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Abstract
This work investigates the problem of speed sensorless state estimation for induction motors.
We first exploit a state transformation for the induction motor model. Based on the new
state coordinates, we design a new Luenberger observer, which can provide better dynamic
performance compared to baseline algorithm. To address the parameter variation problem,
the Lyapunov redesign method is used to achieve an adaptation with respect to the parameter
alpha. It is shown that the proposed observer can achieve guaranteed asymptotic stability and
readily extend to the time-varying speed case. Advantages of the proposed observer include
guaranteed asymptotic stability of estimation errors, parameter alpha adaptation, and better
dynamic performance. Simulation results are presented to validate the proposed method.
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An Adaptive Luenberger Observer for Speed-Sensorless Estimation of
Induction Machines

Jie You, Wencen Wu, and Yebin Wang

Abstract— This work investigates the problem of speed sen-
sorless state estimation for induction motors. We first exploit
a state transformation for the induction motor model. Based
on the new state coordinates, we design a new Luenberger
observer, which can provide better dynamic performance com-
pared to baseline algorithm. To address the parameter variation
problem, the Lyapunov redesign method is used to achieve an
adaptation with respect to the parameter α . It is shown that the
proposed observer can achieve guaranteed asymptotic stability
and readily extend to the time-varying speed case. Advan-
tages of the proposed observer include guaranteed asymptotic
stability of estimation errors, parameter α adaptation, and
better dynamic performance. Simulation results are presented
to validate the proposed method.

I. INTRODUCTION

Due to the simplicity, efficiency, and ruggedness, the
induction motor drivers have been widely used at variable
speed and torque control [1]. To improve reliability and
reduce the system cost, it’s preferable that the motor drives
can remove the rotor shaft encoder, which are often viewed
as speed-sensorless motor drives [2]. However, without an
encoder, speed-sensorless motors suffer performance degra-
dation. Hence, to overcome this bottleneck, the observer
design problem for the speed-sensorless motors has received
a remarkable attention over last years [1]–[3].

Many contributions exist on the speed-sensorless esti-
mation for induction motors in the past decades. These
contributions present a wide variety of approaches such as
adaptive estimators [4]–[7], high gain observers [3], [8],
sliding mode observers [9]–[11], extended/unscented Kalman
filter [12]–[15], moving horizon estimator [16], [17], etc.
The comprehensive analysis and performance limitations of
the various approaches have been discussed in [18], [19]
and references therein. In all of these estimation methods,
the adaptive estimators were initially exploited, and have a
relatively simple structure. The typical types of the adaptive
estimators include the classic adaptive/baseline estimators
[4], model reference adaptive systems method [6], [7], and
the adaptive full-order observer [5]. Among these, the clas-
sic adaptive/baseline estimator has been one of the most
prevalent and successful for the speed-sensorless estimation
[8]. The adaptive idea here is treating the rotor speed as
an unknown parameter, which can significantly simplify the
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estimator design. Then, the speed is estimated by means of
a Luenberger observer defined by the mechanical characters
of the induction motor model. The advantage of this esti-
mator lies in avoiding dealing with nonlinear dynamics and
making the structure robustness and simplicity. Even though
researchers have been keeping exploring possible improve-
ments to the classic adaptive/baseline estimators, there are
still a number of inherent limitations. First of all, a major
drawback is the lack of guaranteed stability. Second, the
performance of the resultant observer heavily depends on the
mechanical characteristics, which requires good knowledge
of the machine parameters. Actually, the parameter variations
have significant effects on the estimation accuracy.

These limitations motivate us to study the improvements
toward the class adaptive full-order state observer for induc-
tion motors. These improvements include the better dynamic
performance and the robustness to parameter variations. We
first employ a state transformation for the induction motor
model. Based on the new state coordinates, we propose a
new adaptive Luenberger observer for speed-sensorless esti-
mation. It is shown that the state transformation endows the
observer with more freedoms for the parameter adaptation as
well as the asymptotic stability. For the parameter robustness
purpose, we further make our structure adapt to the parameter
α . By considering the α adaption, better estimation per-
formance could be obtained to make the speed-sensorless
observer robust to parameter variations. With a persistence
of excitation (PE) condition, theoretical justifications are
provided for asymptotic convergence analysis of state es-
timation errors. Simulation results are given to demonstrate
the effectiveness of the proposed adaptive observer.

