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Abstract
This work proposes a Model Predictive Control (MPC) policy for simultaneous station keeping
and momentum management of a low-thrust nadir-pointing satellite in geostationary orbit
around the Earth. The satellite is equipped with six electrically powered thrusters and three
axisymmetric reaction wheels, which must be coordinated to control the satellite orbital
position and, concurrently, unload the wheels’ stored angular momentum. The MPC policy
enforces constraints that maintain the satellite in a tight latitude and longitude window and
in a tight nadir-pointing attitude configuration, while minimizing the delta-v provided by
the thrusters. The MPC policy exploits a prediction model of the environmental disturbance
forces in order to significantly reduce the delta-v required for station keeping, and enforces
constraints determined by the thruster configuration to select control forces and torques that
can be generated by the propulsion system. Numerical simulations of the control policy
in closed-loop with the satellite nonlinear dynamics under high-precision orbit propagation
provided by Systems Tool Kit (STK) that validate the performance of the proposed design
in terms of thruster usage and constraint enforcement are presented.
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This work proposes a Model Predictive Control (MPC) policy for simultaneous station keeping and 
momentum management of a low-thrust nadir-pointing satellite in geostationary orbit around the Earth. 
The satellite is equipped with six electrically powered thrusters and three axisymmetric reaction wheels, 
which must be coordinated to control the satellite’s orbital position and, concurrently, unload the wheels’ 
stored angular momentum. The MPC policy enforces constraints that maintain the satellite in a tight 
latitude and longitude window and in a tight nadir-pointing attitude configuration, while minimizing 
the delta-v provided by the thrusters. The MPC policy exploits a prediction model of the environmental 
disturbance forces in order to significantly reduce the delta-v required for station keeping, and enforces 
constraints determined by the thruster configuration to select control forces and torques that can be 
generated by the propulsion system. Numerical simulations of the control policy in closed-loop with 
the satellite nonlinear dynamics under high-precision orbit propagation provided by Systems Tool Kit 
(STK) that validate the performance of the proposed design in terms of thruster usage and constraint 
enforcement are presented.
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1. Introduction

Satellites in geostationary Earth orbit (GEO) are subject to vari-
ous non-Keplerian forces and disturbance torques that affect their 
ability to maintain station and nadir-pointing attitude [1, Ch. 9], [2, 
Ch. 8]. However, for proper operation, and in order to not interfere 
with other spacecraft, the position and attitude of a GEO satel-
lite must be maintained within tight pre-specified ranges. When 
these operating conditions are met, the satellite appears as a fixed 
point in the sky, collisions with other bodies cannot take place, 
and body-fixed satellite equipment, such as antennas and dishes, 
are properly oriented. Thus, to counteract the disturbance forces 
and torques so as to meet these operational requirements, GEO 
satellites are often equipped with thrusters for station-keeping 
(SK) maneuvers, and reaction wheels for momentum management 
(MM).

A GEO satellite is assigned a station-keeping window, a rectan-
gular region above the Earth, whose sides are lines of longitude 
and latitude [3, Ch. 5], [4,5]. Conventionally, satellites in GEO use 
chemical propulsion for SK within this window. The propulsion 
system is manually commanded from the ground to fire roughly 
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once every two weeks in order to compensate for secular and 
periodic perturbations that force the satellite outside of its station-
keeping window. SK maneuvers that a GEO satellite performs are 
typically small but, over an ordinary satellite lifetime of twelve to 
fifteen years, the total Delta-v required is substantial. Thus, a sig-
nificant amount of the mass of the satellite is fuel, reducing the 
available payload. For surveys on conventional SK, see [6,7] and 
references therein. In recent years, GEO satellites have begun to 
utilize electric propulsion, which is a more efficient alternative to 
chemical propulsion. Electric thrusters [8, Ch. 1], [9,10] have sig-
nificantly higher specific impulse Isp than conventional chemical 
thrusters, meaning that they generate force more efficiently with 
respect to propellant mass, and can therefore be used to increase 
spacecraft longevity, and/or increase payloads, and/or decrease the 
cost of orbital insertion. Since these considerations are becoming 
more important, electric propulsion has been slowly overcoming 
resistance that has heretofore hindered its use in application [11,
12]. Nonetheless, high-efficiency electric thrusters generate thrust 
that is on the order of one hundredth the magnitude of chemical 
thrusters and this poses new challenges in their use.

In addition to orbital perturbations, GEO satellites are disturbed 
by environmental torques that perturb the attitude of the satel-
lite. Momentum management of GEO satellites is thus needed in 
order to counteract these disturbance torques. Since the attitude 

of the satellite must be tightly controlled, the disturbance torques 
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Nomenclature

A discrete-time system matrix
Ac continuous-time system matrix
B discrete-time input matrix
Bc continuous-time input matrix
Csrp solar radiation pressure constant . . . . . . . . . . . . . . . kN/m2

Fx, F y, F z external force coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . N
J2 geopotential perturbation model coefficient
Jb satellite bus moment of inertia . . . . . . . . . . . . . . . . . kg m2

Jsc satellite total moment of inertia . . . . . . . . . . . . . . . . kg m2

Jwi ith reaction wheel moment of inertia . . . . . . . . . . kg m2

R satellite attitude matrix
S satellite solar-facing surface area. . . . . . . . . . . . . . . . . . . m2

δ
⇀
r satellite position vector with respect to target 

location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . km
δx, δy, δz satellite relative coordinates . . . . . . . . . . . . . . . . . . . . . . km
δω1, δω2, δω3 satellite relative angular velocity 

coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s
δψ, δθ, δφ 3-2-1 satellite relative Euler angles . . . . . . . . . . . . . . rad
η reaction wheel acceleration command . . . . . . . . . . rad/s2

η1, η2, η3 reaction wheel acceleration command 
coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s2

k̂E z-axis unit vector of the Earth-centered inertial frame

λ1,max maximum longitude error . . . . . . . . . . . . . . . . . . . . . . . . . . rad
λ2,max maximum latitude error . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
μ gravitational parameter . . . . . . . . . . . . . . . . . . . . . . . . km3/s2

μmoon lunar gravitational parameter . . . . . . . . . . . . . . . . . . km3/s2

μsun solar gravitational parameter . . . . . . . . . . . . . . . . . . km3/s2

νi ith reaction wheel angular rate . . . . . . . . . . . . . . . . . . rad/s
ω satellite angular velocity . . . . . . . . . . . . . . . . . . . . . . . . . rad/s
ψ,θ,φ satellite 3-2-1 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . rad
ρE Earth’s equatorial radius . . . . . . . . . . . . . . . . . . . . . . . . . . . km
τ satellite thruster torque . . . . . . . . . . . . . . . . . . . . . . . . . . . N m
τ1, τ2, τ3 satellite thruster torque coordinates . . . . . . . . . . . . . N m
⇀

