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Reachability-based Decision Making for City Driving

Heejin Ahn, Karl Berntorp, and Stefano Di Cairano

Abstract—This paper presents the design of a discrete decision
making algorithm for vehicles with advanced driver-assistance
and automated features. We model the system as a hybrid
automaton, where transitions between discrete modes in the
automaton correspond to driving mode decisions, and develop
a method to determine the timing of mode transitions based on
backward and forward reachable sets. The algorithm can be used
either as a stand-alone component or as a method to guide an
underlying motion planner to safe reference trajectories. Under
certain assumptions, the algorithm guarantees safety and liveness,
which can be validated through computer simulations on a city
driving scenario that requires going through multiple discrete
modes and includes several surrounding moving obstacles.

I. INTRODUCTION

As more sophisticated advanced driver-assistance systems

(ADAS) and eventually autonomy are introduced in vehicles,

more complicated decision making systems are required. To

design decision making systems, several approaches have been

recently proposed in the literature. A common approach is

to employ forward reachable sets, which are sets of states

reachable from a set of initial states over a finite horizon.

For instance, the work [1] finds cubic splines that represent

the vehicle’s paths and keeps a probability of colliding with

obstacles below a threshold; the work [2] makes a decision by

comparing forward reachable sets of the ego vehicle associated

with each high-level decision; and the work [3] formulates

an optimization problem to compute an input that actively

corrects the driver’s estimated behaviors, at every time step

without mode switching, to prevent unintended lane depar-

tures. Another approach is to leverage Monte-Carlo methods,

which are sampling-based methods that provide the full cover-

age of possible decisions and respective safety as the number

of samples goes to infinity. Threat levels are determined for

the ego vehicle to make a decision by computing potential

future trajectories of surrounding vehicles based on samples

of their control inputs [4], [5].

However, these approaches, which restrict predicted trajec-

tories to a finite horizon, usually do not ensure persistent

feasibility [6], which means that even if the current decision

making problem is feasible, some subsequent problems may be

infeasible as a result of decisions made in the current time step.

An approach that can address this issue is based on computing

backward reachable sets of a given set, which are sets of initial

states that can reach the given set. As long as the state of the

ego vehicle is controlled to be inside the backward reachable

sets of a goal set, it can reach the goal set at some future

time. The same concept has been used for collision avoidance

applications [7], [8]. As the state is controlled to be outside
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the set of initial states that cannot avoid entering a collision

set, collisions can be averted.

Our approach to solving the decision making problem

exploits both backward and forward reachable sets. The system

of a vehicle driving in cities is modeled as a hybrid automaton,

where transitions between discrete modes of the automaton

correspond to different decisions, triggered by discrete inputs.

We formulate the decision making problem as the task of

finding a discrete input controller such that a mode transition

occurs when there exists a continuous input that makes the

continuous state reach a goal of the subsequent mode (live-

ness), while not colliding with other moving obstacles (safety).

We design an algorithm implementing such a discrete input

controller, which determines the timing of mode transitions

based on the membership of the continuous state in forward

reachable sets and in backward reachable sets of a goal. Under

assumptions detailed in the paper, the algorithm ensures safety

and liveness, which is validated as a stand-alone system in

simulations. Our algorithm can be preferably used as an add-

on system to a motion planner [9], [10], which can utilize the

information from the decision making system to discard or

give a higher cost to trajectories. While primarily developed

for city driving, the approach can be applied to other scenarios,

such as highway driving.

The rest of this paper is organized as follows. In Section II,

we describe city driving scenarios considered in this paper

and model the system as a hybrid automaton. We state the

decision making problem in Section III and explain prelim-

inaries in Section IV. We present an algorithm that exploits

reachable sets in Section V and validate the algorithm using

computer simulations in Section VI. We conclude the paper

with suggestions of future work in Section VII.