This paper is organized as follows. Section II introduces
the problem formulation. Section III presents the design of
the proposed observer. Section IV illustrates the convergence
analysis. Section V introduces the simulation result, and
Section VI draws conclusions and discusses future work.

II. PROBLEM FORMULATION

A. The Induction Machine Model
Consider the following the induction motor model in the

frame rotating at an angular speed ω1:
i̇ds =−γids +ω1iqs +β (αφdr +ωφqr)+

uds

σ
,

i̇qs =−γiqs−ω1ids +β (αφqr−ωφdr)+
uqs

σ
,

φ̇dr =−αφdr +(ω1−ω)φqr +αLmids,

φ̇qr =−αφqr− (ω1−ω)φdr +αLmiqs,

ω̇ = µ(φdriqs−φqrids)−
Tl

J
,

(1)



TABLE I
NOTATIONS

Notation Description
ids, iqs stator currents in arbitrary rotational d- and q- axis
uds, uqs stator voltages in arbitrary rotational d- and q- axis
φdr , φqr rotor fluxes in arbitrary rotational d- and q- axis

ω rotor angular speed
ω1 angular speed of a rotating frame
Tl load torque
J rotor inertia

Ls, LM , Lr stator, mutual, rotor inductances
Rs, Rr stator and rotor resistances

σ (LsLr−L2
m)/Lr

α Rr/Lr
β Lm/(σLr)
γ Rs/σ +αβLm
µ 3Lm/(2Lr)
z1 ids +βφdr
z2 iqs +βφqr

where the notation is denoted in Table I. Throughout this
paper, we take the angular speed of the rotating frame ω1 = 0,
which is typically called the stationary frame. For more
details about the induction motor model, please refer to [20].
The objective of speed sensorless state estimation problem
for the induction motor is : design an estimator to reconstruct
the full state of the induction motor model by using the
measurements of stator currents (ids, iqs) and stator voltages
(uds, uqs).

B. Baseline adaptive observer

The baseline adaptive observer [4], [5] for speed sensorless
state estimation is provided to suffice self-containedness.
The basic idea is to treat the rotor speed ω as a constant
parameter, i.e. ω̇ = 0. Then, the original nonlinear system
dynamics in Equation (1) can be reduced to a linear system
with a parameter ω , which can be rewritten as follows

ẋ′ = A′(ω)x′+B′u

y =C′x′,
(2)

where x′ = [ids, iqs,φdr,φqr]
T and u = [uds,uqs]

T .

A′(ω) =


−γ 0 αβ βω

0 −γ −βω αβ

αLm 0 −α −ω

0 αLm ω −α

, B
′
=


1
σ

0
0 1

σ

0 0
0 0


T

,

C
′
=


1 0
0 1
0 0
0 0


T

. Based on the system (2), the Luenberger

observer is designed as follow,

˙̂x′ = A′(ω̂)x̂′+B′u+L(y− ŷ)

ŷ =C′x̂′,
(3)

where L is the observer gain matrix, x̂′ denotes the estimated
value of x′, and A′(ω̂) is the matrix A′(ω) with ω being
replaced by ω̂ . Speed estimation of the baseline algorithm is
given by

