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Tire-Stiffness and Vehicle-State Estimation Based
on Noise-Adaptive Particle Filtering

Karl Berntorp1 and Stefano Di Cairano1

Abstract—We present a novel approach to learning online the
tire stiffness and vehicle state using only wheel-speed and inertial
sensors. The deviations from nominal stiffness values are treated
as a Gaussian disturbance acting on the vehicle. We formulate
a Bayesian approach, in which we leverage particle filtering and
the marginalization concept to estimate in a computationally
efficient way the tire-stiffness parameters and the vehicle state.
In the estimation model, the process and measurement noise are
dependent on each other, and we present an efficient approach
to account for the dependence. Our algorithm outperforms
some previously reported approaches, both in terms of accuracy
and robustness, and the results indicate significantly improved
performance compared to a standard particle filter. Monte-Carlo
trials on several experimental data sets verify that the estimator
identifies the tire stiffness on both snow and dry asphalt within
1% on average, with a settling time of a few seconds. On snow,
the largest steady-state error in any Monte-Carlo trial is less
than 4%.

I. INTRODUCTION

The tire–road contact is the main responsible for generating
the forces that alter the motion of a ground vehicle, and the
knowledge of the variables related to the tire–road interaction
is essential for advanced driver-assistance systems (ADAS).
The interaction between road and vehicle is highly nonlinear,
and individual tires may have different characteristics. A
common way to simplify the tire–road modeling is to assume a
static relationship between force and slip, but to reliably model
the interaction is complicated even with this simplification. For
example, when considering the tire stiffness (i.e., the initial
slope of the force-slip curve), the measurements can vary
considerably between experiments [1]–[3].

The force-slip relation is approximately linear for small slip
values, which are typical for driving in normal conditions. It
is therefore reasonable to model the longitudinal and lateral
tire force as proportional to the respective slip quantity [4].
The initial slopes in the longitudinal and lateral directions of
the tire are known as the longitudinal and lateral (cornering)
stiffness, respectively. There is a dependence between the tire
stiffness and the peak road-friction coefficient [3], [5], but a
complicating factor is that the tire stiffness is highly dependent
on several other factors, for example, tire and air temperature,
tire pressure, and material and smoothness of the surface,
which implies that the tire stiffness changes with time. The
cornering stiffness is a key parameter when using the linear
single-track vehicle model for control [4] and estimation [6].
Therefore, knowledge of the tire stiffness can be used directly,
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and is often imperative, in ADAS, and even partial knowledge
of the tire stiffness can be used to classify surface types
for road-condition monitoring. A factor in complicating this
problem further is that the vehicle states involved in the tire-
stiffness estimation are not directly measured in production
vehicles.

Due to the relevance of the problem in the automotive
domain, and the fact that it is not fully and satisfactorily solved
by cost-effective approaches, there is a rich literature on tire-
stiffness estimation. Some regression-based methods are found
in [5], [7]–[10]. Identification of the longitudinal stiffness
using nonlinear total least-squares is presented in [3], and [11]
reports an observer based on the longitudinal dynamics and
the LuGre friction model. In [12], a sliding-mode observer
and an extended Kalman filter (EKF) are implemented in
series to estimate forces, sideslip, and cornering stiffness.
Several developed approaches use sensors that are nonstandard
in passenger vehicles. A Kalman-filtering approach based
on global position information (GPS) is developed in [13],
whereas [14] exploits independent wheel actuation to estimate
friction coefficient and cornering stiffness. In [10] a high
precision localization system based on multiple GPS antennas
and a high-end inertial measurement unit is used for obtaining
some of the measurements. In [15] the tire-aligning moment
measured by torque sensors in the steering rack is used in an
observer-based approach, and [16] uses wireless in-tire strain
gage sensors to estimate the parameters of a tire Brush model.

The focus of this paper is the development of a method
for jointly estimating the stiffness parameters and the vehicle
dynamics state using only sensors available in production cars
according to current regulations, namely wheel-speed sensors
and inexpensive, for example, mems-based, accelerometers
and gyroscopes. Hence, as opposed to some of the previous
contributions, we aim at using the same hardware components,
and developing only new software, which is cost-effective in
large-volumes industries such as automotive, since it results
in no increase in per-unit cost. While our primary focus has
been the lateral dynamics, the method developed here can be
applied to either lateral or longitudinal dynamics, or to the
two combined.