II. PROBLEM SETUP

Suppose a route of the ego vehicle is determined by a

navigation system based on the Global Positioning System

(GPS). Each route involves a series of discrete decisions,

which correspond to transitions between discrete modes. In

this paper, for the ease of description, we restrict our atten-

tion to four decisions on unsignalized intersections, which

are changing lanes, staying in lane, braking, and crossing

intersections, because these decisions enable most of the city

driving scenarios. Also, these decisions are the main com-

ponents considered in driving behavioral systems in DARPA

Urban Challenge [12]. Other decisions, such as arriving at a

destination, overtaking, or U-turn, can be included in scenarios

by applying the same approach presented in this paper.

We focus on the scenario illustrated in Fig. 1, which

contains all four decisions, to study decision making processes.

Given a route that indicates a left turn, we construct a series of



Fig. 1: Representative scenario considered in this paper. If

changing lanes is infeasible due to other vehicles, the vehicle

has to maintain the lane and obtain a new route.
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Fig. 2: Mode transitions for the scenario in Fig. 1.

required decisions for the left turn, such as changing lanes if a

left turn is not allowed on the current lane, and stopping before

the intersection. If changing lanes is not feasible due to the

presence of other vehicles, the ego vehicle instead maintains

the lane. In this case, a navigation system can find a new

route for the vehicle. The ego vehicle must fully stop before

unsignalized intersections, irrespective of whether it stopped

earlier in the lane due to heavy traffic.

The control system of a vehicle driving in cities involves

discrete mode changes and continuous dynamics of vehicles,

bicycles, and/or pedestrians and thus, is modeled as a hy-

brid automaton. In discrete parts, we have a set of modes

Q = {LF1, LF2, LF3, LF4, S1, S2} as illustrated by the

automaton in Fig. 2, where the subscript indicates the index

of the associated lane. For example, LF1 indicates the ego

vehicle following lane 1, and S1 the vehicle stopping before

intersections in lane 1. Mode transitions are triggered by

decisions, called discrete inputs ε. For example, the decision

of lane changing (ε1) is to transition the mode from LF1 to

LF2, and the decision of stopping (ε′1) from LF1 to S1. A

set of discrete inputs E is {ε0, ε1, ε′1, ε2, ε3, ε5} where ε0 is

a void input that does not affect the mode transition. The

mode transition function R is a map Q × E → Q, and

R(qi, εi) = qi+1 means that mode qi changes to qi+1 by

discrete input εi.

We model the vehicle dynamics using a planar kinematic

model, with the dynamical state x = (px, py, v, θ) where

(px, py) is the position vector, v is the speed in the vehicle’s

orientation (heading angle) θ:

px(tk+1) = px(tk) + Tsv(tk) cos(θ(tk)),

py(tk+1) = py(tk) + Tsv(tk) sin(θ(tk)),

v(tk+1) = v(tk) + Tsuv(tk),

θ(tk+1) = θ(tk) + Tsuθ(tk).

(1)

The speed is bounded by [0, vmax], the continuous input is

u = (uv, uθ) in the space U = Uv × Uθ where Uv =
[uv,min, uv,max] and Uθ = [uθ,min, uθ,max], and Ts denotes

the sampling time where tk+1 − tk = Ts for all k. For short,

we write the dynamics (1) as x(tk+1) = f(x(tk), u(tk)). Here,

we assume that f is independent of discrete modes for notation

simplicity of reachable sets in Section IV, but the dependency

on discrete modes can easily be included. An underlying

motion planner and subsequent vehicle control typically uses

more advanced vehicle models and can be made robust to

modeling uncertainty, thereby handling errors between the

unicycle vehicle model (1) and more sophisticated models.

