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Abstract
This paper addresses the problem of using unlabeled data in transfer learning. Specifically,
we focus on transfer learning for a new unlabeled dataset using partially labeled training
datasets that consist of a small number of labeled data points and a large number of un-
labeled data points. To enable transfer learning, we assume that the training and testing
datasets are drawn from similar probability distributions and that the unlabeled data in each
dataset can be described by similar underlying manifolds. The solution offered is a distribu-
tion free, kernel and graph Laplacian-based approach which optimizes empirical risk in the
appropriate reproducing kernel Hilbert space. The approach is tested on a synthetic dataset
for classification accuracy and on the Parkinson’s Telemonitoring dataset from the UCI ma-
chine learning repository for prediction accuracy. Our results show a 27.3% improvement in
miss-classification error and a 5.9% improvement in prediction error as compared to standard
supervised learning algorithms. The results shown in this work can be widely applied in
domains from medicine, to machine reliability, to prediction of human actions.

IEEE Data Science Workshop

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2018
201 Broadway, Cambridge, Massachusetts 02139





SEMI-SUPERVISED TRANSFER LEARNING USING MARGINAL PREDICTORS

Aniket Anand Deshmukh∗

University of Michigan
Electrical Engineering and Computer Science

Ann Arbor, MI 48105

Emil Laftchiev

Mitsubishi Electric Research Labs
Data Analytics

Cambridge, MA 02139

ABSTRACT

This paper addresses the problem of using unlabeled data in
transfer learning. Specifically, we focus on transfer learning
for a new unlabeled dataset using partially labeled training
datasets that consist of a small number of labeled data points
and a large number of unlabeled data points. To enable trans-
fer learning, we assume that the training and testing datasets
are drawn from similar probability distributions and that the
unlabeled data in each dataset can be described by similar
underlying manifolds. The solution offered is a distribution
free, kernel and graph Laplacian-based approach which op-
timizes empirical risk in the appropriate reproducing kernel
Hilbert space. The approach is tested on a synthetic dataset
for classification accuracy and on the Parkinson’s Telemoni-
toring dataset from the UCI machine learning repository for
prediction accuracy. Our results show a 27.3% improvement
in miss-classification error and a 5.9% improvement in pre-
diction error as compared to standard supervised learning al-
gorithms. The results shown in this work can be widely ap-
plied in domains from medicine, to machine reliability, to pre-
diction of human actions.

Index Terms— transfer learning, semi-supervised learn-
ing, unlabeled data, regression, classification

1. INTRODUCTION AND BACKGROUND

Recently, supervised learning methods which rely on the
abundant availability of labeled training data have been
very successful in solving challenges in computer vision
and speech signal processing. Yet there exists many promis-
ing application areas where collecting labeled data is difficult
and expensive.

As an example consider the problem of detecting and
monitoring Parkinson’s disease [1]. Detecting the presence
and estimating the severity of the disease is difficult because
symptoms are not readily observable until significant neuro-
logical damage has taken place. To detect early stages of the
disease, scientists observe vocal measurements from the pa-
tient which can then be used to create a predictor to monitor
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the disease progression. However, learning such a predictor
is difficult requiring subject cooperation, consistent data col-
lection [2], and expensive expert labeling. Furthermore, each
new patient suffers from a lack of labeled data that precludes
a fast diagnosis of the progression of the disease. Thus the
methodology required to achieve the results in [1] is slow and
expensive necessitating new methods to reduce the cost of
data collection and improve the speed of model training.