F external force vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
⇀
ap perturbation acceleration vector . . . . . . . . . . . . . . . . km/s2

⇀
r satellite position vector with respect to center of 

Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . km
⇀
r 0 nominal orbital position vector . . . . . . . . . . . . . . . . . . . . km
ap,x,ap,y,ap,z perturbation acceleration coordinates . . . . . km/s2

crefl satellite surface reflectance
m satellite mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
n mean motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s
u control vector
x state vector
must be absorbed by onboard momentum exchange devices such 
as reaction wheels. However, as reaction wheels cannot spin at ar-
bitrarily high rates, there is a limit to the amount of disturbance 
torques that a satellite may absorb. Therefore, to prevent saturation 
of the wheels and subsequent loss of the desired satellite attitude, 
the angular momentum stored by the wheels must be periodically 
unloaded. Momentum unloading is often a manually controlled op-
eration [13–15], whereby a set of thrusters, different from those 
used for SK and often producing much less thrust, are commanded 
to fire in order to lower the reaction wheels’ spin rates. Thus, in 
order to further reduce the mass of the spacecraft propulsion sys-
tem, it is desirable to utilize the same set of thrusters for both 
SK and momentum unloading. Electric thrusters, producing lower 
amounts of thrust and thereby allowing for finer control, can be 
used for this purpose. When the same set of thrusters is used for 
both station keeping and momentum management, the two usu-
ally decoupled objectives of orbital and attitude control become 
coupled through constraints on the propulsion system.

In this work, we consider simultaneous station keeping and 
momentum management (SK-MM) of satellites equipped with 
electric propulsion systems. Since electric propulsion produces 
thrust on the order of magnitude of GEO perturbation forces [12,
16], electric thrusters have to fire continuously in order to impart 
a response that is equivalent to that of a chemical thruster. Thus, 
due to the low thrust of the propulsion system and due to the fact 
that the same thrusters are used for both SK and MM, the conven-
tional, impulsive, control approaches may not be appropriate.

Much of the research on low-thrust SK has thus far focused 
on open-loop optimal maneuver design, e.g., [17–21]. Here, we 
consider onboard feedback control algorithms that continuously 
adjust the thrusters without constant supervision of a ground 
control center. The satellite thus performs SK-MM operations au-
tonomously and concurrently. Developing the capability of closed-
loop control is attractive [3, Ch. 8.2], [22, Ch. 11.7]. Satellite co-
location and the relatively high density of the GEO belt requires 
that satellites be placed in tight SK windows, and it can be ex-
pected that such SK windows will become even smaller in the 

next few years due to the increasing amount of satellites in the 
GEO belt. Smaller SK windows necessitate more frequent control, 
which would place an excessively large burden on ground control 
operators. Thus, closed-loop control allows for a greater degree of 
satellite autonomy, and reduces the need of constant supervision 
from ground control centers, which helps to increase the number 
of objects in the sky without increasing the fixed infrastructure of 
ground control centers. Additionally, onboard autonomous opera-
tion has the potential to reduce cost and risk by removing operator 
and communication errors. However, the onboard implementation 
of the control algorithm also introduces challenging limitations. 
Feedback control algorithms tend to operate with update rates that 
are faster than those of open-loop control algorithms, being fo-
cused on rejecting disturbances by using feedback from sensors. 
Most importantly, the computational capabilities of the on-board 
computing platform are significantly reduced with respect to those 
of ground control centers, i.e., embedded systems as opposed to 
mainframes and clusters. As a consequence, the onboard control 
algorithm needs to be lightweight compared to those executed in 
ground control centers, and to complete the computations within 
the allocated execution period. Furthermore, the computational 
routines of the control algorithm need to be relatively simple to 
allow for rapid and thorough verification, as required for the cer-
tification of autonomous systems. The salient features of the coor-
dinated SK-MM problem include continuous control, fuel-efficiency 
maximization, ability to meet tight SK window and attitude error 
requirements, stringent constraints on available thrust, and the co-
ordination between orbital and attitude control. Considering the 
above, it is clear that the SK-MM problem is an ideal candidate for 
model predictive control (MPC). MPC [23, Ch. 2] is a receding hori-
zon control strategy that exploits a prediction model of the system 
dynamics in order to attain a trajectory that minimizes a cost func-
tion, possibly accounting for several control objectives, subject to 
both state and control constraints over a finite future prediction 
horizon. Research has been done to apply MPC in the context of 
low thrust propulsion for interplanetary rendezvous [24], and atti-
tude control [25].

When nonlinear prediction models are used within MPC, the 

resulting optimization problem is non-convex [23, Chapter 2], 
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and hence convergence to the global optimum cannot be guaran-
teed [26, Chapter 4] unless global optimization techniques such as 
dynamic programming or sampling based techniques are applied. 
However, these methods tend to be computationally demanding 
as the system dimension increases due to the curse of dimen-
sionality [27, Ch. 6]. Since our aim is to develop algorithms that 
can be executed onboard, in this work we develop a feedback 
control algorithm in the form of a linear-quadratic constrained 
model predictive control. The proposed algorithm autonomously 
coordinates the SK and MM operations, enforcing the specifica-
tion constraints of proper operation, while attempting to maximize 
fuel-efficiency. At the same time, during execution, only quadratic 
programming (QP) problems need to be solved, for which sev-
eral fast and low complexity algorithms have been developed in 
recent years for embedded system execution [28–35]. While us-
ing a linear-quadratic MPC induces some approximations in the 
prediction of the satellite dynamics, due to the tight SK-MM re-
quirements around the satellite operating point, we expect the 
prediction to be accurate over the constraint-admissible operating 
range, and we rely on the inherent robustness of the feedback na-
ture of MPC to reject the errors caused by such approximations, 
while still achieving correct and effective satellite operation.

The MPC prediction model developed in this work is based on 
the linearization of the satellite dynamics around their nominal 
operating condition. To compute the satellite’s position and ve-
locity relative to a target location in GEO, we use Euler angles 
to represent the attitude of the satellite relative to the nadir-
pointing local-vertical, local-horizontal (LVLH) frame, and we use 
the Clohessy–Wiltshire Hill (CWH) equations for orbital position. 
The MPC scheme enforces constraints relating to the size of the 
SK window, the maximum allowed satellite attitude error, and the 
limits on thrust magnitude. To handle major perturbation forces, 
we incorporate a predicted disturbance sequence into our MPC 
model with the use of analytic expressions. Such disturbance mod-
els allows the MPC to increase the fuel efficiency of the solution; 
as an example, our simulations show that the MPC scheme is able 
to compute fuel efficient maneuvers by taking advantage of the 
coupling in the orbital plane of the CWH dynamic equations.