The whole system that combines the discrete mode tran-

sitions with the continuous dynamics is modeled as a hy-

brid automaton H = (Q,X, E , U, f, R). We define a hybrid

trajectory (q,x, ε,u) that evolves according to f and R. A

sequence of discrete modes q is {q(tk)}
Ntotal

k=0
where Ntotal is

the total number of time steps throughout the travel of the ego

vehicle. The sequence q is partitioned into Nmode subsequences

qi : Ii → Q, where Nmode is the number of discrete modes in

a given route, such that qi is constant over Ii. Let τi denote

the minimum entry of Ii, and τ ′i denote the maximum entry of

Ii. A sequence of continuous states x is a family of sequences

{xi}
Nmode

i=0 where xi : Ii → X . Similarly, ε = {εi} and

u = {ui} where εi : Ii → E and ui : Ii → U . In this

paper, boldface font, such as xi, denotes a sequence of values

x, and xi(tk) denotes its component at the (time) index tk.

Our objective is to design a discrete input controller

πε : Q×X → 2E

that works in conjunction with any continuous input controller.

III. PROBLEM STATEMENT

In this paper, we seek a discrete input controller πε such that

there exists a continuous input that makes the continuous state

reach a goal while avoiding collisions with other vehicles. In

this section, we first specify goals of each mode and models

of other vehicles, and then formally state the problem.

A. Goals of Each Mode

Each discrete mode qi ∈ Q is associated with a goal G(qi) ⊂
X that the continuous state must reach. We express the goals

with respect to the px − py coordinate frame given in Fig. 3.

We denote by (cx(qi), cy(qi)) the center position of the goal

of mode qi. For example, cy(q1) = cy(q5) because both modes

indicate the same horizontal lane.

For the lane following mode (q1 = LF1), the goal is a set

of states that satisfy py ∈ cy(q1) + [−ǫp, ǫp], v ∈ [vmin, vmax]
where vmin > 0 to ensure that vehicles do not stop in the mid-

dle of lane following, and θ ∈ 0+[−ǫθ, ǫθ]. Here, ǫp and ǫθ are



px

py

q1

q2 q3

q4

q5 q6

Fig. 3: Goals G(qi) projected on the px − py plane where qi
indicates the modes in Fig. 2.

error margins for the position and heading angle, respectively.

We let ǫp = vminTs and ǫθ = max(uθ,maxTs,−uθ,minTs)
to account for the errors of time discretization. For the stop

mode (q5 = S1), the goal is a set of states that satisfy

px ∈ cx(q5) + [−ǫp, ǫp], py ∈ cy(q5) + [−ǫp, ǫp], v = 0, and

θ ∈ 0 + [−ǫθ, ǫθ].

B. Modeling of Other Vehicles

In the same lane, there can exist a lead vehicle or a following

vehicle, which are vehicles right in front of and at the back of

the ego vehicle, respectively. We denote their states by xl and

xf , respectively. The states of vehicles that are going straight

or turning left through intersections are denoted by xcross. Here,

by abuse of notation, we denote the states of multiple vehicles

by xcross ∈ X for simplicity. Vehicles that turn right do not

interfere with the ego vehicle inside intersections under the

U.S. driving rules. We denote by I ⊂ X the set of states

whose position is inside the intersection area.

We make several assumptions regarding the behaviors of

surrounding vehicles. First, at time t0, the estimates of

{xl(tk)}Nk=0, {x
f (tk)}Nk=0, and {xcross(tk)}Nk=0 are available

by using vehicle to vehicle communications or a sensing

system in combination with motion predictors (e.g. [13]).

Second, other vehicles also try to avoid collisions and do not

actively seek collisions with the ego vehicle. More specifically,

the vehicle behind the ego vehicle maintains a safety distance

if it is given a finite time horizon N to adjust its maneuver.

Lastly, other vehicles move according to the unicycle dynamics

(1) but with different input bounds.

Suppose the ego vehicle is in the lane following mode of q1.

For the state sequence of the ego vehicle x = {x(tk)}Nk=0
, we

can define errors el(tk) = xl(tk)−x(tk) and ef(tk) = x(tk)−
xf (tk), where el = (elx, e

l
y, e

l
v, e

l
θ) and ef = (efx, e

f
y , e

f
v , e

f
θ ).

