m; that is,
element j in vm is the time modulation of uim at time index



k−M + j, and the last (M th) element, vmM , of vm gives the
time modulation at time step k, that is, the current time. The
direction of motion is represented by the dominant mode,

q̄i = qi1v1M . (24)

1) Gain Computation with POD in FPF: In the constant-
gain approximation, the test functions are the n state coordi-
nates. This implies through (14) that the lth basis function is a
unit step along the lth coordinate axis. On the other hand, the
vector (24) obtained from POD represents how the particles
are moving in the particle cloud. Hence, to adjust in what
direction the measurements should move the particles, we can
use (24). Motivated by this, we add q̄i to the unit step for each
particle. In this way, each particle is adjusted locally based on
global information from the ensemble of particles. Thus, for
particle i, the lth basis function equals

∇ψil =
[
01×l−1 1 01×L−l+1

]T
+ q̄i, (25)

where the first term on the right-hand side corresponds to
the constant-gain approximation (14). The test function ψil
corresponds to the integration of (25) and equals

ψil = xil + (q̄i)Txi, (26)

where xil is the lth element of xi. Note that because the test
function (26) is expressed per particle, the test function is in
general a nonlinear function of the state. The coefficients κj
in (10) are found by inserting (25) and (26) into (12), which
for each measurement yj , j = 1, . . . ,m, in yk results in

Asl =
1

N

N∑
i=1

(
‖q̄i‖22 + q̄is + q̄il + δ(s− l)

)
,

bs =
1

RjjN

N∑
i=1

(hij − h̄j)
(
xis + (q̄i)Txi

)
,

(27)

where Asl is the element of A on row s, column l. and where
bs is element s of bj . The resulting gain function becomes

Ki
k =

[
ki1 · · · kim

]
, (28)

where kij is computed using (25) as

kij =

n∑
l=1

κj,l

([
01×l−1 1 01×n−l+1

]T
+ q̄i

)
. (29)

The correction for particle xi consists of a term that is
nonlinear in particle xi and where the gain function Ki

k is
adjusted individually for each of the particles through (25).

The rationale for why choosing POD for computing the
basis functions in the Galerkin approach is that POD acts
directly on the system response to extract basis functions,
often for subsequent use in Galerkin projections [22]. The
goal of the feedback gain K is to drive the particles towards
the response of the system given by the measurements. Thus,
when using a Galerkin approach for approximating the gain
function, there is a close connection to the interpretation of
POD. The filter formulation is summarized in Algorithm 3.

C. Computational Complexity

The POD approach with the implementation in Algorithm 3
is O(N2). The gain computation (29) results in the same
number of test functions as the dimension of the state vector.
Hence, A in (12) has dimension n × n and finding the
coefficient vector κ is independent on N [16].

Algorithm 3 FPF with POD-Based Gain Computation
Input: {xitj}

N
i=1 for j ∈ [k −M + 1, k], {h(xitk)}Ni=1

Output: {K(xitk)}Ni=1

1: Construct X according to (19), (20).
2: Compute q̄i for i ∈ {1, . . . , N} using (21)–(24).
3: Compute n

l=1{∇ψil , ψil}Ni=1 using (25) and (26).
4: Compute A, bj using (27), for j ∈ {1, . . . ,m}.
5: Compute κj using (12), for j ∈ {1, . . . ,m}.
6: Compute Ki using (28)–(29) for i ∈ {1, . . . , N}.

III. KERNEL-BASED APPROACH

We now outline the kernel-based gain-function approxima-
tion. We include the details necessary for implementing the
method, but refer to the original papers [17], [18] for details.

The kernel-based algorithm is based on the fixed-point
solution of the equation

φ = et∆ρφ+

∫ t

0

es∆ρ(h− h̄)ds, (30)

where ρ(xt) = p(xt|Yt) and scalar-valued measurements are
assumed. In (30), the semigroup et∆ρφ is

et∆ρφ =

∞∑
m=1

e−tλm〈em, φ〉em, (31)

where λm is the eigenvalue of the eigenfunction em. The set
of eigenfunctions forms a complete orthonormal basis on L2

[17], [23]. It is shown in [17], [18] that the density ρ admits
a spectral gap under certain assumptions, from which it can
be deduced that there exists a unique solution to (30), and
thereby to (7); that is, the solution to the fixed-point equation
(30) solves the boundary value problem (7).