˙̂ω = hβ (ĩdsφ̂qr− ĩqsφ̂dr), (4)

where h> 0 is constant, ĩds = ids− îds, and ĩqs = iqs− îqs. Even
though the baseline algorithm works well in practice, there
are still two major limitations. As shown in the literatures
[4], [5], the zero solution of the estimation error dynamics
result from the baseline observer in Equation (4) can not
achieve asymptotic convergence. The other shortcoming is
that the performance of the observer is highly dependent on
the accuracy of the model parameters. Hence, this paper is
to construct a new adaptive observer to overcome the above
drawbacks and improve the performance of the baseline ob-
server. Since the convergence of the observer (4) can not be
established in the original state coordinates, we first exploit a
state transformation. Based on the new state coordinates, we
design an adaptive observer, which guarantees the asymptotic
convergence of the resultant estimation error dynamics. To
further improve the model-based observer, we make the
structure of the proposed observer adapt to the parameter
α . Lastly, we show that our proposed observer can readily
extend to the case that ω is treated as a slowly time-varying
parameter with bounded derivative.

III. PROPOSED LUENBERGER OBSERVER FOR
SPEED-SENSORLESS ESTIMATION

In this section, we first propose a state transformation and
design a new Luenberger observer based on the new state
coordinates. Next, the proposed speed and α adaptation laws
are designed based on the Lyapunov redesign method. Main
techniques used across this section can be found in [21],
which however concentrates on induction machines with
encoder.

A. Design of the Luenberger observer

The basic idea is to introduce the variables

z1 = ids +βφdr,

z2 = iqs +βφqr.
(5)

Denote the new states as ids, iqs, z1, and z2. By a change of
state coordinates, the system (1) is transformed to a linear
parametric-varying system as follows,

i̇ds =−
Rs

σ
ids−α(1+βLm)ids−ωiqs +αz1 +ωz2 +

uds

σ
,

i̇qs =−
Rs

σ
iqs−α(1+βLm)iqs +ωids +αz2−ωz1 +

uqs

σ
,

ż1 =−
Rs

σ
ids +

uds

σ
, (6)

ż2 =−
Rs

σ
iqs +

uqs

σ
.

Based on the system (6), we perform the Luenberger observer
design. We denote ẑ1 = îds + β φ̂dr and ẑ2 = îqs + β φ̂qr as
the estimates of z1 and z2, respectively, and consider the
following Luenberger observer

˙̂ids =−
Rs

σ
îds−α(1+βLm)ids− ω̂ îqs +α ẑ1 + ω̂ ẑ2

+ k1(ids− îds)+
uds

σ
,



˙̂iqs =−
Rs

σ
îqs−α(1+βLm)iqs + ω̂ îds +α ẑ2− ω̂ ẑ1

+ k1(iqs− îqs)+
uqs

σ
, (7)

˙̂z1 =−
Rs

σ
ids− k2ω̂(ids− îds)+

uds

σ
,

˙̂z2 =−
Rs

σ
iqs + k2ω̂(iqs− îqs)+

uqs

σ
,

where k1 and k2 are the observer gains. Note that the
dynamics of z1 and z2 only depend on the measurements
of stator currents (ids, iqs) and stator voltages (uds, uqs).

B. Design of ω and α adaption

The above subsection illustrates the design of a Luenberger
observer based on the new states. In this subsection, we show
that this observer enables us to rebuild the ω and α by
adaption. To enable adaption with respect to α , we introduce
two additional state variables ξ̂1 and ξ̂2. In fact, (ξ̂1, ξ̂2)
and (ẑ1, ẑ2) denote two different estimates of the unmeasured
variables (z1,z2). Thus, the dynamics of ξ1 and ξ2 are the
same as that of z1 and z2 in (6). By including the dynamics
of the states (ξ̂1, ξ̂2) into Equation (7), the proposed adaptive
Luenberger observer is shown as follow,

˙̂ids =−
Rs

σ
îds− α̂(1+βLm)ids− ω̂ îqs + α̂ξ̂1 + ω̂ ẑ2

+ k1(ids− îds)+
uds

σ
,

˙̂iqs =−
Rs

σ
îqs− α̂(1+βLm)iqs + ω̂ îds + α̂ξ̂2− ω̂ ẑ1

+ k1(iqs− îqs)+
uqs

σ
,

˙̂z1 =−
Rs

σ
ids− k2ω̂(ids− îds)+

uds

σ
,

˙̂z2 =−
Rs

σ
iqs + k2ω̂(iqs− îqs)+

uqs

σ
,

˙̂
ξ1 =−

Rs

σ
ids + k3(ids− îds)+

uds

σ
,

˙̂
ξ2 =−

Rs

σ
iqs + k3(iqs− îqs)+

uqs

σ
.