In our approach, the deviations from nominal stiffness val-
ues are considered as a Gaussian variable affecting the vehicle
dynamics, and the mean and covariance of the process noise
are unknown and time varying. The parameters of interest
affect the vehicle state, which is only partially (and indirectly)
observed through the inertial sensors. The considered problem
is in general hard to solve for multiple reasons. First, the esti-
mation quality of the vehicle state affects the identification of



the noise statistics, and vice versa. Second, the measurements
from the inertial sensors are biased and significantly noisy.
Third, the estimation model for our target application shows
a dependence between the process and measurement noise. In
this paper, we formulate the problem in a Bayesian framework
as a joint state and parameter estimation problem, and develop
a computationally efficient particle filter-based approach that
accounts for the aforementioned bias and noise dependence.

Particle filtering is a technique that solves nonlinear, non-
Gaussian estimation problems by generating random state
trajectories and assigning a weight to them according to
how well they predict the observations [17]. Particle filtering
estimators have been previously reported in numerous auto-
motive applications (see, e.g., [18]–[20]). When considering
joint state and parameter estimation, a common approach
is to augment the state vector with the vector of parame-
ters and let the parameters be driven by artificial dynamics
[12]. However, increasing the state dimension is problem-
atic, especially in automotive applications, since the number
of propagated particles and hence the computational burden
usually increases exponentially with the dimensions, and the
computational capabilities of automotive micro-controllers that
run the estimation algorithm are very limited. The state-
augmentation approach also relies on introducing artificial
dynamics, which is not justified by the physics of the process
and hence there is no intuition on how to select the artificial
dynamics and their noise models. In our approach, we avoid
the introduction of artificial dynamics and rely instead on
marginalization [21] and propagation of the sufficient statistics
of the noise parameters, conditioned on the estimated vehicle
states, by exploiting the concept of conjugate priors [22].
Dependent noise when the statistics of both noise sources are
unknown, which might have implications on the observability
and identifiability of the model, has been considered in a
particle-filtering framework in [23]. Another work related to
our developments is [24], which considers estimation of noise
sources in a similar framework as in this paper and gives
explicit expressions for the case of uncorrelated noise sources.

In this paper1 for designing the estimator for the stiffness
parameters and the states of the vehicle dynamics, we start
from the methods developed in [23], [24]. Due to the models
resulting from our application and the fact that in our ap-
plication the measurement noise statistics can be determined
a priori, we modify the methods in [23], [24] to handle the
case of dependent noise sources and partially known measure-
ment noise. Since usually automotive-grade inertial sensors
deliver biased measurements, we must also include online
bias estimation. Finally, to reduce the computational burden as
required for implementation in micro-controllers with limited
resources, such as the ones that run automotive applications
today, we develop suitable approximations based on moment
matching that preserve asymptotic properties. To validate the

1A preliminary version of this work was presented in [25], [26]. The current,
elaborated, version contains a detailed explanation of the estimation algorithm
development and the approximation to increase computation speed, compar-
isons with other methods, a significantly expanded experimental evaluation
based on several datasets, and an algorithm to detect loss of observability in
the estimator.

approach, we extensively evaluate our method in simulations
and on experimental data, both on snow and asphalt, and
we compare with other particle filters, with a recursive least-
squares (RLS) approach, and with an EKF approach. The
experimental results also show that the probability density
functions for the estimated quantities are non-Gaussian. This
validates our choice of a particle filter, which does not require
a Gaussian distribution of the estimates.

Outline: Section II presents the vehicle model, sensor setup,
and the problem definition. Section III provides the back-
ground material on particle filtering necessary to understand
our approach, which is explained in Section IV. Section V
addresses implementation aspects. Simulation and experimen-
tal evaluation of the method follow in Sections VI and VII,
respectively, and Section VIII concludes the paper.

