MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Comparing Realtime Energy-Optimizing Controllers for
Heat Pumps

Burns, Daniel J.; Bortoff, Scott A.; Laughman, Christopher R.; Guay, Martin
TR2018-100  July 13, 2018

Abstract

Two alternative realtime gradient descent algorithms for energy-optimizing control of a multi-
zone heat pump system are considered. In the first approach, a model of the compressor and
outdoor fan power consumption is used to obtain the gradient of power with respect to high-
and low-side pressures and actuator settings. From this relationship, a gradient descent
controller is obtained to drive the outdoor fan speed to a value that is predicted to minimize
the power consumption. In the second approach, a time-varying extremum seeking controller
is derived. Extremum seeking controllers estimate the gradient of the mapping between
the system input and a measurement, and steers the input to a value that minimizes the
measurement. Determination of the gradient information is model-free so that estimation and
control are simultaneously performed on the system. As with the prior approach, the outdoor
fan is controlled to a value that minimizes power. A multi-physical model of the heat pump
is used to compare the controllers performance. The convergence rate is compared from an
initial condition response where the outdoor fan is initialized to a suboptimal starting speed.
The sensitivity to modeling error is judged by considering operating points distinct from the
conditions at which linearization in the model-based approach is calculated. We show that
because the model-based optimizer benefits from problem-specific information, convergence
to a final value is faster than extremum seeking and that this final value is near the true
optimizer, but not guaranteed to reach the true optimum in the presence of modeling errors.
Conversely, we show that the extremum seeking converges more slowly that the model-based
approach, but because ESC actively experiments with the plant online, the true optimizer is
reached.
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ABSTRACT

Two alternative realtime gradient descent algorithms for energy-optimizing control of a multi-zone heat pump system
are considered. In the first approach, a model of the compressor and outdoor fan power consumption is used to obtain
the gradient of power with respect to high- and low-side pressures and actuator settings. From this relationship, a
gradient descent controller is obtained to drive the outdoor fan speed to a value that is predicted to minimize the power
consumption.

In the second approach, a time-varying extremum seeking controller is derived. Extremum seeking controllers esti-
mate the gradient of the mapping between the system input and a measurement, and steers the input to a value that
minimizes the measurement. Determination of the gradient information is model-free so that estimation and control
are simultaneously performed on the system. As with the prior approach, the outdoor fan is controlled to a value that
minimizes power.

A multi-physical model of the heat pump is used to compare the controllers’ performance. The convergence rate
is compared from an initial condition response where the outdoor fan is initialized to a suboptimal starting speed.
The sensitivity to modeling error is judged by considering operating points distinct from the conditions at which
linearization in the model-based approach is calculated. We show that because the model-based optimizer benefits
from problem-specific information, convergence to a final value is faster than extremum seeking and that this final
value is near the true optimizer, but not guaranteed to reach the true optimum in the presence of modeling errors.
Conversely, we show that the extremum seeking converges more slowly that the model-based approach, but because
ESC actively experiments with the plant online, the true optimizer is reached.

1 INTRODUCTION

As actuators for vapor compression systems become increasingly electrified, commoditized and integrated with em-
bedded systems, the controllability of the system is improved. For example, inverter-driven compressors, electronically-
positioned expansion valves, and variable speed fans provide increased ability to regulate zone temperatures, reject
heat load disturbances, and enforce constraints. When coupled with inexpensive temperature sensing and powerful
embedded processors, the increase in flexibility has lead manufacturers to experiment with more sophisticated cycle
configurations. Multi-zone air conditioners and heat pumps are now common: from a single outdoor heat exchanger
and compressor, variable refrigerant flow machines modulate fluid pressure and flow rates to multiple indoor units to
control their associated zone temperatures (Zhang et al., 2017). And when a branch box is used to select either high
or low pressure refrigerant to direct to the indoor units, a single outdoor unit may simultaneously provide both heating
and cooling to the indoor zones.
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As the vapor compression machine has become more sophisticated, the opportunities to improve efficiency are in-
creasingly realized through the low-level control algorithms that coordinate machine actuators. However, designing
controllers for this system is not straightforward: the heat load disturbances to be rejected are not measured, the
governing dynamics are nonlinear and interactive, and the machine exhibits strong coupling between the multivariate
inputs and outputs (Bonilla et al., 2012). Further, the requirement to operate indoor unit heat exchangers as either
condensers or evaporators force compromises in sensor locations and actuator selection. Despite these challenges,
multivariable feedback controllers have been shown to effectively regulate zone temperatures to setpoints while en-
forcing constraints on actuator limits and key outputs (Burns et al., 2018). However, there remains additional actuation
authority that may be used to minimize steady state power consumption.