where k3 > 0 is the feedback gain for the states variables ξ̂1
and ξ̂2. Write the above equations in a matrix from

˙̂x = A(ω̂)x̂+Bu+L(ω̂)(y− ŷ)

ŷ =Cx̂.
(8)

where x = [ids, iqs,z1,z2,ξ1,ξ2]
T and x̂ is the estimate of x,

the matrices A(ω̂), B, L(ω̂) and C are defined as

A(ω̂) =


−Rs

σ
−ω̂ 0 ω̂ α 0

ω̂ −Rs
σ
−ω̂ 0 0 α

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,B =



1
σ

0
0 1

σ
1
σ

0
0 1

σ
1
σ

0
0 1

σ



T

,

L(ω̂) =

[
k1 0 0 −k2ω̂ k3 0
0 k1 k2ω̂ 0 0 k3

]T

,C =


1 0
0 1
0 0
0 0
0 0
0 0



T

.

Based on the above system, the α adaption scheme is
selected as

˙̂α = Proj(g(ĩds[ξ̂1− (1+βLm)ids]

+ ĩqs[ξ̂2− (1+βLm)iqs]), α̂). (9)

where g> 0 is a constant and Proj(.) is the smooth projection
operator defined by

Proj{ρ, α̂}=


ρ if p(α̂)≤ 0
ρ if p(α̂)≥ 0 and ρ ≥ 0
[1− p(α̂)]ρ otherwise

(10)

in which p(α̂) =
α2

l −α̂2

2δαl−δ 2 . We employ a projection operator
to ensure α̂>αl>0, where αl is a lower bound of α̂ .

The adaptation law for estimating ω is

˙̂ω = Kp ·Sign(ω) ·Proj(−îqs ĩds + îds ĩqs + ẑ2 ĩds− ẑ1 ĩqs)

= Kp ·Sign(ω) ·Proj
(
β (ĩdsφ̂qr− ĩqsφ̂dr)

)
, (11)

where Kp > 0 is a constant selected by the user, Sign(.)
is the sign operator, and the fluxes φ̂dr, φ̂qr can be re-

constructed by using the following equation,
[

φ̂dr
φ̂qr

]
=

1
β

[
α̂ ω̂

−ω̂ α̂

]−1
[

α̂ξ̂1 + ω̂ ẑ2

α̂ξ̂2− ω̂ ẑ1

]
− 1

β

[
ids
iqs

]
. Note that we

develop the adaptive signals (9) and (11) based on a Lya-
punov redesign algorithm [22].

Remark III.1 A key assumption is the adaptive law (11) and
the stability analysis below is that we know the rotational
direction of the motor. This will not incur any problem when
the motion works in mid or high speeds. We expect the pro-
posed estimation algorithm results in improved performance
and reliability versus the baseline algorithm. While the motor
runs at low speeds, the proposed estimation algorithm may
not enjoy such advantages.

IV. STABILITY ANALYSIS

In this section, we show that by running the proposed
observer (8) with the update law (9) and (11), the full state
estimation errors are bounded. Furthermore, if a PE condition
is met, the estimation errors can converge to zero.

A. Stability analysis of the proposed observer

To prove the convergence of parameter estimation error
dynamics, we need the Barbalat’s lemma [22] as follows

Lemma IV.1 Let f : [0,∞]→ R be a uniformly continuous
function and suppose that limt→∞

∫ t
0 f (τ)dτ exists and is

finite. Then f (t)→ 0 as t→ ∞.