Preliminaries and Notation: The sensor configuration is
crucial for the algorithm design and the limits of performance.
We focus on a sensor setup that is standard in modern cars
equipped with electronic stability control, namely measure-
ments of the lateral (optionally also longitudinal) acceleration,
the yaw rate, the wheel-speed sensors, and the steering-wheel
angle. Furthermore, automotive-grade inertial sensors have
(time-varying) bias, which needs to be taken into account in
any realistic implementation. We tackle the joint estimation
problem in a Bayesian framework. With p(x0:k|y0:k), we
mean the posterior density function of the state trajectory x0:k

from time index 0 to time index k given the measurement se-
quence y0:k := {y0, . . . ,yk}. We define fk := f(xk,uk) for
a function f , where u is the deterministic input. Throughout,
for a vector x, x ∼ N (µ,Σ) indicates that x is Gaussian
distributed with mean µ and covariance Σ, and |Σ| is the
determinant of the matrix Σ. The notation St(µ,Υ, ν) means
the multivariate Student-t distribution with mean µ, scaling
Υ, and ν degrees of freedom. Similarly, NiW(γ,µ,Λ, ν)
reads the Normal-inverse-Wishart distribution with statistics
(hyperparameters) summarized in S := (γ,µ,Λ, ν). The
notation ẑk|m denotes the estimate of z at time index k given
measurements up to time index m.

II. MODELING AND PROBLEM FORMULATION

To get a tractable estimation problem using only standard
sensors, we make certain assumptions. Such assumptions are
consistent with those that allow to model the vehicle dynamics
by a single-track (i.e., bicycle) model, and have been shown
to be valid in normal driving scenarios, see, for example, [4],
[27]. The approach developed here can handle several cases
where such assumptions do not hold, at the price of increased
computational burden, for instance due to using a two-track
model.

Assumption 1: The steering angles of the front right and left
wheels are the same, denoted by δ.

Assumption 2: The steering and acceleration commands are
small enough such that sin (δ) ≈ δ and the vehicle operates
in the linear region of the tire-force curve, with negligible
inclination and bank angles.

Assumption 3: The left and right wheels on each axle have
the same stiffness.
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Fig. 1. A schematics of the single-track model and related notation.

Assumption 4: The dominant forces are the tire–road contact
forces. Influences due to wind and air resistance are ignored.

Assumption 5: The lateral dynamics is approximately de-
coupled from the longitudinal dynamics.

Under these assumptions, our approach for joint state and
parameter estimation can be based on a planar single-track
model, see Fig. 1. In the following, F x, F y are the longitudinal
and lateral tire forces, respectively, α is the wheel-slip angle,
ψ is the yaw, v is the velocity vector, and subscripts f, r
denote front and rear, respectively. With the state vector x =[
vX vY ψ̇

]T
, where vX is the longitudinal velocity of the

vehicle, vY is the lateral velocity of the vehicle, and ψ̇ is the
yaw rate, the equations of motion are

m(v̇X − vY ψ̇) = FX − F yf sin(δ), (1a)

m(v̇Y + vX ψ̇) = F yf cos(δ) + F yr + F xf sin(δ), (1b)

Iψ̈ = lf (F yf cos(δ) + F xf sin(δ))− lrF yr , (1c)

where m is the mass, I is the inertia, and FX = F xf cos(δ) +
F xr . In several ADAS applications, the lateral dynamics are
of main interest [4], [27]. In this case, the longitudinal
dynamics can be discarded, assuming that the longitudinal
velocity is provided by some other estimation logic.2 From
Assumption 2, the longitudinal and lateral tire forces can be
expressed as linear functions of the wheel slip λ and slip angle
α, respectively,

F x ≈ Cxλ, F y ≈ Cyα, (2)

where Cx and Cy are the longitudinal and lateral stiffness,
respectively. We define the wheel slip as in [28],

λ =
vX −Rwω

max(vX , Rwω)
, (3)

where ω is the wheel rotation rate and Rw is the effective
wheel radius. The slip angles are approximated as

αf ≈ δ −
vY + lf ψ̇

vX
, αr ≈

lrψ̇ − vY

vX
. (4)

In (3), (4), we use the velocity at the center of mass instead of
the velocity at the center of the wheel. The complete vehicle
model (1)–(4) is nonlinear in vX . More importantly, there are
bilinearities between both states, and states and parameters.
Considering both longitudinal and lateral dynamics allows
to properly account for the coupling in (1), but increases
computational burden. The wheel rotation rates ωf , ωr, and

2For example, estimated using the wheel-speed sensors, transmission-shaft
speed sensors, accelerometers, or a combination of them.

the steer angle δ, form the input vector u, which is assumed
known in the following. This is consistent with many nav-
igation systems, where dead reckoning is used to decrease
state dimension. Note that the wheel rotation rates could be
alternatively considered as noisy measurements. Once again,
this would increase the dimensions of the estimation problem,
which is undesired in automotive applications due to the
increase in the computational load must be limited. After
discretization, (1)–(4) can be written as

xk+1 = f̄(xk,uk), (5)

where f̄(xk,uk) is the discretized counterpart to (1)–(4). In
this work, we use a standard Euler discretization scheme, but
other methods can be used. For instance, considering lateral
dynamics only, by plugging (2), (4) into (1b) and discretizing
according to an Euler discretization scheme with sampling
time Ts,

vYk+1 = vYk +
Ts
m

(
Cyr

lrψ̇ − vY

vX
+ Cyf

(
δ − lf ψ̇ + vY

vX

))
.