A kernel approximation is used to approximate the semi-
group by an integral operator Tε for t = ε, that is, the fixed-
point solution (30) is approximated as

φε = Tεφε +

∫ ε

0

Ts(h− h̄)ds, (32)

where

Tεφε =

∫
Rd
kε(x,y)φε(y)ρ(yk)dy

≈ 1

N

N∑
i=1

kε(x,x
i)φε(x

i). (33)

The exact shape of the Gaussian kernel kε is found in [18]. For
our purposes, it suffices to say that it is based on a Gaussian



kernel and that the method of successive approximations is
used to solve the discrete counterpart of (32),

Φ = TΦ + ε(h̃− h̄), (34)

where Φ = [φε(x
1) φε(x

2) . . . φε(x
N )]T is the unknown,

h̃ = [h(x1) h(x2) . . . h(xN )]T, and T is an N ×N Markov
matrix that approximates the operator Tε, with the ijth entry

Tij =
1

N

N∑
j=1

kε(x
i,xj). (35)

Given Φ and T , the gain function K can be computed.
One possible implementation of the method is summarized

in Algorithm 4, see [17], [18] for other possibilities. There
are a number of implementation parameters to consider. For
instance, the parameter ε > 0 can be interpreted as a step
length. As ε → 0 the approximation error decreases as
‖Kε − K‖ ≤ Cε + h.o.t, where the constant C depends
on the function h and h.o.t stands for higher-order terms.
However, as ε → ∞ one recovers the constant-gain ap-
proximation in Sec. II-A, which shows that there are indeed
connections between the Galerkin and kernel approach. The
iteration limit Titer is another parameter. For the simulation
studies in Sec. IV, with the solution from the previous time
step as initialization, Titer typically should be in the range
Titer ∈ [1, 10].

Algorithm 4 Kernel-based gain-function approximation

Input: {xit}Ni=1, h̃, Φ0

Output: {K(xit)}Ni=1

1: Set gij = e(−‖xit−x
j
t‖/(4ε)) for i, j ∈ {1, . . . , N}.

2: Set kij =
gij√∑

l gil
∑
l gjl

for i, j ∈ {1, . . . , N}.

3: Set Tij =
kij∑
l kil

for i, j ∈ {1, . . . , N}.
4: Determine h̄ using (5).
5: for k = 1 to Titer do
6: Set Φk = TΦk−1 + ε(h̃− h̄).

7: Set Φk = Φk − 1
N

N∑
i=1

Φk,i.

8: end for
9: Set Φ = ΦTiter

.
10: Set

K(xit) =
1

2ε

N∑
j=1

(
Tij(Φj + ε(h̃j − h̄)(xjt −

N∑
k=1

Tikx
k
t ))

)

A. Computational Complexity

The kernel-based approach with the implementation in
Algorithm 4 is O(N2) similar to Algorithm 3. The fixed-
point iterations on Lines 5–8 are typically initialized with the
solution Φ0 from the previous time step. The computational
complexity of the kernel and the POD-based method are in
the same order, implying that the efficiency of the respective
implementation and method in terms of allowing few particles,
is going to determine which of the methods to prefer.

IV. COMPARISON STUDY

We compare the different methods using three different
examples. We also include an EKF (EKF) and a bootstrap
PF (PF) in the study. We denote the constant-gain FPF with
CG, the POD-based approach with POD, and the kernel-based
approach with KERNEL. There are several parameter choices
in POD and KERNEL that will affect the performance. For POD,
the number of snapshots M is the main parameter to tweak,
and the parameter ε is the most important for KERNEL. We
have not spent much effort in tuning these to each particular
example, and it is likely that better performance can be
achieved by adjusting the values of these parameters. The
FPFs are based on a continuous-time dynamical model, which
needs to be discretized in a digital implementation, and the
measurements typically arrive at a fixed sampling frequency.
To accommodate this and avoid too abrupt changes in the up-
date, the FPFs additionally discretize the measurement update
[2]; that is, the gain computation and subsequent measurement
update (Algorithms 2–4) are performed in increments. The
number of update steps will affect both tracking performance
and computation times, and in what follows, the reported
computation times include this discretization.