This paper proposes a novel algorithm that: uses transfer
learning to reduce the number of required labeled training ex-
amples and removes the need for labels on the test dataset;
uses unlabeled data to further reduce the need for labeled ex-
amples in the training dataset. This algorithm demonstrates
that semi-supervised transfer learning, under the appropriate
assumptions, can improve prediction as much as 5.9% on the
Parkinson’s Telemonitoring dataset and can improve classifi-
cation as much as 27.3% in synthetic manifold data as com-
pared to standard transfer learning methods.1

Prior semi-supervised learning and transfer learning algo-
rithms such as the co-training method for inductive transfer
learning by Yuan et. al. [3], transfer progressive transduc-
tive support vector machine method by Zhou et. al. [4] and
the self-taught learning method by Raina et. al. [5] all used
some unlabeled data during training, however these methods
also rely on labeled samples in the test dataset. Critically, the
work in this paper does not assume any labeled data points in
the test dataset. A method that did not require labeled data
points in the test dataset was shown in [6]; this method is
limited by its assumption of a single source and test domain
and was not easily extensible. The algorithm proposed in this
paper is capable of leveraging multiple source domains.

2. MATHEMATICAL PRELIMINARIES

The following mathematical background is necessarily brief,
but we refer the interested reader to [7] for more information.
To begin letX be the feature space andY be the labeled space.
Let PXY be the probability distribution on X × Y . Training
samples {xi, yi}mi=1 are i.i.d. drawn from PXY . In case of
supervised and semi-supervised learning, the goal is to find a

1Code implementing the approach herein can be found at www.merl.com.



function f : X → Y . When Y ∈ R then this is a regression
problem and in the case when Y ∈ N, this is a classification
problem. Kernel functions, k, are used to transfer the learning
problem into a richer (non-linear) function space.

2.1. Kernel-based learning algorithms

The function k : X × X → R is a kernel on X if the ma-
trix [k(xi, xj)]i,j is positive semi-definite (PSD). The exis-
tence of a kernel, k, on X implies the existence of a Hilbert
Space H and a mapping φ : X → H such that k(x, y) =
〈φ(x), φ(y)〉H , where H and φ are not uniquely determined
by k. Kernel based algorithms are solved using the following
result.

Theorem 1 (Representer Theorem) [8] Let k be a kernel
onX and letH be it’s associated RKHS. Fix x1, . . . , xm ∈ X ,
and consider the optimization problem

min
f∈H

D(f(x1), . . . , f(xm)) + P (‖f‖2H), (1)

where P is non decreasing and D depends on f only through
f(x1), . . . , f(xm). If (1) has a minimizer, then it has a mini-
mizer of the form f =

∑n
i=1 αik(·, xi), where αi ∈ R. Fur-

thermore if P is strictly increasing, then every solution of (1)
has this form.

2.2. Supervised Learning

For a sufficient large labeled dataset the problem is termed
supervised and can be solved as follows. Let ` : R×Y → R+

be a loss function. Then solve the following minimization
problem to learn a function, f .

min
f∈H

J(f) = min
f∈H

λ‖f‖2 +
1

m

m∑
i=1

`(yi, f(xi)) (2)

Here f can be computed directly via Thm 1. The function `
is chosen to be a hinge loss for classification problems and a
square loss for regression problems.

2.3. Semi-Supervised Learning

When sufficient quantities of labeled data are not available,
semi-supervised approaches are employed to use the usu-
ally ample available unlabeled data to augment the training
dataset. Given some assumptions about the data, this un-
labeled data can be used to improve the performance of
the learned function, f . It is important to note that the
performance of semi-supervised learning algorithms can ap-
proach but not exceed the performance of supervised al-
gorithms (when labeled data is ample) which means that
semi-supervised learning cannot replace supervised learning
in all applications.

To incorporate unlabeled data, the training set contains
both m labeled data points, {xi, yi}mi=1, and n unlabeled data

points {xi}m+n
i=m+1. The unlabeled data points help to eluci-

date the data structure [9]. A critical assumption on the la-
beled data is that the labels are sufficiently similar for similar
data points.