(6)

A. Estimation Model

Eq. (5) can be rewritten by decomposing the stiffness
parameters into one known nominal part and one unknown
part,

Cx = Cxn + ∆Cx, Cy = Cyn + ∆Cy, (7)

where Cn is the nominal value of the stiffness, for example,
a priori determined on a nominal surface, and ∆C is a time-
varying, unknown part. We define

wk :=
[
∆Cxf ∆Cyf ∆Cyr

]T ∈ Rnw (8)

as random process noise acting on the otherwise deterministic
system. Note that we only include the front longitudinal
stiffness, that is, nw = 3, because the system is poorly
observable with the considered sensor setup if both front and
rear longitudinal tire stiffness are considered. Here we consider
the front longitudinal stiffness because we will validate the
algorithm with a front-wheel drive vehicle, where the longitu-
dinal force is expressed only at the front tires. For rear-wheel
drive vehicles, one will substitute ∆Cxf by ∆Cxr , while for all-
wheel drive vehicles the rear and front longitudinal stiffness
should be estimated iteratively.

We model the noise termwk as Gaussian distributed accord-
ing to wk ∼ N (µk,Σk), where µk and Σk are the unknown,
usually time varying, mean and covariance. Inserting (7) into
(5) allows us to write the dynamics as

xk+1 = f(xk,uk) + g(xk,uk)wk. (9)

Thus, in (6) the decomposition (7) leads to

vYk+1 = vYk +
Ts

m

(
Cy

r,n
lrψ̇ − vY
vX

+ Cy
f,n

(
δ − lf ψ̇ + vY

vX

))
︸ ︷︷ ︸

fk(xk,uk)

+
Ts
m

[
δ − lf ψ̇+vY

vX
lrψ̇−vY
vX

]
︸ ︷︷ ︸

g(xk,uk)

[
∆Cyf ∆Cyr

]T︸ ︷︷ ︸
wk

. (10)



Hence, the vehicle dynamics naturally leads to an interpreta-
tion of the unknown part of the tire stiffness as a disturbance
on the process with statistics with unknown parameters, which
motivates our noise-adaptive approach.

In the following, we are interested in estimating both the
state xk and the parameters µk,Σk, being the mean and
variance of the process noise wk. One interpretation of the
parameters is that the mean models the stiffness variations
based on the surface type, such as asphalt or snow, and the
variance models the uncertainty due to either variations on a
surface, such as road unevenness, patches of loose snow, road
in mixed conditions, or other unmodeled effects.

The available measurements are the longitudinal and lateral
accelerations, aXm, aYm, and the yaw rate ψ̇m, forming the
measurement vector yk = [aXm aYm ψ̇m]T. To relate yk to
the states, note that aX and aY can be extracted from the
right-hand sides of (1a) and (1b), respectively, after dividing
the vehicle mass and shifting over the first terms on the right-
hand sides. The yaw-rate measurement is directly related to
the yaw rate. When turning, a car typically exhibits a slight
roll angle about the vehicles forward axis. The roll angle
causes the lateral acceleration component to pick up parts of
the gravitational acceleration, namely sinφg ≈ φg, where g
is the gravitational acceleration and φ is the roll angle. The
roll angle is proportional to the lateral acceleration according
to aY ≈ cφφ, where cφ is the roll-angle gradient. Hence,
the influence of the roll angle on the measurements can be
suppressed by dividing the measured lateral acceleration with
the constant 1 + cφg, see [29].