A. Linear Example

This example has previously been used in [2]. Consider the
system

dx(t) = −0.5x(t)dt+ dβ(t),

yk = 3xt + ek.
(36)

The measurements arrive at time instants tk =
0.5, 1.0, 1.5, . . . , 10. In [2], it was shown that the solution
to the boundary value problem (7), which for linear systems
with Gaussian noise can be expressed in closed form, equals
the Kalman gain. We denote the filter using the exact solution
with FPFKF. We discretize the measurement update in 20
steps, which according to the results in [2] offers a good
compromise between performance and computation time.
Furthermore, the dynamics (36) is discretized with a sampling
time ∆t = 0.005. In the kernel approach, ε = 0.1 and the
maximum number of fixed-point iterations is Titer = 10. The
number of snapshots in the POD for performing the gain
computation is M = 5.

Fig. 1 illustrates the gain computation as a function of
the particles for a snapshot when using N = 100 particles.
The mean of the gains for POD and KERNEL are also shown
(dashed). The Kalman gain KF, constant-gain approximation
CG, and POD POD approach are very similar. The gain for
the kernel method is not consistent with the other ones, and
the behavior is quite different. The gain function for KERNEL
increases with the distance to the particle mean, which is not
seen for POD. The POD gains oscillate around the particle
mean, but the resulting gain function is mostly flat. However,
the mean value of the gain functions are similar. This is
consistent with [18], where the gain computation according
to Algorithm 4 is shown to be unbiased as N → ∞, which
also is true for the other FPFs.
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Algorithm 2 (CG), the POD-based gain function approximation in Algorithm 3
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Fig. 2. Time-averaged RMSE for the linear system (36) for varying number
of particles N . The data points are from N = 10, 20, 50, 100.

Fig. 2 displays the time-averaged RMSE as function of
particles taken over 500 Monte-Carlo simulations, where we
have also included a standard KF. All FPF approaches perform
very similar to each other, and for N = 100 particles, the
performance of the KF is approximately attained.

B. Benchmark Example

In this evaluation we use the first-order nonlinear model

xk+1 = 0.5xk + 25
xk

1 + x2
k

+ 8 cos (1.2k) + wk, (37a)

yk = 0.05x2
k + ek, (37b)

with wk ∼ N (0, 10), ek ∼ N (0, 1), x0 ∼ N (0.1, 2). This
model was used in [9], and has since then turned into a
benchmark problem for evaluating nonlinear estimators [24],
[25]. Note that the state dynamics (37a) is highly nonlinear
and that the state is squared in the measurement relation (37b),
leading to a bimodal posterior.

The results are based on 500 Monte-Carlo simulations, with
30 time steps in each simulation. The model (37) is already
in discrete-time form. Referring to Algorithm 1, the sampling
period is set to ∆t = 1 s. We set M = 5 in Algorithm 3 and
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Fig. 3. Estimation performance for one realization of the example in
Sec. IV-B. The PFs use 50 particles.

ε = 0.01, Titer = 10 in Algorithm 4, and the FPFs perform
the measurement update using 20 steps.

Fig. 3 shows the performance for the respective FPFs in
one realization for N = 50, together with PF and EKF. The
effect of the bimodality can be seen for the EKF, which on
several occasions chooses the wrong sign to correct with the
measurement.

Fig. 4 shows the RMSE values for 50 particles. KERNEL
performs best among the different filters, slightly better than
POD. As expected, the EKF performs very poorly in compari-
son the with the PFs, and using the prior as proposal density in
the bootstrap PF leads to inefficiency. Furthermore, the FPF
with constant gain, CG, underperforms relative to POD and
KERNEL.

To illustrate the tracking performance versus computation
time, Fig. 5 displays the time-averaged RMSE as function of
average computation time for one prediction and measurement
update, for a varying number of particles. The algorithms
are C-coded, but no consideration has been taken to code
optimization. It is preferable to be located in the lower-left
corner of the figure.

The kernel approach KERNEL performs best in terms of
tracking error irrespective of the number of particles. How-
ever, this comes at a much higher computational cost. When
taking the computational cost into consideration, the constant-
gain approximation becomes an attractive option. The POD
approach consistently performs well, even for few particles,
whereas the constant-gain filter becomes inefficient as the
computation time is decreased. This example shows that the
POD and kernel has better tracking performance for highly
nonlinear examples, both approaches make good use of the
particles even for very few particles, but, especially for the
kernel approach, the performance comes with a high compu-
tational cost.