Solutions to semi-supervised learning can be found via
expectation-maximization mixture models, self-training[10],
transductive support vector machines [11], graph-based meth-
ods [12, 13] and manifold regularization [9]. In this paper we
consider manifold regularization due to its close connection
to kernel-based learning methods. Manifold regularization
extends the problem shown in eq. (2) [9]. The idea is to
create a graph using both labeled and unlabeled data and
to penalize the supervised learning problem with the graph
Laplacian. The graph Laplacian is a description of the data
manifold and thereby indirectly the marginal distribution of
the data. The learning objective is augmented as follows.

min
f∈H

J(f) = min
f∈H

λ‖f‖2 +
1

m

m∑
i=1

`(yi − f(xi))

+
γ

(m+ n)2

m+n∑
i,j=1

Wij(f(xi)− f(xj))
2

= min
f∈H

λ‖f‖2 +
1

m

m∑
i=1

`(yi − f(xi))

+
γ

(m+ n)2
fTLf

where Wij = exp((xi − xj)2/2σ2) are edge weights in the
adjacency graph of the data, (x1, . . . , xm+n), for the K near-
est neighbors of xi, σ is set to 1 or is found in cross-validation,
f = [f(x1), . . . , f(xm+n)], and L = D - W is the graph
Laplacian. W is the graph weight matrix and D is the diago-
nal matrix whose elements are given by Dii =

∑m+n
j=1 Wij .

The solution, obtained using a modified version of Theorem
1 [9], is expressed as ˆf(x) =

∑m+n
i=1 αiK(xi, x).

2.4. Transfer Learning

Extending supervised and semi-supervised learning results to
new domains (datasets) is difficult and often requires new data
collection and learning. One way to reduce this is to use
transfer learning to learn in one setting and perform work
in another. Ideally, learning can even be extended to dif-
ferent tasks and in different settings like batch learning, on-
line learning, multi-armed bandits and reinforcement learning
[14, 15, 16, 17, 18].

More concretely, recall that X is a feature space, Y is an
output space and data samples {x, y} are drawn from a distri-
bution PXY . Together (PXY ,X ) form the domain pair. Thus
the problem of transfer learning is to choose different domain
pairs or choose different output spaces. The setting of this pa-
per chooses different domain pairs. This means that there is
a common output space for all datasets, but the marginal dis-
tribution of the underlying datasets is different. As a further



complexity, we assume that labels are only available for the
training datasets but not for the testing set. This setting is the
same as the case of learning marginal predictors (LMP) [15].

Thus choose N training datasets, with N similar but dis-
tinct distributions P (i)

XY on X × Y , i ∈ {1, ..., N}. For each
distribution, i, the training samples Si = (Xij , Yij)1≤j≤mi

are i.i.d. realizations from P
(i)
XY . The samples in the test

dataset ST = (XT
j , Y

T
j ) are i.i.d. realizations from PT

XY , but
no labels Yj are not observed. The goal is to predict the labels
for the test dataset. For simplicity, assume that mi = m,∀i.

This problem is solved by leveraging the kernalized ap-
proaches in Section 2.1. Let k̄ be a kernel on PX × X . Let
P̂

(i)
X be the empirical marginal distribution corresponding to

sample Si. Let us denote PX × X the extended input space
and X̃ij = (P̂

(i)
X , Xij) the extended data. Then solve the

following minimization problem for transfer learning.

min
f∈Hk̄

λ‖f‖2 +
1

N

N∑
i=1

1

m

m∑
j=1

`(Yij , f(X̃ij)) (3)

3. SEMI-SUPERVISED TRANSFER LEARNING

Here we propose a new algorithm that leverages the unlabeled
data in the transfer learning setting. Consider the same setting
for the transfer learning problem as presented in Section 2.4.
Then add to the m labeled points in each training dataset n
unlabeled data points.

Adding the unlabeled data points means that in addition
to using the marginal distributions for knowledge transfer be-
tween domains, we add knowledge of the data structure which
helps learn a more accurate function f . This is particularly
true in the case where relatively few labeled data points are
available and thus the problem is under-determined with re-
spect to the model.