The proposed control method is validated through numerical 
simulations. In our simulations, we have utilized numerical inte-
gration of the full nonlinear governing equations and perturbation 
forces. The results show that MPC is able to achieve fuel-efficient 
SK-MM maneuvers while satisfying all the satellite operation con-
straints. For additional validation, we have performed simulations 
using the Systems Tool Kit (STK)/Astrogator� , a high-fidelity orbit 
propagator in order to validate both our nonlinear model and the 
applicability of our MPC design to real-world implementation. In 
such simulations we have closed the loop between the MPC policy 
and the STK Astrogator propagator where, during each sampling 
period, the MPC policy computes the control commands and sends 
them to the STK propagator, which then uses them to update the 
orbital position and returns the new satellite conditions to the con-
troller for use during the next sampling period.

Preliminary versions of some results in this paper have ap-
peared in various conference publications [36–38]. In this work, we 
expand upon those by providing additional details on the model 
and on the control design, adding discussions on the computa-
tional feasibility of our algorithm for on-board implementation, 
providing more simulation results, and including a validation of 
our simulations under high-precision orbit propagation provided 
by STK. Overall, this paper contains more details, case studies, in-
terpretations, and discussion.

The paper is organized as follows. In Section 2 we present 
the kinematics and dynamics of a nadir-pointing satellite in GEO 
and review the main orbital perturbations it experiences. In Sec-

tion 3 we present the formulation of the optimization problem 
Fig. 1. Inertial and non-inertial frames used for describing the satellite dynamics.

constraints and develop the MPC policy. Section 4 highlights the 
proposed strategy on numerical examples and presents the valida-
tion results from STK. Finally, we provide concluding remarks and 
thoughts on future research directions in Section 5.

2. Kinematic and dynamic models

In this section, we review the nonlinear and linearized orbital 
and attitude dynamics of geostationary satellites and present ana-
lytical expressions for the main perturbations that affect satellites 
in GEO.

2.1. Notation

The vector 
⇀
r q/p denotes the position of point q relative to 

point p, the vector 
⇀
v q/p/X denotes the velocity of point q relative 

to point p with respect to frame FX, and the vector 
⇀
ωY/X denotes 

the angular velocity of frame FY relative to frame FX. Note that 
⇀

(·)
denotes a coordinate-free (unresolved) vector. All frames are or-
thogonal and right-handed.

2.2. Satellite orbital dynamics

The relative position vector of a satellite with respect to a target 
location on an orbit is expressed as

δ
⇀
r = δxı̂ + δyĵ + δzk̂,

where δx, δy and δz are the components of the position vector 
of the satellite relative to the target location and ı̂ , ĵ , k̂ are the 
unit vectors of Hill’s frame FH. In Hill’s frame FH, the y-axis is in 
the direction of satellite velocity, the x-axis is in the radial direc-
tion pointing away from the Earth, and z-axis is in the direction of 
angular momentum. Hill’s frame can be visualized in Fig. 1, along 
with the inertial Earth-centered frame FE, the LVLH frame FL, and 
the satellite body-fixed frame FB.

The position vector of the satellite with respect to the center 
of the Earth is given by 

⇀
r = ⇀

r 0 + δ
⇀
r , where 

⇀
r 0 is the nominal 

orbital position vector. The nonlinear equation of motion for the 
satellite relative to inertial frame FE is given by

⇀̈
r = −μ

⇀
r

r3
+ 1

m

⇀

F + ⇀
a p, (1)

where 
⇀

F is the vector of external forces applied to the satellite by 
the thrusters, 

⇀
a p is the vector of perturbation accelerations, r =

|⇀r | is the distance of the satellite from Earth’s center of gravity, m

is the mass of the satellite, and μ is Earth’s gravitational constant.
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For small maneuvers around a nominal circular orbit, for which 
δr � r, the linearized CWH equations [39], [40, pg. 300] approxi-
mate the relative motion of the satellite as

δẍ − 3n2δx − 2nδ ẏ = Fx

m
+ ap,x,

δ ÿ + 2nδẋ = F y

m
+ ap,y,

δ z̈ + n2δz = F z

m
+ ap,z,

(2)

where Fx, F y, F z are components of the thrust force vector, 
ap,x, ap,y, ap,z are components of the perturbation acceleration vec-

tor, and n =
√

μ

R3
0

denotes the mean motion of the nominal orbit. 

The linearized dynamics account for differences in gravity between 
the satellite and nominal orbital location. The satellite dynamics 
in the orbital plane (x–y) and in the out-of-orbital axis (z) are 
decoupled. The in-plane dynamics are Lyapunov unstable, with 2 
eigenvalues at the origin and 2 eigenvalues on the imaginary axis 
at ±n, while the out-of-plane dynamics are marginally Lyapunov 
stable, with 2 eigenvalues on the imaginary axis at ±n.

2.3. Satellite attitude kinematics

The satellite’s attitude is determined by Poisson’s equation,

Ṙ(t) = R(t)ω×(t), (3)

where ω(t) ∈ R
3 is the angular velocity of the satellite bus frame 

FB with respect to the inertial frame FE resolved in the satel-
lite frame, ω×(t) is the cross-product matrix of ω(t), and R(t) =
OE/B(t) ∈ R

3×3 is the rotation matrix, resolved in the satellite 
frame, that transforms the inertial frame into the satellite frame. 
Therefore, R(t) is the proper orthogonal matrix (that is, the rota-
tion matrix) that transforms the components of a vector resolved 
in the satellite frame into the components of the same vector re-
solved in the inertial frame.

The attitude R of a nadir-pointing satellite on a circular geosta-
tionary orbit must follow an attitude trajectory given by a time-
varying continuously differentiable rotation matrix Rd(t) =OE/L(t)
so that the bus-fixed frame FB aligns with the LVLH frame FL. For 
t ≥ 0, Rd(t) is given by

Ṙd(t) = Rd(t)ω×
d (t),

Rd(0) = Rd0,
(4)

where ωd(t) is the desired angular velocity and, for a nadir-
pointing satellite in GEO, is given by a constant spin about the 
axis perpendicular to the orbital plane with a period of one side-
real day.