The error states lie in the error space E := {x1−x2 : x1, x2 ∈
X}. The lead vehicle has an input ul in the set U l

v×U l
θ where

U l
v ⊂ Uv, which means that the ego vehicle can apply a larger

braking than the lead vehicle to avoid collisions. The error

dynamics of the position along the x-axis and the speed are

elx(tk+1) = elx(tk) + Tse
l
v(tk) cos(θ(tk)),

elv(tk+1) = elv(tk) + Ts(u
l
v(tk)− uv(tk)),

(2)

where ely(tk) = 0 and elθ(tk) = 0 because the vehicles are

following the same horizontal lane. We write this dynamical

equation as el(tk+1) = fe(e
l(tk), uv(tk), u

l
v(tk)). In case of

curvy roads, the coordinate system is defined by curvilinear

coordinates with respect to the centerline of the road [14],

which also yields linear error dynamics.

We say that a rear-end collision occurs if elx < dmin or

efx < dmin. The set of such rear-end collision points is called

a bad set B := {e ∈ E : ex < dmin}. A collision inside

intersections occurs if x(tk) ∈ I and xcross(tk) ∈ I.

C. Decision Making Problem

The problem of designing πε is stated as follows.

Problem 1: Given (q0, x0), find a discrete input controller

πε that guarantees the existence of a continuous input u such

that for all hybrid trajectories (q,x, ε,u) where xi(tk+1) =
f(xi(tk),ui(tk)) and εi(tk) ∈ πε(qi(tk),xi(tk)) for tk ∈ Ii,

• Liveness: xi(τ
′
i) ∈ G(qi(τ

′
i )) for all i;

• Safety: ∀tk ∈ Ii,xi(tk)− xf (tk) /∈ B, xl(tk)− xi(tk) /∈
B, and xi(tk) /∈ I if xcross(tk) ∈ I for all i.

IV. PRELIMINARIES

The definitions presented in this section provide a founda-

tion for the design and analysis of the solution to Problem 1.

A. Reachable Sets, Capture Sets, and Control Invariant Sets

A backward reachable set (or a predecessor) of a set K ⊂ X
is a set of initial states from which there is an input sequence to

reach K and denoted by Pre(K). A forward reachable set of a

set K ⊂ X is the set of states that can be reached with an input

sequence starting from K and denoted by Reach(K). The

formal definitions can be found in [6]. We let Pre0(K) = K

and Prek+1(K) = Pre
(

Prek(K)
)

.

Using the backward reachable set, we redefine the goals of

discrete modes, when a route is associated with a series of

modes (q1, q2, . . . , qNmode
), as G∗(qNmode

) := G(qNmode
) and

G∗(qi → qi+1) := G(qi) ∩
∞
⋃

k=0

Prek(G∗(qi+1)). (3)

If qi+1 is not necessary to specify, we simply write G∗(qi).
Note that if x(t0) ∈ G∗(qi → qi+1), there is an input sequence

that makes x(tN ′ ) ∈ G∗(qi+1). Because of the geometry of

intersections, we have G∗(S → LF ) = G(S), which implies

that there always exists an input sequence to cross intersections

from the goal of the stop mode in the absence of other vehicles.

For rear-end collision avoidance, we define a capture set as

the set of states that reach the bad set B for any admissible

inputs. If the state is inside the capture set, there is no input

to avoid a future rear-end collision.

Definition 1: The one-step capture set is C(B) := {el :
∀uv ∈ Uv, ∃ul

v ∈ U l
v, fe(e

l, uv, u
l
v) ∈ B}. Let C0(B) = B

and Ck+1(B) = C
(

Ck(B)
)

.

The capture set refers to
⋃∞

k=0
Ck(B). The definition of the

capture set only takes the lead vehicle into account, because

the following vehicle, by assumption, adjusts its maneuver to



maintain a safety distance dmin to the ego vehicle for all future

times after a finite horizon.