The data structure information is added to the problem
in the form of a graph Laplacian. This idea is similar to
the approach used in semi-supervised learning algorithms.
For transfer learning, the graph structure is built over each
training dataset and added separately to the problem. More
formally this can be represented by the augmented objective
function as follows.

min
f∈Hk̄

λ‖f‖2 +
1

N

N∑
i=1

1

m

m∑
j=1

`(Yij , f(X̃ij))

+

N∑
i=1

γ

(m+ n)2

m+n∑
p,q=1

W i
pq(f(xip)− f(xiq))2

=⇒ min
f∈Hk̄

λ‖f‖2 +
1

N

N∑
i=1

1

m

m∑
j=1

`(Yij , f(X̃ij))

+

N∑
i=1

γ

(m+ n)2
fTi Lifi

Note here that in this notation, the ith dataset has a graph
representation Li and all graph Laplacians are added in the
penalty term. Note then that the penalty term is a manifold
regularizer across all training datasets. The solution of the
minimization above has the following form,

f̂(P̂X , x) =

N∑
i=1

m+n∑
j=1

αij k̄((P̂
(i)
X , Xij), (P̂X , x)), (4)

which can be solved by defining the kernel k̄ as a product
kernel [15].

k̄((P1, x1), (P2, x2)) = kP (P1, P2)kX(x1, x2) (5)

In the equation above, kX is a kernel on X and KP is a
kernel on PX . The kernel kX on X is the standard kernel, but
the kernel on the probability distributions, KP , needs to be
dataset dependent.

To find KP define the mapping Ψ : PX → H′kX
where

k′X is a kernel on X . Then define a new mapping such as the
one used in the characteristic kernel framework [19]. (As an
aside, there is an important connection between the injectivity
of Ψ and universal kernels, which has been studied in [20].)

PX 7→ Ψ(PX) :=

∫
X
k′X(x, ·)dPX(x). (6)

Using these mappings define KP on PX as,

KP (PX , P
′
X) = κ(Ψ(PX),Ψ(P ′X)). (7)

where κ is a kernel onHk′
X

.

4. IMPLEMENTATION

To evaluate the proposed algorithm, the new method of semi-
supervised transfer learning (SSTL) is implemented and
compared with two existing methods: Pooling and learn-
ing marginal predictors (LMP). To create a predictor using
the Pooling method, all datasets are combined into a single
dataset and a function is learned on the aggregate set. The
LMP predictors are learned as previously described in Sec-
tion 2.4. Optimal parameters for LMP and Pooling algorithms
are chosen using 5-fold cross-validation following the proce-
dure described in [21]. The results showed that the selected
hyperparameters are data set depenedent. Thus to increase
robustness, hyperparameters are selected for each run of the
experiment. The optimal LMP parameters are then used for
the proposed algorithm, SSTL. Regularization parameters
for SSTL are fixed. Note that SSTL results can further be
improved if optimal parameters are chosen for SSTL.

All algorithms are implemented in Matlab using available
packages. The Pooling and LMP algorithms are implemented
via an existing package which is based on LibLinear [21, 22].
The proposed method, SSTL, is implemented via a modifi-
cation of the LapSVM package [23]. Kernel approximation



techniques are used for the Pooling and LMP algorithms to
speed up performance and the same approximation is adopted
for SSTL to ensure a fair comparison [21]. All three algo-
rithms are tested on two datasets: a synthetic dataset and
the Parkinson’s Telemonitoring Dataset [1]. In the synthetic
dataset, the SSTL performance is demonstrated in the clas-
sification setting while in the Parkinson’s dataset the perfor-
mance is demonstrated in the regression setting.

Synthetic Data Generation: The synthetic dataset is
composed of 25 training datasets and 5 testing datasets.
Each dataset is a newly generated two dimensional man-
ifold rotated by a randomly picked value from the set,
{0, pi

20 , . . . ,
pi
2 }. 10 of the dataset points are labeled and

400 of the points are unlabeled. Test datasets contain no la-
beled data points. An example manifold dataset can be seen
in Fig. 1. The axes represent two-dimensional features and
color represents the label. It is clear that marginal distribution
for each dataset is different.