The error between R(t) and Rd(t) is given in terms of the 
attitude-error rotation matrix

R̃
�= RT Rd = OT

E/BOE/L = OB/L. (5)

Because we are considering small motions about an equilibrium, 
we parameterize the attitude-error rotation matrix R̃ using a set 
of 3-2-1 Euler angles (ψ, θ, φ), where R̃ = C1(φ)C2(θ)C3(ψ) and 
C1, C2, and C3 are elementary rotations about the x, y, and z-axes 
by the angles ψ , θ , and φ, respectively. The angular velocity ω =
⇀
ωB/E

∣∣∣
B

is thus given by

⇀
∣∣ (

⇀ ⇀
)∣∣ (

⇀
)∣∣
ωB/E∣
B

= ωB/L + ωL/E ∣
B

= ωB/L − nê y ∣
B
,

=
⎡
⎢⎣

φ̇

0

0

⎤
⎥⎦ + C1(φ)

⎡
⎢⎣

0

θ̇

0

⎤
⎥⎦ + C1(φ)C2(θ)

⎡
⎢⎣

0

0

ψ̇

⎤
⎥⎦

− nOB/L

⎡
⎢⎣

0

1

0

⎤
⎥⎦ . (6)

Let ωd = [
0 −n 0

]T, the linearization of (6) about ωd yields

δφ̇ = δω1 + nδψ,

δθ̇ = δω2,

δψ̇ = δω3 − nδφ.

(7)

2.4. Attitude dynamics for a satellite with reaction wheels

Consider a satellite actuated by three axisymmetric wheels 
w1, w2, w3, each with moment of inertia Jwi = diag(αi, βi, βi), at-
tached to a rigid bus b with moment of inertia Jb = diag( Jb1 , Jb2 ,

Jb3 ) in an orthogonal configuration aligned with the principal axes 
of the bus. The wheels are mass-balanced relative to the center of 
mass of the bus so that the center of mass of the satellite coincides 
with the center of mass of the bus. Each wheel wi is mounted so 
that it rotates about one of its own principal axes passing through 
its own center of mass with angular rate νi . Assume a bus-fixed 
frame FB, three wheel-fixed frames FW1 , FW2 , FW3 , whose x-axes 
are aligned with the rotation axes of w1, w2, w3, respectively, and 
an inertial frame FE. Then, the attitude dynamics of the satellite 
are given by [41]

Jscω̇ = ( Jscω + Jαν) × ω − Jαη + τ , (8a)

ν̇ = η, (8b)

where ν �= [ν1 ν2 ν3]T, the vector τ represents the torque ap-

plied to the satellite from the thrusters, Jα
�= diag(α1, α2, α3) is 

the moment of inertia of the reaction wheel array, and Jsc =
J̃b + Jα is the moment of inertia of the satellite bus and reaction 
wheel array, where the moments of inertia β1, β2, β3 of the wheels 
are lumped into the bus inertia J̃b = diag( J̃b1 , J̃b2 , J̃b3 ), where 

J̃b1

�= Jb1 + β2 + β3, J̃b2

�= Jb2 + β1 + β3, and J̃b3

�= Jb3 + β1 + β2. 
For each wheel wi , the wheel angular accelerations are given by ηi , 
where η �= [η1 η2 η3]T. Note that, in practice, a servo loop is 
closed around each reaction wheel in order to produce the desired 
wheel angular accelerations.

The linearization of (8) about an equilibrium y-axis (principal 
axis) spin ωd with an angular rate corresponding to the mean mo-
tion n of the orbit yields

Jsc1 δ̇ω1 = − (
Jsc2 − Jsc3

)
n δω3 + nα3δν3 − α1η1 + τ1, (9a)

Jsc2 δ̇ω2 = −α2η2 + τ2, (9b)

Jsc3 δ̇ω3 = − (
Jsc1 − Jsc2

)
n δω1 − nα1δν1 − α3η3 + τ3, (9c)

δν̇1 = η1, (9d)

δν̇2 = η2, (9e)

δν̇3 = η3. (9f)

2.5. Perturbations

Keplerian orbits, i.e., conic-section solutions to the two-body 

problem in a uniform inverse-square force field, do not exist 
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in practice. Without orbital correction maneuvers, satellites drift 
from their assigned orbital positions due to various perturbational 
forces. For satellites in GEO, the main perturbations are solar and 
lunar gravitational attraction, which induce a drift in orbital in-
clination, solar radiation pressure, which affects orbit eccentric-
ity, and the anisotropic geopotential, that is, Earth’s non-spherical 
gravitational field, which induces in-orbital-plane longitudinal drift 
[21], [42, Ch. 7]. Analytic expressions for these perturbation forces 
per unit mass, i.e., the disturbance accelerations, are given, respec-
tively, by

⇀
a sun = μsun

⎛
⎝⇀

r sun/sc

r3
sun/sc

−
⇀
r sun/earth

r3
sun/earth

⎞
⎠ , (10a)

⇀
a moon = μmoon

⎛
⎝⇀

r moon/sc

r3
moon/sc

−
⇀
r moon/earth

r3
moon/earth

⎞
⎠ , (10b)

⇀
a srp = Csrp

S(1 + crefl)

2m

⇀
r sc/sun

rsc/sun
, (10c)

⇀
a J2 = 3μ J2ρ

2
E

2r5

((
5
(
⇀
r · k̂E)

r2
− 1

)
⇀
r − 2(

⇀
r · k̂E)k̂E

)
, (10d)

where μsun and μmoon are the gravitational constants of the sun 
and moon, Csrp is the solar radiation pressure constant, S is 
the solar-facing surface area, crefl is the surface reflectance, ρE is 
Earth’s equatorial radius, k̂E is the z-axis unit vector of the Earth-
centered inertial frame FE, and J2 is the dominant coefficient in 
the considered geopotential perturbation model, where additional 
higher order terms are ignored.

The sum of the individual disturbance accelerations (10a)–(10d)

⇀
a p = ⇀

a sun + ⇀
a moon + ⇀

a srp + ⇀
a J2 , (11)

yields the total disturbance acceleration considered in (1). Fig. 2a 
shows an annual time history of the disturbance force components 
for a 4000kg satellite in GEO. Fig. 2b shows the uncompensated 
motion of the satellite subject to the aforementioned perturbations 
after one month.

Satellites are also subject to environmental torques such as 
those due to gravity gradients, solar radiation pressure, atmo-
spheric drag, or the ambient magnetic field. For geostationary 
satellites, solar radiation pressure is the dominant effect. In this 
work, we do not model these torques directly, but rather, we as-
sume that they are easily absorbed by onboard reaction wheels via 
a nominal attitude control law. The resultant stored momentum is 
then treated as an initial condition.