If the error state is outside the capture set, there exists an

input uv that keeps the error state outside the capture set for

all future times. Hence, the complement set of the capture set

is control invariant [6] for the error system (2). The stop goal

G∗(S) is control invariant for the system (1) because the state

can stay inside the set with the continuous inputs uv = 0
and uθ = 0. Control invariant sets play an essential role in

achieving the liveness property.

B. Motion Primitives for Heading Angles

For computationally feasible computation of the goals

G∗(qi → qi+1), we predetermine a set of heading angle

profiles, Θ(qi → qi+1), for each mode transition by relying

on motion primitives with the extreme inputs. Here, we use

Fig. 1 as an illustrative example, but can generate heading

angle profiles for any (known) transition.

For the mode transition from LF to S, the ego vehicle

maintains its heading angle to 0. Thus, Θ(LF → S) = {θ̄}
where θ̄(tk) = 0, ∀k ∈ {0, 1, . . . , N}. Let Nleave = 0, which

is the time step when the vehicle leaves the current goal,

and Nreach = N , which is the time step when the vehicle

reaches the next goal. For the mode transition from S to LF
(intersection), the heading angle changes from 0 to π/2. For

a positive integer N0, we define

θ̄(tk) =















0 if k ≤ N0,

θ̄(tk−1) + Tsuθ,max

if N0 < k and

θ̄(tk−1) + Tsuθ,max < π/2,

π/2 otherwise.

We define a set of integers NS→LF (v0) as {N0 ∈ Z+ :
v(t0) = 0, v(tk+1) = v(tk) + uv,maxTs, v(tk) ≤ v0, cx(S) +
∑N

k=0
v(tk) cos(θ̄(tk)) = cx(I)}, where v0 ∈ [vmin, vmax].

This is the set of integers N0 that make the state enter G∗(LF ).
By using numerical methods, we can compute NS→LF (v0).
The set Θ(S → LF ) contains the heading angle profiles

dependent on different N0 ∈ NS→LF (v0). We have Nleave = 0
and Nreach = N0 + ⌊π/(2Tsuθ,max)⌋.

For the mode transition from LF1 to LF2, the initial heading

angle is the same as the final heading angle. In the case

of changing to the left lane, the heading angle increases in

time and then decreases to the final value. For some positive

integers N0, we design a heading angle profile θ̄ such that

θ̄(tk) =











θ̄(tk−1) + Tsuθ,max if 1 ≤ k −Nleave ≤ N0,

θ̄(tk−1) + Tsuθ,min if N0 < k −Nleave ≤ 2N0,

0 otherwise.

We define a set of integers NLF1→LF2
(v0) as {N0 ∈ Z+ :

v(tk) = v0, cy(LF1) +
∑N

k=0
v(tk) sin(θ̄(tk)) = cy(LF2)}.

This is the set of integers N0 that make the state enter

G∗(LF2). We evaluate NLF1→LF2
(v0) by using numerical

methods. For N0 ∈ NLF1→LF2
(v0), we have Nleave ∈ [0, N −

2N0] and Nreach = Nleave + 2N0. The set Θ(LF1 → LF2)

contains the heading angle profiles corresponding to different

N0 and Nleave.

By defining different motion primitives, corresponding to

behaviors such as parking or U-turns, we can consider scenar-

ios with different decisions.

V. PROBLEM SOLUTION

We define a safe state sequence as a state sequence that

satisfies the two conditions in Problem 1 for a finite horizon.

Definition 2: A state sequence {x(tk)}Nk=0 is a safe state

sequence, denoted by xsafe(qi+1, x0), if for some positive

integer Nreach ∈ {0, . . . , N},

1) x(t0) = x0;

2) x(tk+1) and x(tk) satisfy the dynamical model (1) for

some u(tk) ∈ U for k ∈ {0, . . . , N − 1};
3) x(tk)− xf (tk) /∈ B, xl(tk)− x(tk) /∈ B, and x(tk) /∈ I

if xcross(tk) ∈ I for k ∈ {0, 1, . . . , N};
4) xl(tk)− x(tk) /∈

⋃∞

k=0
Ck(B) for k ∈ {Nreach, . . . N};

5) If qi+1 = LF , x(tNreach
) ∈ G∗(qi+1);

6) If qi+1 = S, x(tk) ∈ G(S) if xl(tk) /∈ G(S) for all

k ∈ {Nreach, . . . , N} .