Automotive-grade inertial sensors have bias b, which must
be modeled for any realistic implementation. The bias for
each sensor can be modeled as a first-order Markov process
ḃ = −b/τ + wb with time constant τ , where b/τ ≈ 0. This
approximation is reasonable for estimation processes lasting
some minutes, since τ typically is in the order of several
minutes [30]. Hence, we model the bias as a random walk,

bk+1 = bk +wb,k, (11)

where bk = [bx,k by,k bψ,k]T ∈ R3 are the bias terms for
the acceleration vector and yaw rate, and wb,k is modeled
as zero-mean Gaussian with known covariance matrix Q,
wb,k ∼ N (0,Q). The characteristics of the noise source wb,k

depend only on the sensor, and hence can be determined a
priori from an Allan-variance analysis [30], thus avoiding the
need for real-time estimation of Q. The measurement model
can be written as

yk = h(xk,uk) + bk + d(xk,uk)wk + ek, (12)

where

d(xk,uk) =
[
Tsg1(xk,uk)T Tsg2(xk,uk)T 0T

]T
,

in which gj is the jth row of g in (9) and ek ∈ Rne , ne =
3, is the Gaussian zero-mean noise from the inertial sensors,
ek ∼ N (0,R), where R is determined a priori.

Now, the joint Gaussian distribution of the tire-stiffness
parameters wk and measurement noise ēk can be written as

w̄k =
[
wT
k ēT

k

]T ∼ N (µ̄k, Σ̄k

)
,

where we have introduced the short-hand notation ēk =
d(xk,uk)wk + ek, and where

µ̄k =

[
µk
dkµk

]
, (13a)

Σ̄k =

[
Σk Σkd

T
k

dkΣ dkΣkd
T
k +R

]
. (13b)

In (13), dk := dk(xk,uk). Thus, the noise sources with the
structure given by (13b) are dependent. In this work we need
to estimate the process-noise statistics µk and Σk, which are
embedded in (13), together with the state trajectory. As for
the bias, the measurement noise stemming from the inertial
sensors R is also determined a priori.

Remark 1: It is possible to treat the measurement-noise
parameters as unknown and include any bias terms in the mean
of the measurement noise. Then, the resulting measurement-
noise parameters to be estimated would include a combination
of stiffness parameters, measurement noise, and bias terms.
We believe that, for a computationally efficient implementa-
tion, which is needed in resource-limited automotive micro-
controllers, it is beneficial to treat the noise parameters from
the inertial measurements as known, since these depend on the
sensor only, and hence can be determined a priori. Further-
more, the characteristics of the bias can also, as pointed out,
be determined offline for the same reason. This information
can then be utilized for more reliable estimation of the noise
parameters.

Remark 2: Our proposed method can be extended to esti-
mate a piecewise-affine tire-stiffness map, such as described in
[4], by combining detection of large slip angles with anomaly
detection on estimated stiffness values. This covers the case
of maneuvers at the limit of the stability region of the vehicle.
This extension will be the subject of future studies.

B. Observability

Observability can be analyzed by augmenting the dynamic
model (5) with the stiffness parameters, model them as a
random walk, and derive the observability Gramian by lin-
earization. In our case, assuming nonzero steering angle and
wheel slip, it can be shown that the Gramian is nonsingular,
and hence the system is weakly observable.

C. Problem Formulation

We want to estimate the tire-stiffness parameters and vehicle
state online. In a Bayesian setting, this can be expressed
as jointly learning the parameters θk := {µk,Σk} of the
Gaussian process noise wk and estimating the state vector
xk. We approach this problem in the following way. Given
the system model (9)–(12), and dependent Gaussian noise
between wk and ēk characterized by (13), where the unknown
parameters θk may be time varying, we recursively estimate

p(xk|y0:k), (14a)
p(θk|y0:k). (14b)

Because the measurements are affected by the unknown bias,
to compute (14), we also need to estimate the bias density as
an intermediate step in the method.



III. BACKGROUND ON PARTICLE FILTERING AND
CONJUGATE PRIORS

First, we provide background material on particle filtering
and conjugate priors that are necessary for the understanding
of the development of the joint state and stiffness estimator in
the subsequent section.