3. Controller design

The control objectives considered in this work for the simulta-
neous station-keeping and momentum management of a geosta-
tionary satellite are:

1. Maintain the satellite in a station-keeping window
2. Maintain the satellite in a nadir-pointing configuration at all 

times, including during momentum unloading
3. Unload the stored angular momentum from the reaction 

wheels, i.e., bring wheel speeds to zero
4. Limit the requested thruster magnitudes
5. Minimize fuel consumption

In order to handle the multitude of objectives, we design an 

MPC policy. MPC generates control actions by solving a receding-
Fig. 2. (a) Disturbance force components in Hill’s Frame FH and (b) Uncompensated 
motion for a 4000 kg satellite in geostationary orbit over one month.

horizon finite-time optimal control problem formulated from a 
system prediction model, a user-defined cost function, and state 
and control constraints that, for discrete-time prediction models, 
are enforced pointwise-in-time [23,43,44], i.e., at the sampling in-
stants. By using linearized equations of motion, linear equality and 
inequality constraints, and quadratic costs on the states and con-
trol actions, the MPC policy may be formulated as a QP, which, 
given the limited computational resources onboard most satellites, 
can be solved quickly and efficiently [31]. In an MPC context, Ob-
jectives 1, 2, and 4 can be naturally represented as constraints that 
can be incorporated into the MPC policy since they involve vari-
ables that have to be maintained within bounds without a specific 
target value, and Objectives 3 and 5 can be handled by appropri-
ate selection of the MPC cost function, since they involve variables 
for which convergence to a specific target is desired. Although not 
treated in the current design, other objectives related to reaction 
wheels may be desired. For example, it is straightforward to in-
stead include limits on the angular momentum to ensure that the 
reaction wheel speeds remains in the desired range, but not neces-
sarily desired to be zero. Alternatively, minimizing reaction wheel 
power consumption may be the desired objective, in which case a 

different MPC cost function may be formulated.



234 A. Weiss et al. / Aerospace Science and Technology 76 (2018) 229–241
3.1. State-space model

We form a state-space model of the combined orbital dynamics 
(2), attitude kinematics (7), and attitude dynamics (9), to be used 
as a prediction model in the MPC policy. The model is given by

ẋ(t) = Acx(t) + Bcu(t), (12)

where

x = [δx δy δz δẋ δ ẏ δ ż δφ δθ δψ

δω1 δω2 δω3 δν1 δν2 δν3]T, (13)

u = [Fx F y F z η1 η2 η3 τ1 τ2 τ3]T. (14)

Assuming a sampling period of �T sec, we discretize (12), yielding

xk+1 = Axk + Buk, (15)

where xk is the state at time step k ∈ Z
+ , uk is the control 

vector at the time step k ∈ Z
+ , and A = exp(Ac�T ) and B =∫ �T

0 exp(Ac(�T − τ ))dτ Bc are the discretized matrices obtained 
based on the continuous-time system realization (Ac, Bc) in (12).

We augment (15) with a prediction model of the disturbance 
accelerations, obtaining

xk+1 = Axk + Buk + BdOH/Eap,k, (16)

where Bd = ∫ �T
0 exp(Ac(�T − τ ))dτ I , ap,k is the total disturbance 

acceleration predicted at time step k based on propagation of the 
desired nominal orbit, and OH/E is the rotation matrix that trans-
forms the components of ap,k from the inertial frame into the 
components of the same acceleration in Hill’s frame. The addition 
of the disturbance prediction in (16) enables the MPC policy to 
exploit natural relative motion dynamics, rather than propulsion, 
against the disturbance acceleration.

Remark 1. We use the nominal orbit for disturbance-acceleration 
prediction in (16) due to the nonlinearity of the analytical expres-
sions in (10). Since the nominal orbit is known in advance based 
on the propagation of (1), ap,k can be predicted. Since the satellite 
position is to be constrained in a tight station-keeping window 
according to Objective 1, the difference in the disturbance accel-
erations at the nominal orbital position and at the true satellite 
position is expected to be negligible. Validation with the nonlinear 
model presented later confirms this.

Remark 2. Note that additional corrective terms may be included 
in (16). For instance, satellite mass, center of mass, and thruster 
alignments may change over time, and the prediction model could 
incorporate online estimates of these model parameters. However, 
in this work, the rate of change of these quantities is slow with 
respect to the satellite dynamics. Hence, the model can be updated 
periodically as needed, while keeping the prediction model over 
the MPC horizon time invariant.

3.2. Constraints

Satellite position constraints may be imposed on δy and δz, cor-
responding to a station-keeping box using the relations

|δy| ≤ r0 tan(λ1,max), (17a)

|δz| ≤ r0 tan(λ2,max), (17b)

where λ1,max is the maximum tolerable longitude error, and λ2,max

is the maximum tolerable latitude error.
We consider a satellite equipped with six dual-axis thrusters. 
Define

T
�= [T1 T2 T3 T4 T5 T6],

where Ti is the force exerted by each dual-axis thruster. We set 
constraints on the individual thruster magnitudes, i.e.,

‖T ‖∞ ≤ Tmax, (18)

and relate them to constraints on the control input forces F and 
torques τ via the force-torque map[
OL/H 0

0 I

][
F
τ

]
=

[
� �

L −L

]
T , (19)

where � and L are appropriate full rank matrices related to the 
geometry of the thruster locations in the spacecraft frame. Com-
bining (18) and (19) yields∥∥∥∥∥
[

� �

L −L

]−1 [
OL/H 0

0 I

][
F
τ

]∥∥∥∥∥∞
≤ Tmax, (20)

which is enforced on the control input vector u and accomplishes 
Objective 4. Note that since � and L are full rank, the matrix in 
(20) is invertible. Here, invertibility implies that the thrusters are 
mounted in a manner that allows for linearly independent forces 
and torques to be applied to the satellite. Constraint (20) effec-
tively couples (2) with (7) and (9), i.e., the propulsion system has 
to generate both forces for orbital control and torques for attitude 
control.

In (19) we assume R̃ = OB/L ≈ I , i.e., that the attitude error is 
small and that the satellite is in the nominal nadir-pointing con-
figuration. Under this approximation the constraints are linear. We 
further note that validity of this approximation is enforced by the 
following attitude error constraints.

In order to maintain a nadir-pointing configuration as usually 
required for operational purposes by geostationary satellites, and 
to ensure that the linearization (7), (9) correctly approximates (3), 
(8), we constrain the Euler angles (δφ, δθ , δψ ) to be within a small 
tolerance as required by Objective 2,

|δφ| ≤ δφmax,

|δθ | ≤ δθmax,

|δψ | ≤ δψmax.