In Definition 2, 1) and 2) indicate that the sequence is a

solution of the dynamical equation (1). Conditions 3) and 4)

guarantee the safety condition, and 5) and 6) guarantee the

liveness condition during the finite horizon. In 6), x(tk) ∈
G(S) is not attainable when the lead vehicle occupies the stop

goal. In this case, 4) ensures that the ego vehicle can fully

stop after the stationary lead vehicle. We set a finite horizon N
such that without presence of obstacles, the vehicle can change

lanes, cross intersections, or stop within the finite horizon.

If there is a safe state sequence xsafe(qi+1, x0), the discrete

input controller πε(qi, x0) can change the mode to qi+1 from

qi. Otherwise, it maintains the current mode or changes the

mode to another mode by issuing ε′i, which exists only when εi
is for changing lanes (see Fig. 2). The discrete input controller

returns ε′i after waiting until the continuous state exits the goal

G∗(qi → qi+1), that is, until it is impossible to reach the goal

of qi+1. To sum up, the controller is designed as follows:

πε(qi, x0) =














εi if x0 ∈ G
∗(qi → qi+1) and ∃xsafe(qi+1, x0),

ε′i
if x0 ∈ G

∗(qi → qi+1), ε
′
i ∈ E ,

and Reach∗(x0) ∩ G
∗(qi → qi+1) = ∅,

ε0 otherwise.

(4)

Here, Reach∗(x0) = {x ∈ Reach(x0) : xl(t1) − x /∈
⋃∞

k=0
Ck(B)}. Then, πε(qi, x0) is the solution to Problem 1.

In the following, we present an algorithm implementing (4)

based on a computationally feasible method of determining

each condition in (4).

A. Membership in the Goal and in the Capture Set

Given a set of points (pix, v
i) for i ∈ {0, 1, . . .} with

ordering pi+1
x ≤ pix and vi ≤ vi+1, let P be the set of states

x ∈ K ⊆ X such that v ≤ vi and px ≤ pix for some i. To

convexify the set, we define P as a polyhedron that is tightly



px

v

G(LF )U(LF ! S)

G(S)

(a)

px

v

G(S)

G(LF1)

U(LF1 ! LF2)

G(LF2)

G(LF1)

(b)

Fig. 4: Projections of the goals. U(LF → S) and

U(LF1 → LF2) are convex under-approximations of the

goals G∗(LF → S) and G∗(LF1 → LF2), respectively.

contained in the set P such that P = {x ∈ K : aipx + biv ≤
1, ∀i ∈ {1, 2, . . .}}, where ai and bi satisfy aipix+ bivi−1 = 1
and aipi+1

x + bivi = 1.
1) Determination of x0 ∈ G∗(qi → qi+1): An under-

approximation of G∗(qi → qi+1), denoted by U(qi → qi+1),
is given as follows. We have U(S → LF ) = G(S) because

the set G∗(S) = G(S) is known.

For the mode transition from LF to S, we first let x(t0) =
(cx(S), cy(S), 0, 0) ∈ G(S), and search for the smallest

integer N0 such that x(t−N0
) ∈ G(LF ), where the states

x(t−k) for all k ∈ {1, . . . , N0} satisfy the unicycle model (1).