A. Particle Filtering with Dependent Noise
Particle filters [17] approximate the posterior of the state

trajectory using a weighted sum of particles

p(x0:k|y0:k) ≈
N∑
i=1

qikδ(x0:k − xi0:k), (15)

where δ(·) is the Dirac delta mass, N is the number of
particles, and qik is the importance weight for the ith state
trajectory xi0:k. In this work we use a relatively standard
sequential importance resampling (SIR) based particle filter
to propagate the samples and update the weights [17]. In
general, the particles are sampled from a proposal distribution
π(xk+1|xi0:k,y0:k+1). For dependent noise [23], the weight
update is performed as

qik ∝ qik−1

p(yk|xi0:k,y0:k−1)p(xik|xi0:k−1,y0:k−1)

π(xik|xi0:k−1,y0:k)
(16)

where p(yk|xi0:k,y0:k−1) is the likelihood. If the proposal is
chosen equal to p(xik|xi0:k−1,y0:k−1), (16) simplifies to

qik ∝ qik−1p(yk|xi0:k,y0:k−1). (17)

In case of known parameters and Gaussian noise, (17) can be
computed analytically [23]. However, in our case, since the un-
known process-noise parameters affect both the measurement
and prediction step (see (12), (13)),

p(yk|xi0:k,y0:k−1), (18a)

p(xik+1|xi0:k,y0:k), (18b)

respectively, the weight update will depend upon the parameter
estimates.

B. Learning with Conjugate Priors
Conjugate priors [22], [31] are useful for parameter learn-

ing.
Definition 1: Given a likelihood, the conjugate prior is the

prior distribution such that the prior and posterior are in the
same family of distributions. �
Thus, for a conjugate prior, the prior and posteriors are of the
same type, and the estimation problem simplifies to updating
the hyperparameters, that is, the parameters of the distribution.
Lemma 1 provides an explicit expression of the conjugate prior
for Gaussian likelihoods [31].

Lemma 1 ( [31]): For multivariate Normal data w̄ ∈ Rd
with unknown mean µ and covariance Σ, a Normal-inverse-
Wishart distribution defines the conjugate prior p(µk,Σk) :=
NiW(γk|k, µ̂k|k,Λk|k, νk|k), through the hierarchical model

µk|Σk ∼ N (µ̂k|k, γk|kΣk),

Σk ∼ iW(νk|k,Λk|k)

∝ |Σk|−
1
2 (νk|k+d+1)e(−

1
2 tr(Λk|kΣ

−1
k )

where tr(·) is the trace operator. �
The statistics Sk|k := (γk|k, µ̂k|k,Λk|k, νk|k) in Lemma 1

can be updated as suggested in [24], [32],

γk|k =
γk|k−1

1 + γk|k−1
, (19a)

µ̂k|k = µ̂k|k−1 + γk|kzk, (19b)

νk|k = νk|k−1 + 1, (19c)

Λk|k = Λk|k−1 +
1

1 + γk|k−1
zkz

T
k , (19d)

zk = w̄k − µ̂k|k−1. (19e)

For time-varying parameters, the prediction step consists of

γk|k−1 =
1

λ
γk−1|k−1,

µ̂k|k−1 = µ̂k−1|k−1,

νk|k−1 = λνk−1|k−1,

Λk|k−1 = λΛk−1|k−1,

(20)

where λ ∈ [0, 1] provides exponential forgetting. Further, for
a Normal-inverse-Wishart prior, the predictive distribution of
the data w̄ is a Student-t,

St(µ̂k|k−1, Λ̃k|k−1, νk|k−1 − d+ 1), (21)

with
Λ̃k|k−1 =

1 + γk|k−1

νk|k−1 − d+ 1
Λk|k−1.

The key question is how to generate w̄k in (19e) so that
the dependence structure is taken into account. Our approach
for solving this is discussed in Sec. IV-B. Also, note that in a
particle implementation, each particle keeps its own estimate
of the statistics.

The distribution of the parameters θk = {µk,Σk} is
in general computed based on the state trajectory and/or
the measurement history, depending on the assumptions on
the noise processes. From (18), knowing both the state and
measurement trajectory leads to full knowledge about w̄0:k.
Hence, for a specific realization of the state trajectory xi0:k

and of the measurement history, the posterior for the noise
parameters can be written as a function of the noise realization
corresponding to the state trajectory,

p(θk|w̄i
0:k). (22)

Using Bayes’ rule on (22) leads to

p(θk|w̄0:k) ∝ p(w̄k|θk)p(θk|w̄0:k−1). (23)

The posterior of the parameters in (23) is composed of a
likelihood p(w̄k|θk) and a prior p(θk|w̄0:k−1).