(21)

3.3. MPC policy

We consider the MPC policy that at any k ∈ Z
+ solves the 

finite-horizon optimal control problem

min
Uk

xT
N|k P xN|k +

N−1∑
h=0

xT
h|k Q xh|k + uT

h|k Ruh|k,

s.t. xh+1|k = Axh|k + Buh|k + BdOH/Eap,h|k,
x0|k = xk,

ap,h|k = ap,k+h,

Tmin ≤ Duh|k ≤ Tmax,

δymin ≤ δyh|k ≤ δymax,

δzmin ≤ δzh|k ≤ δzmax,

δφmin ≤ δφh|k ≤ δφmax,

δθmin ≤ δθh|k ≤ δθmax,

(22)
δψmin ≤ δψh|k ≤ δψmax,
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Fig. 3. Simulation of aggressive station ke

where the notation zh|k denotes the prediction of z for h steps 
ahead of k, N is the control and prediction horizon, Q , R are spec-
ified state and control weight matrices, D is the matrix that en-
forces the concurrently available forces and torques as in (20), P is 
the terminal state weighting matrix determined from the solution 
of the Discrete Algebraic Riccati Equation (DARE) for the uncon-
strained infinite horizon problem, and Uk = [u0|k, . . . , uN−1|k]T. The 
policy applies uk = u∗

0|k to the satellite, where [u∗
0|k, . . . , u

∗
N−1|k]T is 

the optimal solution of (22). The procedure is repeated at time 
k + 1, with xk+1 as the new initial condition.

The horizon N is selected so that the MPC policy can predict 
and exploit the periodicity present in the dynamics and perturba-
tions. We verify that due to strong periodicity in the dynamics over 
the orbit time-scale, a horizon of more than half an orbit generates 
�v savings. The state and control weight matrices Q and R are se-

lected to aggressively minimize fuel consumption and unload the 
g and momentum unloading maneuver.

reaction wheels’ stored angular momentum, which accomplishes 
Objectives 3 and 5.

Consistent with some of the conventional MPC design ap-
proaches [45], we employ a terminal penalty matrix P based on 
the solution to the DARE to guarantee local asymptotic stability 
of the target equilibrium. Near the origin, when constraints are 
inactive and in the absence of disturbances, the solution of (22)
is equivalent to that of the LQR controller designed based on the 
same dynamics and cost function. Thus, the maximum constraint 
admissible set O ∞ [44] for the LQR controller under state and con-
trol constraints is a guaranteed domain of attraction for the origin, 
which is asymptotically stable for the system in closed loop with 
the MPC controller [23]. Furthermore, in the presence of distur-
bances, using the terminal penalty matrix P renders the system 
input-to-state stable [46]. In order to ensure recursive feasibility 

in the presence of model approximations, modeling errors, unpre-
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dictable disturbances, we relax the state constraints in (22) into 
soft constraints by using a slack variable [47]. In general this may 
require slightly tightening the bounds of the state constraints to 
ensure that the actual specifications are met. However, as shown 
later in the simulation section, in all our simulations all the state 
constraints are always satisfied.

3.4. Numerical computation of the control command

The finite horizon optimal control problem (22) is reformulated 
as the parametric Quadratic Programming (pQP) problem

U∗
k = arg min

Uk

1

2
U ′

k Q pUk + ϑk
′C ′

pUk + 1

2
ϑk

′�pϑk, (23a)

s.t. GpUk ≤ Spϑk + Wp, (23b)

where the matrices Q p, Cp, Gp, Sp, and the vector Wp are ob-
tained, for instance, as described in [45] and the vector ϑ contains 
the problem parameters, i.e., the initial state and the predicted ac-
celerations along the horizon, ϑ = [x′ a′

p,0 . . .a′
p,N−1]′ . Since (23) is 

constructed from (22) at control design time and not during con-
troller execution, the matrices in (23) are computed offline and 
do not impact real-time computations. During controller execu-
tion, the only operations performed in real time are substitution 
of ϑk = [x(k)′ ap,k . . .a′

p,k+N−1]′ into the pQP (23) to obtain the QP 
instance

U∗
k = arg min

Uk

1

2
U ′

k Q pUk + F ′
pUk + Mp, (24a)

s.t. GpUk ≤ Kp, (24b)

where Fp = Cpϑk , Kp = Spϑk + Wp, Mp = 1
2 ϑk

′�pϑk , computation 
of the solution U∗

k of (24), and generation of the control command 
from U∗

k as u(k) = u∗
0|k .

While the solution of the QP (24) requires nontrivial compu-
tation, several very effective algorithms exist. Interior point and 
active set algorithms tend to have fast convergence properties [26, 
Ch. 11], [48, Ch. 10]. Such algorithms reach the optimum in few it-
erations, but each iteration may be fairly complicated, as it requires 
the solution of a linear system obtained from the KKT optimal-
ity conditions. As a consequence, the code may be complicated 
and long, and often requires the usage of several auxiliary libraries 
for linear algebra. All these elements may make the on-board im-
plementation and verification process challenging, due to limited 
capability of the satellite computing platform, and due to the ex-
tensive verification procedures of the hardware-software architec-
ture for autonomous systems.

In recent years, several first order methods [49, Ch. 2] that per-
form computationally simple iterations have been developed for 
embedded control applications. Although many iterations are re-
quired to reach the optimum, the code is much simpler than the 
code for interior point and active set methods, e.g., few lines ver-
sus several hundreds lines of code. This simplicity enables faster 
implementation and verification, and suitability of the method in 
resource constrained hardware, which may be particularly benefi-
cial for on-board spacecraft applications. For comparison of differ-
ent algorithms tailored to MPC, including first order, interior point, 
and active set methods, see [50].

Recently developed first order algorithms include the fast gra-
dient methods in [28,29], the Lagrangian method in [30], the mul-
tiplicative update in [31], and the alternating direction method of 
multipliers (ADMM) methods in [32–35]. As an example, the mul-
tiplicative update method in [31] solves (24) by iterating

[(Q −
d + φ)ξ(�) + F −

d ]i
[ξ(�+1)]i = [(Q +
d + φ)ξ(�) + F +

d ]i
[ξ(�)]i, (25)
Table 1
Thruster placements.