This paper considers the problem of controlling the outdoor fan speed of a multi-zone heat pump in order to minimize
power consumption. We assume the vapor compression system is controlled by a preexisting feedback system that
commands compressor speed and expansion valve positions in order to regulate zone temperatures. We further assume
that an additional degree-of-freedom—the outdoor fan speed—is available to minimize power consumption in steady
state.

In this context, two energy-optimizing controllers for the outdoor fan speed are derived and compared. The first
method presented is model-based. Power consumption of the machine is assumed to be dominated by the compressor
and outdoor fan, and the dependency of power on these actuators and the system state is modeled using standard
polynomial relationships wherein coefficients are determined empirically. The gradient of this relationship with respect
to actuator values and system pressures is computed and used to derive a gradient descent control law that drives the
outdoor fan such that the system power consumption is minimized.

The second approach is model-free and based on the time-varying extremum seeking control algorithm. Briefly,
extremum seeking controllers obtain an estimate of the gradient between a plant’s manipulated inputs and an objective
signal (i.e., power consumption) in order to steer the system toward an optimum operating point, under the assumption
that this relationship is convex. Whereas traditional ESC methods exhibit slow and non-robust convergence, TV-ESC
has demonstrated faster convergence due to the estimation routine that efficiently tracks the gradient as a time-varying
parameter (Guay and Burns, 2017). This approach for extremum seeking has previously been applied to realtime
optimization of vapor compression systems with faster convergence rates than traditional methods (Burns et al., 2016,
Weiss et al., 2014)

The rest of the paper is organized as follows. Section 2 describes the system under consideration, the nominal feed-
back controller, and the control objectives. The model-based optimizer is derived in Section 3, and the time-varying
extremum seeking controller is developed in Section 4. The performance of these two controllers is discussed in Sec-
tion 5 using a physics-based model of a multi-zone heat pump. Finally, concluding remarks are offered in Section 6.

2 PROBLEM DESCRIPTION

This section briefly describes the operation of a multi-zone vapor compression system (VCS) and control inputs,
measurements and objectives. The specific application considered in this paper employs the VCS as a heat pump,
and therefore certain assumptions on heat exchanger type, refrigerant flow direction and control objectives have been
made, although other applications of VCS (refrigeration, air conditioning, etc.) can be considered with straightforward
substitutions of machine configurations.

2.1 Physical Description
The arrangement of the principal components of the multi-zone VCS are shown in Fig. 1A. Low pressure refrigerant
in the vapor state enters the compressor suction port. The compressor performs work on the refrigerant to increase

the pressure and temperature, and the amount of work is controlled by the compressor rotational frequency CF. A
sensor measures the refrigerant discharge temperature Td exiting the compressor. High temperature and pressure

17" International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018



2536, Page 3

discharge temp Td
_.» compressor freq CF q
< - E— [QJ
zone temp ® zone temp @ u d Tr;
Try Try Compressor outdoor fan — [Ta] Td
condenser Tc, | condenser Tc ¢ spee’c'l OFS u G Tc; Ym
) . »|[OFS] Te
evap temp -
heat load —~ heat load ” Ta
Q . Q u CF pow
condenser 2 condenser 1 EEV;
X Zone 2 1/ sone 1 ) oamblcn_trzlr temp
valve ;;osition valve position - Valvgé){)]snlon W K |-
EEV EEV - 0 <
2 1 receiver
H

Figure 1: (A) Piping diagram of the multi-zone vapor compression system operating in heating mode. (B) The heat
pump and zone dynamics G are controlled by feedback controller K that regulates zone temperatures and properties of
the refrigerant cycle using the compressor frequency and expansion valves. The outdoor fan is controlled by a realtime
optimizer H designed to minimized power.