Suppose now that the predictive distribution p(θk|w̄0:k−1)
in (23) is Normal-inverse-Wishart, that is,

p(θk|w̄0:k−1) = NiW(γk|k−1, µ̂k|k−1,Λk|k−1, νk|k−1).
(24)

By (23), (24), and Lemma 1, the posterior is also Normal-
inverse-Wishart,

p(θk|x0:k,y0:k) = NiW(γk|k, µ̂k|k,Λk|k, νk|k). (25)



Thus, to compute (14b), we integrate over the state trajectory,

p(θk|y0:k) =

∫
p(θk|x0:k,y0:k)p(x0:k|y0:k)dx0:k

≈
N∑
i=1

qikp(θk|xi0:k,y0:k)δ(x0:k − xi0:k), (26)

which has complexity O(N), where p(θk|xi0:k,y0:k) is given
by (25). The unknown parameters can be extracted from (26);
for instance, the minimum mean-square estimate of µk and
Σk can be found as

µ̂k =

N∑
i=1

qikµ̂
i
k|k, (27a)

Σ̂k =

N∑
i=1

qik

(
1

νk|k − 4
Λi
k|k + (µ̂ik|k − µ̂k)(µ̂ik|k − µ̂k)T

)
.

(27b)

In the next section we describe how to connect the measure-
ment update (18a) and prediction step (18b) in the particle
filter with the update of the noise statistics (19) and the bias
components.

IV. JOINT STATE AND TIRE-STIFFNESS ESTIMATION

Considering also the bias, we approach our estimation
problem by estimating the density p(bk,θk,x0:k|y0:k), that
is, the joint posterior conditioned on all measurements from
time index 0 to k. We decompose

p(bk,θk,x0:k|y0:k) = p(bk|θk,x0:k,y0:k)p(θk|x0:k,y0:k)

· p(x0:k|y0:k). (28)

The three densities on the right-hand side of (28) are estimated
recursively. The third term on the right-hand side is given
by (15). The key idea is that given the state trajectory, we
can update the distribution of the noise parameters, that is,
the second distribution on the right-hand side of (28) as
given by (25). Similarly, given the parameters and the state
trajectory, the estimation of the posterior density of the bias
simplifies considerably. However, because of the structure of
the estimation model, the three densities are tightly connected.

In solving our estimation problem, we approximate the
posterior of the state trajectory using particle filtering, see
Section III-A, and the update of the noise statistics conditioned
on the state trajectory is done according to Section III-B.
However, the likelihood (18a) and predictive density (18b) are
not straightforward to compute because of the partially known
noise. Furthermore, the measurement update of the noise
statistics given by (19) depends on the realization of the noise
term through the error equation (19e), which is connected to
the predictive density (18b) because of the dependent noise.

Remark 3: Note that only the parameters of wk are un-
known, so (19) and (20) are only applied to the process noise
(i.e., w̄ ∈ Rnw in Lemma 1), which decreases the dimension-
ality from d = 6 to nw = 3. However, to include information
from the likelihood into the update of the parameters, thereby
taking advantage of that the noise sources are dependent, w̄k

in (19e) must be generated through the measurement model.
We will describe this in more detail in Sec. IV-B.

A. Bias Estimation

The bias estimation update relies on having computed both
the posterior for the state trajectory and the one for the noise
parameters, (26). Thus, the bias estimation is concerned with
computing the posterior p(bk|θk,x0:k,y0:k), based on the
following observation. First, the prediction model (11) of the
bias states is a random walk, which is linear and Gaussian.
Second, the dynamics of the bias states are independent on
both the unknown process noise and the vehicle states. Hence,
the Kalman predictor is the optimal predictor, resulting in

b̂
i

k+1|k = b̂
i

k|k, P i
k+1 = P i

k +Q. (29)

For the measurement update, (12) conditioned on the state
trajectory and the noise parameters is affine in bk with known,
Gaussian measurement noise ēk. Hence, the measurement
update per particle consists of a Kalman update,

b̂
i

k|k = b̂
i

k|k−1 +Kk(yk − h
i
k − d

i
kµ̂

i
k|k − b̂

i

k|k−1),

Ki
k = P i

k|k−1(Sik)−1,

P i
k|k = P i

k|k−1 −K
i
k(Sik)−1(Ki

k)T,

Sik = P i
k|k−1 +R+ dikΣ̂

i

k|k(dik)T,

(30)

where Σ̂
i

k|k = Λi
k|k/(νk|k − 4). Note that (29) and (30) are

prediction and update equations applied to each particle in the
particle filter, and not a stand-alone, cascade Kalman filter.
The first term on the right-hand side of (28) can now be
written as a Gaussian for each particle, where the mean and
covariance of each Gaussian is obtained from (30). The second
and third terms are given by (15) and (25), respectively, and
(28) can therefore be written as a weighted sum of the three
distributions, where the weights are given by the particle filter.
The computation of the weights is done by marginalization of
the bias states and parameters, as discussed next.