Thruster Position (m) in FB Direction

T1 (7.5,0,0) ĵB

T2 (0,5,0) k̂B

T3 (0,0,5) ı̂B

T4 (−7.5,0,0) ĵB

T5 (0,−5,0) k̂B

T6 (0,0,−5) ı̂B

until the fixed point ξ(�+1) = ξ(�) , and then computing

U∗
k = �d2p(ϑk, ξ

∗) = �dϑk + �dξ∗, (26)

where in (25), (26) Fd = Sdϑk + Wd, Q d = Gp Q −1
p G ′

p, Sd =
(Gp Q −1

p Cp + Sp), �d = −Q −1
p G ′

p, �d = −Q −1
p Cp, and A+ , A− in-

dicate the positive and negative part of the matrix A, respectively. 
Indeed, the code for (25), (26) can be written in less than 20 lines 
in standard programming languages and without any dependen-
cies on additional libraries. Problems of the size of those generated 
by (22) can be solved within a few seconds even in low capability 
embedded computing architectures. For (22), we have verified that 
the solution by the algorithm based on (25) requires less than 10s 
on a standard 2.3 GHz Intel Core i7 laptop using only one core, and 
without any platform-specific compiled code optimization. The re-
sult hints at feasibility for on-board spacecraft operation, despite 
limited computing hardware due to, e.g., radiation hardening and 
constrained power limits, given that the control update period is 
at least several minutes.

4. Simulations

We consider a 7.5 × 5 × 5 m satellite of mass m = 4000 kg and 
inertia Jsc = diag(1.7e4, 2.7e4, 2.7e4) kg m2 in geostationary orbit, 
i.e., r0 = 42164 km, around the Earth. The satellite is constrained to 
a station-keeping window of ±0.01 degrees longitude and latitude, 
while the maximum error allowed in the Euler angles is ±0.02
degrees. The satellite is propelled by six thrusters placed according 
to Table 1, with Tmax = 0.1 N. From the table, we see that firing 
thrusters 1 and 4 with equal force in the positive direction creates 
a force in the direction of the y-axis and firing them with equal 
force in opposite directions creates a torque about the z-axis. For 
this simulation,

L =
⎡
⎣ 0 2.5 0

0 0 2.5
3.75 0 0

⎤
⎦ , � =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ . (27)

Each reaction wheel inertia about its rotation axis αi is 0.8 kg m2. 
Let Csrp = 9.1e−6 N/m2, S = 200 m2, and crefl = 0.6.

In order to implement the MPC policy (22) in a nonlinear sim-
ulation that uses (3) to propagate the satellite attitude, we must 
convert the attitude-error rotation matrix to Euler angles. Algo-
rithm 1 is a method to resolve the singularities that arise from 
this mapping, and is adapted from [51] for the case of 3-2-1 Euler 
angles. Note that there exist multiple solutions for the sequence of 
Euler angle rotations that represent a given attitude orientation. In 
our simulations we select the first set of Euler angles (φ1, θ1, ψ1)

if R̃13(t) �= ±1.
We consider two simulation scenarios: (i) an aggressive station-

keeping and momentum unloading simulation, which highlights 
the MPC policy’s ability to utilize the same set of thrusters, operat-
ing at their constraint limits, in order to satisfy both the force and 
torque requirements of station-keeping and momentum unloading, 
respectively, and (ii) an annual station-keeping simulation, which 

highlights the ability of the MPC policy to generate trajectories 
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Fig. 4. Zoom of thruster time histories for aggressive

Algorithm 1 Pseudocode for calculating 3-2-1 Euler angles from 
the attitude-error rotation matrix.

if R̃13 �= ±1 then
θ1 = − arcsin(R̃13)

ψ1 = atan2( R̃12
cos(θ1)

, R̃11
cos(θ1)

)

φ1 = atan2(
R̃23

cos(θ1)
, R̃33

cos(θ1)
)

θ2 = π − θ1

ψ2 = atan2( R̃12
cos(θ2)

, R̃11
cos(θ2)

)

φ2 = atan2(
R̃23

cos(θ2)
, R̃33

cos(θ2)
)

else
φ = 0
if R̃13 = −1 then

θ = π
2

ψ = atan2(R̃32, ̃R31)

else
θ = − π

2

ψ = atan2(−R̃32, −R̃31)

end if
end if

that are comparable with carefully designed (open-loop) station-
keeping techniques in terms of �v usage.

We stress that, while the prediction model (16) is linear, the 
simulation is performed using the nonlinear dynamic equations 
(1), (3), (8). As mentioned before, we expect that the linear predic-
tion model to be accurate because it includes the predicted con-
tribution of the major perturbation forces, and because the MPC 
policy (22) enforces tight state constraints around the operating 
point.

We begin with the aggressive station-keeping and momentum 
unloading simulation. We highlight that by using the MPC policy, 
the satellite can perform aggressive station-keeping and momen-
tum unloading maneuvers by using the same set of thrusters to 
generate both orbital forces and attitude torques. The satellite has 
an initial orbital displacement of δx = δy = δx = 1 km, and an ini-
tial reaction wheel spin rate δνi = 100 rad/s. We discretize the 
dynamics with a sampling period �T = 600 s and we set the 
MPC prediction horizon N = 15. The weighting matrices are cho-
sen to achieve an aggressive simulation in which satellite forces 

and torques both operate at constraint limits and are given by
tion keeping and momentum unloading maneuver.

Q = diag(10,10,10,1,1,1,1010,1010,1017,103,103,103,

103,103,103),

R = 2.5 · diag(107,107,107,105,105,105,106,106,106).

Fig. 3a shows that the Euler angles remain within their limits dur-
ing momentum unloading, and Fig. 3b shows that the satellite 
relative position is brought to zero. Fig. 3e shows that the reac-
tion wheels are aggressively decelerated, while Fig. 3c shows the 
time histories of the satellite forces due to the thrusters. In Figs. 3d 
and 3f, due to the aggressive controller tuning, we see that the 
forces and torques cannot concurrently operate at their individual 
limits. When the thrusters generate maximum torque, there is no 
available thrust to force the satellite towards its nominal orbital 
position. This effect can further be seen in Fig. 4, where individ-
ual thruster pairs such a T1 and T4 transition from pure torque 
to pure force as the reaction wheels’ stored angular momentum is 
unloaded. Fig. 5 provides the full histories for completeness.

Next, we present the annual station-keeping simulation, where 
we show that MPC is capable of producing fuel-efficient station-
keeping. In order to simulate an entire year, we discretize the dy-
namics with a sampling period �T = 3600 s and we set the MPC 
prediction horizon N = 15. In order to minimize �v , the weighting 
matrices are detuned so that the behavior of the system is driven 
by constraints rather than stabilizing control and are given by

Q = 10−5 · diag(10−10,10,10−7,1,1,1,105,105,105,1,1,1,

1,1,1),

R = diag(1015,1015,1,0.1,0.1,0.1,1,1,1).