Fig. 1: Example of Synthetic Datasets

Parkinson’s Telemonitoring Dataset: The Parkinson’s
Telemonitoring dataset is composed of voice measurements
from 42 individuals with early-stage Parkinson’s disease.
Each individual was followed for 6 months and their voice
samples were labeled on the UPDRS scale for Parkinson’s.
In addition, the dataset contains age, gender, and time since
recruitment for each individual.

In the experiments for this paper, the goal is to predict the
total UPDRS score of Parkinson’s disease symptoms based
on the age, gender, time since recruitment, and voice mea-
surements. 35 of the individuals are in the training dataset,
and 7 individuals are in the testing dataset. The data for all
individuals contains 80 unlabeled data points, while training
individuals also have 10 labeled data points. An example of
the marginal distributions for one data feature for two patients
is shown in Fig. 2. This type of difference holds between pa-
tients and features in the data.

For both datasets, 10 different train/test dataset splits are
created and all three algorithms including parameter selection
are run 20 times. The results are averaged over 200 experi-
ments.

Fig. 2: Example of Parkinson’s Telemonitoring Datasets

5. RESULTS AND DISCUSSION

Synthetic Data: Table 1 shows the performance of SSTL
using synthetic data in the classification setting and with re-
spect to miss-classification error. Here the worst performing
method is the Pooling method which was expected because
aggregating the datasets effectively destroys the manifold
structure of the data and therefore increases the challenge
when learning a classifier. In contrast, the LMP method
improves classification results by 12.6% w.r.t. Pooling. How-
ever, LMP suffers from an extreme label deficit in the training
dataset. In contrast, SSTL improves classification accuracy
by 27.3% w.r.t. Pooling by explicitly learning the manifold
structure of the data.

Dataset Pooling LMP SSTL
Synthetic 29.28 25.57 21.28

Parkinson’s 126.94 121.30 119.47

Table 1: Misclassification Error for Synthetic dataset and
Mean Squared Error for Parkinson’s dataset

Parkinson’s Telemonitoring Dataset: The mean of the
results of SSTL in the regression setting are shown in Table
1. Here again, the Pooling method has the worst performance
resulting of a squared error of 126.94 on the UPDRS scale.
LMP improves the results by 4.4%, while SSTL improves the
results by 5.9%.

6. CONCLUSION

This paper presents an algorithm that combines labeled and
unlabeled data during transfer learning. In particular, we
leverage results from semi-supervised learning that show that
penalizing the learning algorithm using the graph Laplacian
reduces the need for labeled data samples while maintaining
a constant error rate. The results are shown in both the classi-
fication and regression settings using synthetic manifold data
and the real world Parkinson’s Telemonitoring dataset.
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Bottou, “Large scale transductive svms,” Journal of
Machine Learning Research, vol. 7, no. Aug, pp. 1687–
1712, 2006.

[12] Avrim Blum, John Lafferty, Mugizi Robert Rwebangira,
and Rajashekar Reddy, “Semi-supervised learning using

randomized mincuts,” in Proceedings of the twenty-first
international conference on Machine learning. ACM,
2004, p. 13.

[13] Xiaojin Zhu, Semi-supervised Learning with Graphs,
Ph.D. thesis, Carnegie Mellon University, 2005.

[14] Sinno Jialin Pan and Qiang Yang, “A survey on transfer
learning,” IEEE Transactions on knowledge and data
engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[15] Gilles Blanchard, Gyemin Lee, and Clayton Scott,
“Generalizing from several related classification tasks to
a new unlabeled sample,” in Advances in neural infor-
mation processing systems, 2011, pp. 2178–2186.

[16] Krikamol Muandet, David Balduzzi, and Bernhard
Schölkopf, “Domain generalization via invariant feature
representation,” in International Conference on Ma-
chine Learning, 2013, pp. 10–18.

[17] Andrei A Rusu, Matej Večerı́k, Thomas Rothörl, Nico-
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