refrigerant is then routed to multiple indoor heat exchangers across which a fan forces air. Heat is removed from the
refrigerant and rejected to the air in the zones, which are at temperatures measured by zone sensors Tr,i = 1,..., N,
where N is the number of zones. As the specific enthalpy of the refrigerant is reduced inside the heat exchangers, it
condenses and ultimately exits as a high pressure liquid. The refrigerant then flows through through a set of electronic
expansion valves which simultaneously reduce the pressure and temperature in an isenthalpic process. The electronic
expansion valve positions (EEV;,i = 1,...,N) controls the size of the valve orifice. For the system considered, an
additional collective expansion valve EEV is an available degree-of-freedom for regulating overall cycle pressures
and cumulative refrigerant flow rate. The low pressure, low temperature refrigerant exiting the valves is a two-phase
mixture of liquid and vapor and is passed to another heat exchanger. A fan forces air across the heat exchanger.
The outdoor fan speed OFS controls the volumetric flow rate of air across the heat exchanger. Heat is absorbed by
the refrigerant from the ambient air, which is at a temperature measured by an ambient temperature sensor, T,. The
ambient temperature is considered a measured disturbance. As the specific enthalpy of the refrigerant increases, it
evaporates and exits the heat exchanger as a low pressure vapor. The refrigerant is routed to the compressor inlet,
completing the cycle. Finally, heat loads Q;,i = 1,..., N are assumed in the zones and are unmeasured disturbances.
If the energy supplied by the local condenser balances the heat load, the zone temperature does not change, otherwise
the zone temperature will increase or decrease when the energy added by the condenser is greater or less than the heat
load.

2.2 Controller Architecture

The control objective is to regulate the zone temperatures Tr; to setpoints determined by an occupant, rejecting distur-
bances from changes in heat load Q; and ambient air temperature Ta. Further, power consumption p is to be minimized
at steady state. A Weiner model G of the system operating around an equilibrium consists of linear dynamics and a
memory-less (static) nonlinear output function

X = Ax+Bu+ Boug + Bgd + Byq @))
y = Cx+Dyd 2)
z = Ex+Fu+ Fouy+ Fyd 3)
p = hzuu), 4)

where x is the state, u = [CF EEV,]” are the inputs controlled by the feedback controller, uy = OFS is the outdoor fan
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Figure 2: The steady-state power consumption / as a function of outdoor fan speed is shown for two fixed ambient air
temperatures Ta = {-5,5}°C.

speed controlled by the power optimizing controller, d is the measured ambient air temperature disturbance, g € RV
are the unmeasured heat load disturbances, y = [Tr; Td Tc; Te Ta]” is a vector of measured temperatures, z = [pg pD]T
is a vector of suction and discharge pressures and p is the power consumption.

The control architecture is shown in Fig. 1B'. A multivariable feedback controller K is designed to drive the room
temperature errors to zero. The feedback controller has access to y,, = [y p]” which consists of the temperature and
power measurements. For a detailed description of K designed using H,, loop-shaping techniques, see Bortoff ef al.
(2018). This controller has an observer-based structure and is configured to output estimates Z of z. For the present
work, the suction and discharge pressures may be assumed available either from an estimator in K, or directly from
temperature sensors Tc and Te and a temperature—pressure lookup table for the refrigerant employed. The inner-loop
feedback system with G and K meets the regulation and disturbance rejection requirements. The power minimization
is achieved in the outer-loop system consisting of G, K and H in feedback as shown in Fig. 1B.

The input to the optimization controller is labeled w and its definition depends on the optimization strategy. For
the model-based optimizer considered in Section 3, this signal is the pressures, fan speed and compressor speed,
w = [z1 22 ugp up]. For the extremum seeking controller of Section 4, we define w = p, which we assume is measured.
The optimization controller H receives the signal w from the feedback controller and directs the outdoor fan speed
up such that power p is minimized. The objective is to steer the control input u, to the optimizer of the steady state
map h(z, u, ug,). Note that due to the coupling inherent in the vapor compression system and the design of the feedback
controller K, changing the outdoor fan speed will cause a change in all other actuators. Therefore, to minimize total
machine power consumption it is sufficient to manipulate only the outdoor fan speed. Finally we note that for fixed u,
d and g, the relationship between ug and £ is convex and the equilibrium cost i(u;) satisfies the following optimality
conditions:

Oh(ug)
— =0 5
Buo &)
M > ,3] Yug € Uy (6)

Augdul

where  is a strictly positive constant and Uy is the set of permissible outdoor fan speed inputs. This relationship
is illustrated for two ambient temperatures in Fig. 2. In the following sections, two alternative power-optimizing
controllers are considered for H. The next section describes a model-based optimizer.

17" International Refrigeration and Air Conditioning Conference at Purdue, July 9-12, 2018



2536, Page 5

Model-Based Optimizer

G - g
: Control Law ! Gradient Calculation

|
| |
: Sy —— |
up | ! - Jw w

< ! | — K |— T | dh |e

OFS |, ! V1] Ps
I \ !