Fig. 6a shows a simulation of the latitude and longitude error over 
one year. The satellite remains within the tight station-keeping 
window of ±0.01 degrees, and in fact all the constraints of (22)
are satisfied during the entire simulation at all sampling instants. 
Figs. 6c and 6d provide snapshots at two different times during 
the year of 5-day latitude and longitude trajectories in order to 
give a sense of the satellite motion. Fig. 6b shows the annual ve-
locity increment �v . In the out-of-plane z-direction, �vz = 59
m/s/year. In the orbital plane, �v y = 1.6 m/s/year and �vx = 0.45
m/s/year. We note that even though the station-keeping window 

is about one order of magnitude smaller than traditional windows, 
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Fig. 5. Thruster time histories for aggressive station keeping and momentum unloading maneuver.

Fig. 6. Station keeping simulation: a) Annual latitude and longitude error. b) Annual velocity increment in Hill’s Frame. c), d) 5-day latitude and longitude error snapshots at 

two different times of year.
the MPC policy is comparable in fuel usage to traditional station-
keeping techniques that employ larger windows. For instance, 
in [11] it is claimed that for a positional accuracy of 0.05–0.1 
degrees, ‘North-South’ Station-Keeping (NSSK), i.e., out-of-orbital-
plane station-keeping, requires between 41 and 51 m/s/year, and 
‘East-West’ Station-Keeping (EWSK) requires 1.9 m/s/year.

The design presented in this manuscript is compared to a clas-
sic LQR style controller in [37], where we show that a straight-
forward application of classical feedback control fails to meet the 

objectives laid out in Section 3. Stabilizing aggressively in order to 
meet station keeping requirements consumes too much fuel, while 
increasing the penalty on fuel violates the station keeping require-
ment. In this design, we are able to simultaneously achieve both 
objectives due to the use of station keeping constraints in con-
junction with a detuned cost function. Thus, the behavior of the 
system is driven by a nonlinear action that thrusts only when nec-
essary to remain in the station keeping window.

To validate the orbital dynamics model (1), including or-
bital perturbation effects (11), we utilize Systems Tool Kit (STK)/

Astrogator� , a high-fidelity orbit propagator developed by Ana-
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Fig. 7. Matlab and STK in closed-loop.

lytical Graphics, Inc. Fig. 8a shows an STK 3D-visualization of a 
geostationary satellite subject to Astrogator’s flight-proven pertur-
bations models. This open-loop simulation can be compared to 
that of Fig. 2b. While small discrepancies exist, the overall trends 
align.

Next, we close the loop between Matlab and STK. Following 
Fig. 7, at each control cycle we (i) feed back the satellite’s true 
state from STK to Matlab and transform it to our local coordi-
nates, (ii) solve the optimal control problem (22), (iii) construct 
velocity increment in Hill’s Frame.
gate the dynamics forward in time using Astrogator. Fig. 8b shows 
the MPC-based station-keeping trajectory over the course of a year. 
Again, all the constraints of (22) are satisfied during the entire 
simulation at all sampling instants, and is more readily observed 
in Fig. 8c, which is the 2-dimensional projection of the trajectory 
at geostationary altitude. Fig. 8d shows the annual velocity incre-
ment �v . In the out-of-plane z-direction, �vz = 59.4 m/s/year. In 
the orbital plane, �v y = 1.97 m/s/year and �vx = 0.9 m/s/year. 
Fig. 9(b)–(c) show snapshots of the satellite motion over 5 days at 
different times of year. The station keeping window is plotted in 
red; the geostationary orbit in cyan; and the satellite motion in 
the station keeping window in green. The results of these simula-
tions, not only validate our detailed nonlinear model, but also the 
control policy’s robustness and applicability for real-world imple-
mentation.

5. Conclusions

With future geostationary satellite missions requiring smaller 
station-keeping windows, open-loop (manual) corrections may be-
the command, (iv) feed the resulting input to STK, and (v) propa- come unsustainable. The introduction of autonomous closed-loop 

Fig. 8. STK simulations: a) One-month uncompensated geostationary satellite trajectory subject to orbital perturbations. b, c) Annual station-keeping simulation. d) Annual 
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Fig. 9. STK simulations: a) 3-dimensional perspective, highlighting constraint satisfaction. b, c, d, e) 5-day satellite trajectory at two different times of year.
feedback control will increase robustness, safety and reliability of 
satellite station-keeping, while reducing operational costs and risk 
of collisions. In this paper we have developed a model predictive 
control (MPC) policy for autonomous closed-loop station-keeping 
and momentum management of a geostationary satellite. We have 
shown that the MPC policy satisfies the specification constraints 
with a fuel consumption comparable to that of carefully designed 
open-loop maneuvers, which, however, have significantly larger 
station-keeping windows. The fuel consumption performance was 
achieved via the use of constraints that enforce the station-keeping 
window, which allowed us to utilize a detuned cost function that 
reduces thruster usage. In addition, the proposed MPC policy is ca-
pable of concurrently performing station-keeping and momentum 
unloading using the same set of thrusters.

We have made some assumptions in this work that may not 
be entirely realistic for direct implementation in a satellite. In 
this work, we considered a satellite equipped with six dual-axis 
thrusters mounted on each face of the satellite, enabling pure 
thrusts and torques applied in any direction and about any axis. 
However, this arrangement does not leave room on the satel-
lite’s other faces for antennas and solar panels without the risk of 
thruster plume impingement. A more realistic design may cluster 
and utilize gimbaled thrusters on a single satellite face, severely 
restricting the control action and significantly coupling the satel-
lite orbital and attitude dynamics. The need to treat concurrently 
both the “fast” attitude dynamics and the “slow” orbital dynam-
ics may present computational challenges in resource constrained 
hardware. With fast dynamics, a small discretization time-step is 
required. However, a long MPC prediction horizon is necessary 
for station keeping. A small discretization time step accompanied 
by a long prediction horizon results in a large and computation-
ally challenging optimization problem. Finally, in this work we 
assumed the ability to apply continuously variable thrust. While 
some advanced electric propulsion systems can throttle thrust 
magnitude, most systems remain on-off in nature, and yet, integer 
optimization methods are not practical for on-board implementa-



A. Weiss et al. / Aerospace Science and Technology 76 (2018) 229–241 241
tion due to their complexity and cost. We plan to investigate these 
topics in future work.
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