The integer N0 is computed by applying uv(t−k) = uv,min

and uθ(t−k) = 0 for all k ∈ {1, . . . , N0} and checking when

v(t−k) ≥ vmin. We have v(t−N0
) = vmin by applying an

appropriate input at time t−N0
. We denote the state x(t−N0

)
by x∗

S . Then, an under-approximation of G∗(LF → S) is

U(LF → S) := {x ∈ G(LF ) : ∃i ∈ Z≥0 : px ≤ pix, v ≤ vi,

where x0 = x∗
S , v

i+1 = vi − Tsuv,min, p
i+1
x = pix − Tsv

i+1}.

This is the set of continuous states from which stop can be

achieved before the stop line by applying uv(tk) = uv,min. Its

convex subset U(LF → S) is depicted in Fig. 4a.

For the mode transition from LF1 to LF2, we let

x(t0) = x∗
S2

and find x(t−2N0
) ∈ G(LF1) where N0 ∈

NLF1→LF2
(vmin) by applying the inputs uv(t−k) = 0 and

uθ(t−k) =

{

uθ,min if k ≤ N0,

uθ,max if N0 < k ≤ 2N0

to the unicycle model (1). Since the maximal steering input

is considered, the states x(t−k) for k ∈ {1, 2, . . . , 2N0}
exhibit the sharpest lane changing curve on the px − py
plane. We denote the state x(t−2N0

) by x∗
LF . Then, an under-

approximation of G∗(LF1 → LF2) is

U(LF1 → LF2) := {x ∈ G(LF1) : ∃i ∈ Z≥0 : px ≤ pix, v ≤ vi,

where x0 = x∗
LF , v

i+1 = vi − Tsuv,min, p
i+1
x = pkx − Tsv

i+1},

which is the set of continuous states that can slow down to

vmin and change lanes by applying maximal steering inputs.

Its convex subset is depicted in Fig. 4b.

We use the convex set U(qi → qi+1) ⊂ U(qi → qi+1) to

determine x0 ∈ G
∗(qi → qi+1) because U(qi → qi+1) is not

convex due to time discretization.

2) Determination of e0 /∈
⋃∞

k=0
Ck(B): We compute an

under-approximation of the complement set of the capture set.

Recall that the bad set is the set of error states such that ex <
dmin. An under-approximation S is

S := {e ∈ E : ∃i ∈ Z≥0 : ex ≥ eix, ev ≥ eiv where e0x = dmin,

e0v = 0, ei+1
v = eiv − Ts(u

l
v,min − uv,min), e

i+1
x = eix − Tse

i+1
v }.

This is the set of error states where the ego vehicle can

avoid rear-end collisions with the lead vehicle by applying

full braking, even in the worst case when the lead vehicle

also fully decelerates. The convex set S ⊂ S is defined as

S := {e ∈ E : ex ≥ dmin, a
iex + biev ≥ 1, ∀i ∈ {1, 2, . . .}},

where aieix+biei−1
v = 1 and aiei+1

x +bieiv = 1. We can prove

that S enables the determination of e0 /∈
⋃

k C
k(B).

3) Determination of Reach∗(x0) ∩ G∗(qi → qi+1) = ∅:
This condition is considered only when the mode changes

from LF1 to LF2, and x0 ∈ G∗(qi → qi+1). Thus, we

check f(x0, (uv,min, 0)) ∈ U(LF1 → LF2) to determine

if Reach∗(x0) ∩ U(LF1 → LF2) = ∅. This is because if

f(x0, (uv,min, 0)) /∈ U(LF1 → LF2), then for any uv >
uv,min, f(x0, (uv, 0)) /∈ U(LF1 → LF2) by the definition of

U(LF1 → LF2).

B. Safe state trajectory

We can find a safe state trajectory by solving a linear

programming problem for a given θ̄ ∈ Θ(qi → qi+1). Due

to the fixed heading angle based on motion primitives and the

convex under-approximations, Conditions 1), 2), 4), 5), and

6) in Definition 2 are linear with respect to a set of decision

variables {px(tk), py(tk), v(tk), uv(tk)}
N
k=0. In Condition 3),

the ego vehicle sometimes has to choose the position to which

it changes lanes. In other words, the ego vehicle chooses which

vehicles will be future lead or following vehicles. In this case,

we check whether there is a choice that yields a feasible safe

state sequence. It can be shown that Condition 3) can also be

written as a (mixed integer) linear inequality.