I ! Pp

! i ! Oh i || CF

! | : 8“’0 w* : OFS
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3 MODEL-BASED OPTIMIZER

We begin by considering the SISO system with input #y and output p, and assume that (5)-(6) apply. The outdoor fan
and compressor account for all of the modeled power consumption, so (4) can be written

p =z, up, u1) = pc(z1,22, 1) + pruo), N
where the fan power p is modeled as a cubic polynomial in fan speed,
Pr(Uo) = Yo +y1 o +y2 - ug + Y3 Up. ®)

Similarly, the compressor power p, is modeled as

G3(ur)
2
Pe(z1,22,u1) = S1(uy) + $o(ur) - 21 -y - uy - Viisp - (z_) + Za(ur) - z1 v - uy - Vaisp )
1
where the volumetric efficiency is

2
M(@,22.21) = 01(ur) + oty - (%) + 05(uy) - (%) +04(w) - (22— 21) + O5() - 21 - (22 — 21). (10)

w is the compressor rotational speed, Vy;gp is the compressor displacement, and 6;(u;) = Bjo + Bj1u1, {i(u1) = ajo +
a; up + ar,-zuf fori=1,...,4and j=1,...,5 (Threlkeld, 1970). The parameters vy, a; and 3 are tuned empirically.
Models such as (8)-(10) are often used by manufacturers for system design and can be known accurately.

Define w = [z; 22 ug u;]7 and let T(s) denote the 4 x 1 closed-loop transfer function (with the inner loop GK closed)
from ug to w. Also, define the steady-state gain Ty = 7/(0). Then the power minimizing feedback is a gradient descent
controller

!
uo(t) = —Kf dh (w(t)) - Ty dt (11D
0
for « > 0, where the gradient
oh
dh = —
ow

is computed symbolically from (7)-(10). A block diagram of this model-based optimizer is shown in Fig. 3. The
closed loop system with is locally exponentially stable for sufficiently small « > 0. For a proof of this claim, see the
details in Bortoff ef al. (2018).

I All control algorithms discussed in this paper are developmental and are not representative of any manufacturer’s production controller.
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Figure 4: Time-varying extremum seeking controller block diagram.

In effect (11) drives uy to a condition in which dh is orthogonal to Ty, at which point the power is at a local minimum.
Note that although the estimated power is used in the feedback, there is no need to invoke a timescale separation (as is
common in extremum seeking) because the dynamics of the estimate error do not depend on 1y, and the closed-loop
dynamics from G in feedback with K are explicitly incorporated into 7. The gain x must be limited because T may
contain right half plane zeros in general, so sufficiently high gain may result in instability. This result is local because
dh has higher-order terms that effectively increase the feedback gain for large values of initial conditions, although we
do not find this to be a problem in practice. Finally, we do not find the “slowly-varying” assumption to be practically
limiting. In practice the closed-loop system is stable for step changes in references and disturbances, as demonstrated
in Section 5.

4 EXTREMUM SEEKING CONTROLLER

As with the model-based optimizer, the extremum seeking controller (ESC) is configured to drive the ODF 1 such the
the overall power consumption is minimized. In contrast to the MBO, note that the ESC only requires a measurement
of the power consumption, and with abuse of notation we redefine w in this section to consist only of a measurement of
the power w = p. Referring to Fig. 1B, note that any or all of the measurements provided to the feedback controller K
may be passed directly to the optimizer H, including the measurement of power. To derive the discrete-time extremum
seeking controller, we follow the derivation outlined in Guay (2014).

Let ¢ = Augy . The dynamics of the cost function can be parametrized as:
Awk = HZAI/L()J( = (ﬁ:@k (12)

Let the estimator for (12) be
AV = 8] Augy = o7 6y (13)

where 6y is the vector of parameter estimates and is a local estimate of the gradient. As the system is driven toward the
optimizer, clearly this estimated gradient will change over time, and the estimation routine is informed by time-varying
parameter estimators. Consequently this algorithm is termed time-varying extremum seeking control (TV-ESC). The
output prediction error is defined as ¢, = Aw; — AWw;. The dynamical system operates at the faster time-scale with
sampling time €At while the steady-state optimization operates at the slow time scale with sampling time Af, where €
is a time-scale separation parameter. The parameter estimates are updated as follows:

_ _ 1 _ € 1 1. _
T =+ e(; - I)Zk‘ - ST+ o 0 ! (14)

= A € __ 1 _ _
Ors1 = Proj |G + Ezk‘cﬁk(l + aqs{zklm) '(e), B - (15)

Where X € R"*" is the covariance matrix and Proj is an orthogonal projection operator. For a more detailed discussion
on this operator see Goodwin and Sin (2013).
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The gradient descent controller is given by:
Uggs1 = Uog — €koby + edy (16)

where dj, is a bounded dither signal and &, is the optimization gain .