We have the following proposition about the boundedness
of the state estimation errors

Proposition IV.2 Consider the induction motor model in
Equation (1). By implementing the Luenberger observer (8)
with the adaption laws (9) and (11), the stator current
estimations errors ĩds = ids− îds and ĩqs = iqs− îqs achieve
asymptotic convergence and the full state estimation errors
are bounded.

Proof: Let us first introduce the error signals as z̃1 =
z1− ẑ1, z̃2 = z2− ẑ2, ξ̃1 = z1− ξ̂1, ξ̃2 = z2− ξ̂2, α̃ = α −
α̂ , and ω̃ = ω − ω̂ . By combining the system (6) and the
Luenberger observer (8), the dynamics of the error signals
can be obtained as follow,

˙̃ids =−(
Rs

σ
+ k1)ĩds− α̃(1+βLm)ids− ω̃ îqs−ω ĩqs

+αξ̃1 + α̃ξ̂1 +ω z̃2 + ω̃ ẑ2

˙̃iqs =−(
Rs

σ
+ k1)ĩqs− α̃(1+βLm)iqs− ω̃ îds−ω ĩds

+αξ̃2 + α̃ξ̂2−ω z̃1− ω̃ ẑ1

˙̃z1 = k2ω̂ ĩqs,
˙̃
ξ1 =−k3 ĩds,

˙̃z2 =−k2ω̂ ĩds,
˙̃
ξ2 =−k3 ĩqs.

(12)

The stability of the estimation error dynamics can be estab-
lished using the following Lyapunov function,

V =
1
2
(ĩ2ds + ĩ2qs)+

ω

2k2ω̂
(z̃2

1 + z̃2
2)+

α

2k2
(ξ̃ 2

1 + ξ̃
2
2 )

+
1

2g
α̃

2 +
1

2Kp
ω̃

2.
(13)

The derivative of the Lyapunov function V can be written as

V̇ =−(k1 +
Rs

σ
)(ĩ2ds + ĩ2qs)+

− ˙̂ω
ω̂2

ω

2k2
(z̃2

1 + z̃2
2)

+ ĩdsα̃(ξ̂1− (1+βLm)ids)+ ĩqsα̃[ξ̂2− (1+βLm)ids]︸ ︷︷ ︸
ρ1

(14)

+α ĩdsξ̃1 + ĩdsω z̃2 +α ĩqsξ̃2− ĩqsω z̃1︸ ︷︷ ︸
ρ2

−ω̃ îqs ĩds + ω̃ îds ĩqs + ω̃ ẑ2 ĩds− ω̃ ẑ1 ĩqs︸ ︷︷ ︸
ρ3

+
ω

k2ω̂
(z1 ˙̃z1 + z2 ˙̃z2)

α

k3
(ξ1

˙̃
ξ1 +ξ2

˙̃
ξ2)+

1
g

α̃ ˙̃α +
1
g

ω̃ ˙̃ω.

From (12), we know that
ω

k2ω̂
(z1 ˙̃z1 + z2 ˙̃z2) =−ĩdsω z̃2 + ĩqsω z̃1,

α

k3
(ξ1

˙̃
ξ1 +ξ2

˙̃
ξ2) =−α ĩdsξ̃1−α ĩqsξ̃2,

(15)

which can cancel the ρ2 terms in Equation (14).
Substituting the adaptive law Equation (9) into Equation

(14), the properties of the projection operator guarantee that

ĩdsα̃(ξ̂1− (1+βLm)ids)+ ĩqsα̃[ξ̂2− (1+βLm)ids]+
1
g

α̃ ˙̃α ≤ 0

Similarly, with the adaptive ω update law in (11), the ρ3
term in Equation (14) can be canceled. Meanwhile, we can
guarantee the term − ˙̂ω

ω̂2
ω

2k2
(z̃2

1+ z̃2
2)≤ 0 by using the property

of the sign operator. Therefore, substituting Equations(11)
and (9) into (14), we have the inequality

V̇ ≤−(k1 +
Rs

σ
)(ĩ2ds + ĩ2qs). (16)

Equation (16) implies V (t)<V (0), from which we conclude
that the estimation errors ĩds, ĩqs, z̃1, z̃2, ξ̃1 and ξ̃2 are
bounded.