C. Coordinated Turn

In this example, a target moves in a plane according to a
clockwise coordinated turn [26] of radius 500 m with constant
velocity 200 km/h. The initial position is p0 = [−500 500]T,
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Fig. 4. RMSE values for the benchmark example in Sec. IV-B for N = 50.
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Fig. 5. Computation time versus time-averaged RMSE values for the
benchmark example in Sec. IV-B. The data points correspond to N =
10, 20, 50, 100.

starting in the x-direction. The geometric path forms a circle
of radius 500 m. The target motion is modeled by a five-state
coordinated turn model with unknown constant turn rate and
velocity. The continuous-time model is

ṗX

ṗY

v̇X

v̇Y

ω̇

 =


0 0 1 0 0
0 0 0 1 0
0 0 0 −ω 0
0 0 ω 0 0
0 0 0 0 0



pX

pY

vX

vY

ω

+w, (38)

where p, v, ω denote the position, velocity, and turn rate,
respectively. By introducing

xk =
[
pXk pYk vXk vYk ω̇k

]T
,

the corresponding discrete-time model [25] can be written as

xk+1 =


1 0 sin (ω̇k∆t)

ω̇k
− 1−cos (ω̇k∆t)

ω̇k
0

0 1 1−cos (ω̇k∆t)
ω̇k

sin (ω̇k∆t)
ω̇k

0

0 0 cos (ω̇k∆t) − sin (ω̇k∆t) 0
0 0 sin (ω̇k∆t) cos (ω̇k∆t) 0
0 0 0 0 1

xk+∆twk.

where ∆t = 0.01 s is the sampling period. The FPFs use
100 discretization steps in the measurement updates. POD
uses the last M = 40 data points for basis computation

(see Algorithm 3) and KERNEL uses ε = 102. The pro-
cess noise w is zero mean Gaussian with covariance Q =
diag([0.12, 0.12, 0.12, 0.12, 0.012]). We set the initial estimate
for all filters to x0 = [−500, 500, 55, 0, 0]T, with initial
covariance P0 = diag([252, 252, 32, 32, 0.12]), that is, we
know very little about the initial state of the target. Two sensors
measure the range to the target with sampling time Ts = 1 s.
The sensors are located at S1 = (−200, 0) and S2 = (200, 0).
The measurement model is

hk,j =

√(
pXk − SXj

)2
+
(
pYk − SYj

)2
, j = 1, 2.

The measurement noise for each sensor is Gaussian zero mean
with standard deviation σj = 1 m. The kernel approach as-
sumes scalar-valued updates. This is here solved by computing
the two columns in K separately for each measurements, that
is, executing Algorithm 4 once for each measurement.

1) Results: Fig. 6 shows the estimation results for one
realization, with N = 200. The feedback correction is clearly
seen for the FPFs, whereas PF uses too few particles to recover
when it has started to diverge. Fig. 7 show the time-averaged
RMSE of the velocity as the number of particles varies. In this
example, KERNEL performs worse than the other FPFs when
using few particles.

V. CONCLUDING DISCUSSION

We compared three of the recently proposed gain-
approximation methods in the FPF. We used three examples to
assess the performance of the algorithms. Several conclusions
can be drawn from the study. First, the constant-gain approx-
imation seems to be a competitive approximation method.
It is computationally fast (O(N)) and performed similar to
the POD-based and kernel-based approaches with respect
to tracking performance in two out of the three examples.
The POD and kernel approaches clearly outperformed the
constant-gain approximation method on the highly nonlinear
benchmark example, which indicates that the models need to
be sufficiently nonlinear or multimodal for these methods to
be preferred.

The constant-gain approximation is simpler to implement
since it has fewer parameters to tune. The POD performance
depends on the number of time steps to base the basis
extraction on. A sensible choice of this parameter will depend
on the time scales of the dynamics. Similarly, ε is an important
parameter for the kernel approach, as clear from the evaluation,
and it looks as if the performance is rather sensitive to the
choice of ε. However, if tuned correctly, as seen from the
benchmark example in Sec. IV-B, the performance benefits
may be substantial.
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