Together, the iterative extremum seeking routine is given by:

Uok+1 = Uok — 6kg9k + edj, (17a)
&k = Auo . = Ugg+1 — Uok (17b)
Ay = ¢ by (17¢)
_ _ 1 _ € __ 1 _ _ _
=+ e(a - - ;Equﬁk(l + E¢{2k1¢k) ol s ! (17d)
= A € __ 1 — _
O = Proj| O+ —S'gu(1 + 5@? 2 00 er), @ . (17¢)

As shown in Figure 4, at the k' iteration step, the ESC algorithm uses the difference between current ug; and next
outdoor fan input ug .+, and the difference between measured Az; and predicted AZ; change in power consumption
for the gradient estimation. The estimated gradient is used to parameterize the unknown but measured cost function
describing power consumption. The gradient is estimated by employing a recursive least squares filter with forgetting
factor @. Further, the estimated gradient is used to compute the gradient descent controller which drives the outdoor
fan speed such that power consumption is minimized.

Note that the time-varying extremum seeking controller does not require averaging the effect of the perturbation as in
the case of a conventional perturbation-based extremum seeking controller. For this reason, time-varying extremum
seeking converges faster than traditional methods (Burns et al., 2016), although not as fast as the model-based approach
as demonstrated in the next section.

S RESULTS AND DISCUSSION

This section compares the performance of the two realtime optimization strategies using a multi-physical model of the
multi-zone heat pump. A brief description of the physics-based model is provided, followed by simulation results and
discussion.

5.1 Multi-physical Model Description

The physical system described in Section 2 and shown in Fig. 1A is modeled in the Modelica language (Modelica
Association, 2017). Heat exchanger models are dynamic and discretized with finite volume approximations (1-D
refrigerant side, 3-D air side). Similarly, the pipes connecting components and the receiver are dynamic models and
capture pressure losses and refrigerant charge migration. The compressor model (partially described in Equations (9)—
(10)) is algebraic and includes isentropic and volumetric efficiency relations that have been calibrated to experimental
data. The valve models are also algebraic and assume isentropic expansion. The zones are modeled as lumped-
air volumes with heat transfer through convective boundary conditions and an insulated envelope to the ambient
environment. The air is modeled as an ideal gas description of dry air. The refrigerant model uses the full technical
equations of state, and pressure and specific enthalpy are used as the state variables for the refrigerant in each pipe
volume. The heat transfer coefficients and frictional pressure losses are based on simplified empirical correlations,
and have been calibrated to data obtained in an calorimetric-style HVAC laboratory. More information on this general
modeling approach can be found in Laughman et al. (2015), and further details on the specific multi-zone heat pump
model can be found in Qiao et al. (2017).

Additionally, the feedback controller K and the optimization controllers H are realized in Modelica. The model-based
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Figure 5: Comparison of realtime optimization controllers to a suboptimal initial condition with the ambient air
temperature at Ta = 5°C. The model-based optimizer (MBO) is shown in blue and the extremum seeking controller
(ESC) is shown in red. (A) The response of the control input and resulting power consumption as a function of time.
(B) The responses overlaid on the steady state map for these conditions.

optimizer is continuous-time and implemented as a replaceable model, leveraging the object-oriented paradigm. Alge-
braic loops originating from a controller that simultaneously receives an outdoor fan speed (to compute the gradient of
power) and determines the outdoor fan speed is transparently handled by Modelica’s symbolic equation manipulations.
The extremum seeking controller is discrete-time and the modeling framework uses a synchronous sampling routine
to execute discrete-time components at fixed intervals.

The specific instance of the plant simulated below includes four zones (N = 4), the heat loads Q; are set to approxi-
mately 50% of the full rated capacity for the indoor unit heat exchangers, and the ambient air temperature is selected
from the set Ta = {-5, 5}°C, depending on the simulation objective as described below. The feedback controller K is
configured to regulate the zone temperatures to Tr; = 27°C. At these fixed conditions, each simulation is run for a
extended time until initialization transients have settled. Results presented below begin after the startup transient has
decayed. Two simulation studies are performed: the first compares the response of the two realtime optimization con-
trollers to a scenario where the outdoor fan is initialized to a suboptimal speed, and the second considers the resulting
disturbance rejection performance when a step change in ambient air temperature is applied.