We can further apply Barbalat’s Lemma to prove the
asymptotic convergence of current estimation errors. By
assuming the states ids, iqs,φdr,φqr, ω to be bounded, from
the error dynamics in Equation (12), we observe that ˙̃ids
and ˙̃iqs are bounded, and thus ĩds and ĩqs are uniformly
continuous. Then, if we can prove that limt→∞

∫ t
0 ĩ2ds + ĩ2qsdt

exists and finite, then Barbalat’s lemma would imply ĩds and
ĩqs go to zero. Given the results of (16), we have

−
∫ t

0
V̇ (τ)dτ ≥ (k1 +

Rs

σ
)
∫ t

0
(ĩ2ds(τ)+ ĩ2qs(τ))dτ. (17)

Then, we have∫ t

0
(ĩ2ds(τ)+ ĩ2qs(τ))dτ ≤ (k1 +

Rs

σ
)V (0), (18)

which implies that the existence of limt→∞

∫ t
0 ĩ2ds + ĩ2qsdt.

Hence, by using the Lemma IV.1, we can conclude that
limt→∞[ids(t)− îds(t)] = 0, limt→∞[iqs(t)− îqs(t)] = 0 This
completes the proof.

As discussed previously, the state estimation errors z̃1, z̃2,
ξ̃1 and ξ̃2 are bounded. It is known that the convergence of
the estimates to the true values relies on the existence of the
persistency of excitation conditions [23]. To guarantee the
asymptotic convergence, we further provide the persistency
of excitation conditions and have the following proposition.

Proposition IV.3 Consider the induction motor model
in (1). By implementing the Luenberger observer (8) with the
adaption update laws (9) and (11), the full state estimation
errors z̃1, z̃2, ξ̃1, ξ̃2, α̃ , and ω̃ achieve asymptotic convergence
if there exist two positive real numbers T > 0 and m> 0 such
that for all t > 0 the following inequality holds:∫ t+T

t
B∗T (τ)B∗(τ)dτ ≥ mI6×6, (19)

where the matrix B∗ is defined as,

B∗ =

[
α 0 0 ω ξ̂1− (1+βLm)ids ẑ2− îqs

0 α −ω 0 ξ̂2− (1+βLm)iqs ẑ1− îds

]
.

Proof: To construct the persistence of excitation con-
dition, we rewrite the error systems in Equations (9), (11),
and (12) in the following compact form

Ṡ = A∗S+B∗Z

Ż = D∗S,
(20)

where S = [ĩds, ĩqs]
T , Z = [ξ̃1, ξ̃2, z̃1, z̃2, α̃, ω̃]T , D∗ is a

suitable matrix, and the matrix A∗ is denoted as A∗ =



[
−Rs

σ
− k1 −ω

ω −Rs
σ
− k1

]
. According to the PE condition

in (19), if ids, iqs, φdr, φqr, ω are bounded, then the error
z̃1, z̃2, ξ̃1, ξ̃2, α̃ , and ω̃ exponentially converge to zero from
arbitrary initial conditions [21, Lem. A.3].

B. Extension to the time-varying ω case

We previously assume ω as a constant parameter. In the
following, we further show that the proposed observer design
can deal with a more general case, where ω is a slowly time-
varying parameter with a bound derivative. When ω̇ 6= 0 , the
error systems can be rewritten as follows,

Ṡ = A∗S+B∗Z,

Ż = D∗S+E∗ω̇,
(21)

where the matrix E∗ is defined as, E∗ =[
0 0 0 0 0 1

]T
. Based on the new error system

(21), we establish a set of sufficient conditions for the system
such that the estimation errors are uniformly bounded. We
have the proposition as follow.