C. Discrete Input Controller (Algorithm)

By employing the results in the previous sections, we design

the following algorithm, which returns a discrete input and a

reference trajectory.

Algorithm 1 Discrete input controller πε(qi, x0)

1: if x0 /∈ U(qi → qi+1) then

2: πε(qi, x0)← ε0, xref ← xsafe(qi, x0)
3: else

4: for all θ̄ ∈ Θ(qi → qi+1) do

5: if ∃xsafe(qi+1, x0) then

6: πε(qi, x0)← εi, xref ← xsafe(qi+1, x0)
7: return (πε(qi, x0),xref)

8: if ε′i ∈ E then

9: if f(x0, (uv,min, 0)) /∈ U(qi → qi+1), then



10: πε(qi, x0)← ε′i, xref ← xsafe(q
′
i+1, x0)

11: else

12: πε(qi, x0) ← ε0,xref ← xsafe(qi, x0) with a

constraint that xref(t1) ∈ U(qi → qi+1)

13: else πε(qi, x0)← ε0, xref ← xsafe(qi, x0)

14: return (πε(qi, x0),xref)

The algorithm implements the discrete input controller (4)

with U(qi → qi+1) in place of G∗(qi → qi+1). If there is a

safe state sequence (line 5), then the discrete input controller

triggers the mode change. Otherwise, it returns a void input

(line 13) or returns another discrete input ε′i, if it is available

(line 8) and if the continuous state at the next step is outside

of the backward reachable set of the goal of qi+1 (line 9). It

can be proved that if the continuous state tracks xref exactly,

Algorithm 1 solves Problem 1.

VI. SIMULATION

We implemented the controller (4) as a stand-alone system

where the vehicle tracks xref exactly.1

The simulation results are shown in Fig. 5. Each panel is

associated with a mode on which the ego vehicle operates.

For example, in (b), the mode changes to following the next

lane, and thus, the vehicle starts changing lanes. Note that the

vehicle sequentially operates on discrete modes q1, q2, q3, q4
illustrated in Fig. 2. The goal of each mode is achieved,

thereby satisfying the liveness condition of Problem 1, and the

vehicle does not collide with other vehicles, thereby satisfying

the safety condition of Problem 1.

In the simulated scenario, Algorithm 1 takes less than 0.07 s

per iteration at sampling period of 0.1 s. The computation time

can be reduced by decreasing the number of heading angle

profiles, and obviously by implementing the algorithm in C.

VII. CONCLUSION

We have presented the design of a discrete input controller

for city driving scenarios, which enables a mode transition

when there exists a continuous input sequence that makes

the continuous state reach the goal of the next mode while

avoiding collisions with other vehicles. The controller guar-

antees safety and liveness, which can be validated using

computer simulations. The controller exhibits a promising

computation time for real-time implementation because of the

computationally feasible method of computing reachable sets

based on approximations and motion primitives.

The initial result of the decision making system will be

extended to more complex vehicle dynamics by combining our

discrete input controller with motion planners, and by intro-

ducing disturbances around nominal trajectories that account

for the mismatch between the simplified and actual vehicle

behaviors, unmodeled dynamics, and road uncertainties. We

also plan to perform computation studies and validate the

algorithm on a Hamster robot platform [15].

1Using MATLAB on a personal computer consisting of Intel Core i7-3770S
with 8 GB RAM.

Mode LF1

(a)

Mode LF2

(b)

Mode S

(c)

Mode S

(d)

Mode LF3

(e)

Mode LF3

(f)

Fig. 5: The ego vehicle (black boxes) initially follows a lane

in (a), changes lanes in (b), starts braking in (c), waits until

the intersection is unoccupied in (d), crosses the intersection

in (e), and follows a new lane in (f).
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