5.2 Simulation Results

Fig. 5A shows the time-domain response of the outdoor fan speed (top) and resulting power consumption (bottom)
when the fan is initialized to 1,000 rpm, Ta = 5°C, which results in p = 2,427 W. The true optimizer in this case is at
uy = 613 rpm and results in p* = 2,308 W. At ¢ = 0, both realtime optimization controllers are engaged.

We note that the DC-gain of the closed loop system 7T is computed for the MBO at Ta = 5°C, and therefore we expect
no modeling error to manifest in the MBO at this conditions. The extremum seeking controller, being model-free,
should converge to the true optimizer regardless of system perturbations, provided that Equations (5)-(6) are satisfied.
Indeed, both realtime optimizers drive the system to the optimizer. However, while MBO converges within about 60
min (see inset plot), the ESC first reaches the optimum fan speed in about 600 min, and remains in a neighborhood
subsequently. The convergence trajectory can be viewed in Fig. 5B, which plots power as a function of fan speed
where time is implicit. The ESC trajectory closely follows the steady state map, indicating that system dynamics are
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Figure 6: Comparison of realtime optimization controllers to step change in the outdoor air temperature.

not substantially excited. However, we expect time-varying extremum seeking to robustly estimate gradients while the
system state is changing (indeed, this was the motivation for the development of this algorithm), and we attribute the
slower than expected convergence of ESC in this instance to conservative tuning of the algorithm parameters. We note
that one particular advantage of the MBO approach is the single tuning parameter « has an intuitive relationship with
convergence speed, whereas TV-ESC has several parameters that must be iteratively adjusted.

Fig. 6 shows the response of both methods to a step change in outdoor air temperature. Initially, the system is operated
at Ta = 5°C, then at t = 680 min, the ambient air temperature is decreased to Ta = —5°C. The feedback controller K
drives the compressor and expansion valves to regulate the zone temperatures despite the lower ambient conditions,
and therefore the steady state power map is increased. At the same time, the realtime optimizers drive the outdoor fan
such that the minimum power is obtained.

Both methods converge in approximately the same period (MBO in 520 min, ESC in 700 min). However, the MBO
arrives at a fan speed 130 rpm below optimum of u; = 833 rpm, whereas the ESC remains in a neighborhood (upgsc =
ugy + 40 rpm) around the true optimum. The curvature of steady state map around the minimum is low, and therefore
the resulting suboptimal power consumption for MBO is not significant (60 W suboptimal, or about 1.6%). Finally,
we point out that fan speeds selected by the MBO during the transient has smaller amplitude compared to ESC, which
overshoots to 1,700 rpm before the gradient estimate is appropriately updated. In fact, because the MBO’s calculation
of the outdoor fan speed depends explicitly on the VCS states, as long as the inner loop system GK is designed such
that all closed loop poles are in the open left half plane, than the additional integrator contributed by the MBO will
guarantee exponential stability for sufficiently small . Similar claims of stability for ESC are not generally available.

6 CONCLUSION

Two realtime optimization controllers for a multi-zone vapor compression system are considered. Both are shown to
automatically drive the system to values that minimize power under assumptions of convexity, and (in the case of a
model-based optimizer,) when the operating conditions are near the point at which the DC-gain is computed. The
time-varying extremum seeking controller, while faster than traditional ESC approaches, does not reach the optimum
at the same rate as the model-based optimizer, but always finds the true optimizer. Suboptimal results attained by
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the MBO is attributed to two sources: (1) the DC-gain term 7y computed at particular conditions will be incorrect at
other points due to the nonlinear governing physics and (2) general modeling errors that manifest in calculations of
the derivative dh. While the sensitivity to (1) is briefly discussed, contributions from (2) have not been addressed here
and are planned for future work.

The two approaches exhibit various benefits and drawbacks that lend themselves to different applications: the guar-
anteed stability performance of MBO may be appropriate for realtime operation in unstructured environments where
some suboptimality in power consumption can be tolerated, and the property of robust convergence to the true opti-
mizer exhibited by TV-ESC may be suitable for (semi-)supervised situations such as factory calibration or in cases
where obtaining a model is not feasible and optimal performance is required.
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