Proposition IV.4 If i) there exist positive constants T and m
such that ∀t ≥ 0 the persistency of excitation condition (19)
is satisfied, ii) there exists a positive constant M1 such that
∀t ≥ 0

‖ω̇‖∞ ≤M1 < ∞, (22)

then there exist finite constants K1 and K2 such that

‖ω̃(t)‖ ≤ K1‖ω̃(0)‖+K2,∀t ≥ 0, (23)

Proof: It follows from condition i) that the homoge-
neous part of the error systems (21) is exponentially stable.
One can readily verify that the result (23) follows from [23,
Thm. 3.1, p.105] using (22). Detailed proof is omitted here.

V. SIMULATION VALIDATION

In this section, we demonstrate the performance of the
proposed observer by simulation in a Matlab/Simulink plat-
form. In simulation, all observer initial conditions are set to
zero. Table II compares the eigenvalues of the baseline and
the proposed observers under different operating speed. Since
the proposed observer has similar negative eigenvalues, it can
have a fast convergence rate. To achieve a fair validation, all
the model parameters for both the baseline algorithm and
the proposed observer are unbiased. The induction motor
parameters in simulation are shown in Table III. In Fig. 1
and Fig. 2, we show the estimated speed under step-type
speed reference from 50 rad/s and 100 rad/s and 20 rad/s and
40 rad/s, respectively. The comparison between the baseline
observer and the proposed observer at different speeds are
shown in Fig. 2(b) and Fig. 3(b). It can been seen that in the
speed estimation error plot, the proposed method can achieve
better dynamic performance under different operating speeds.
In Fig. 3, we further show the Luenberger observer perfor-
mance with respect to the variance of parameter α . In this
case, we set the nominal value to α = 10 and the bound on
α̂ from below to αl = 0.05. The initial values α̂ for both the
baseline algorithm and the proposed algorithm are set to 6.6.

When the parameter of α is biased, the baseline algorithm
becomes much worse than the proposed method in Fig. 3(b).
We can see from the Fig. 4 that the final value of α̂ is 10.5,
which is slightly different from the nominal value 9.9354.

TABLE II
COMPARISON OF EIGENVALUES BETWEEN THE BASELINE AND THE

PROPOSED OBSERVERS.

Speed The proposed observer The baseline observer
-347.97 + 13.97i -479.11 + 14.55i
-347.97 - 13.97i -479.11 - 14.55i

ω̂ = 30 -147.42 + 16.03i -16.28 + 15.45i
-147.42 - 16.03i -16.28 - 15.45i

-247.11 + 384.43i -474.37 + 29.09i
-247.11 - 384.43i -474.37 - 29.09i

ω̂ = 60 -248.28 + 324.43i -21.03 + 30.91i
-248.28 - 324.43i -21.03 - 30.91i
-247.18 + 718.75i -466.28 - 48.42i
-247.18 - 718.75i -466.28 - 48.42i

ω̂ = 100 -248.21 + 618.75i -29.11 + 51.58i
-248.21 - 618.75i -29.11 - 51.58i

TABLE III
INDUCTION MOTOR PARAMETERS IN SIMULATION.

Parameter Value Description
p 2 Pole pair number
J 0.0163 kgm2 Rotor inertia

Rs 0.439 Ω Stator resistance
Rr 0.41 Ω Rotor resistance
Lm 60.1e-3 H Mutual inductance
σs 1.4e-3 H Stator leak inductance
σr 1.8e-3 H Rotor leak inductance
α 9.9354 Rr/Lr
φ∗ 0.5307 reference rotor flux
ω∗ NA reference rotor speed

VI. CONCLUSIONS AND FUTURE WORK

This paper developed a new adaptive Luenberger observer
for speed-sensorless induction motors. The proposed ob-
server is designed on a new state coordinates, which provides
better dynamic performance. Applying the α adaptation
results in the robustness to parameter variations. Theoretical
justifications of the proposed observer were provided by
performing convergence analysis. Simulation results were
provided to demonstrate the proposed approach. Future work
includes experimental validation of the proposed algorithm
and construct a systematic scheme for tuning the parameters.
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