B. State Update and Prediction through Marginalization

To estimate the state, we need expressions for (18a), (18b),
which are then used to compute (15), from which the filtering
distribution p(xk|y0:k) is obtained. We first state the following
lemma on transformation of variables in probabilities.

Lemma 2 (See [33]): Let X be a random variable with
probability density function p(x). Let y = g(x) and assume
that g−1(y) exists with Jacobian J(y) = ∂g−1

∂y . Then, the
random variable Y = g(X) has the probability density
function

p(y) = |J(y)|p(g−1(y)).

�
Consider first the weight update and corresponding mea-

surement likelihood. To compute the likelihood (18a), we
apply Lemma 2 to our scenario, which results in

p(yk|x0:k,y0:k−1) = p(ēk(yk,xk)|x0:k−1,y0:k−1). (31)

Furthermore, the knowledge of both the state trajectory x0:k−1

and measurement sequence y0:k−1 gives full information
about ē0:k−1. Eq. (31) therefore becomes

p(ēk(yk,xk)|x0:k−1,y0:k−1) = p(ēk(yk,xk)|ē0:k−1). (32)



Using marginalization, (31) can be rewritten as

p(yk|x0:k,y0:k−1) =

∫
p(yk|θk,xk)

· p(θk|x0:k−1,y0:k−1) dθk. (33)

The total measurement noise ēk = dkwk + ek is the sum
of a Gaussian ek with known statistics and a Gaussian wk

with unknown statistics, given by a NiW prior. Integrating
over the product of a NiW prior and a Gaussian distribution
leads to a Student-t distribution [31]. This implies that (33)
is a mixture of Gaussian and Student-t distributions, which
can be expressed as an infinite weighted sum of exponential
functions φk(z), z ∈ Rd, on the form [34]

p(z) =

∞∑
k=0

ζkφk(z), (34)

where
φk(z) ∝ (‖z‖2)k exp

(
−1

2
zTz/σ

)
,

and where it is assumed that φk(z) has a diagonal covariance
matrix with σ on the diagonal. Computing the coefficients
ζk of the sum in (34) involves integrations that are compu-
tationally demanding. Since the tire-stiffness estimator needs
to operate in real-time at several tens of Hz in automotive
platforms, which have limited computing capabilities, we
need to seek for a computationally efficient implementation.
Therefore, we seek an alternative expression based on moment
matching. Specifically, we relax the assumption on Gaussian
distribution of the inertial measurements by matching the first
two moments (mean and covariance) of the Gaussian with a
corresponding Student-t using the following approximation.

Approximation 1: We approximate (33) with the Student-t
distribution

p(ēk(yk,xk)|ē0:k−1) ≈ St(µ̂ē,k|k−1, Λ̃ē,k|k−1, ν̃k|k−1),
(35)

with mean µ̂ē,k|k−1 and scale Λ̃ē,k|k−1 as

µ̂ē,k|k−1 = dkµ̂k|k−1,

Λ̃ē,k|k−1 =
1 + γk|k−1

ν̃k|k−1
dkΛk|k−1d

T
k

+
ν̃k|k−1 − 2

ν̃k|k−1
(R+ P k|k−1).

Approximation 1 is based on moment matching of a known
Gaussian with a Student-t, by choosing the smallest common
degree of freedom, and also implicitly involves marginalization
of the bias state. The Student-t is a heavy-tailed version
of the Gaussian and can be interpreted as a robustification
of the measurement noise, see Fig. 2. Moment matching is
rather common in nonlinear estimation for enabling analytic
expressions, see [35], [36] for recent examples. We justify
Approximation 1 in the following proposition.

Proposition 1: As k → ∞, (35) converges to a Gaussian
with precision determined by the forgetting factor λ.

Proof 1: Inserting the expression for νk|k−1 from (20) into
νk|k in (19), νk|k = λνk−1|k−1 + 1. At equilibrium, νk|k =
νk−1|k−1 and it follows that lim

k→∞
νk|k = 1/(1− λ). The result

x

p(x)
ν = 2

ν = 5

ν = 25

Gaussian

Fig. 2. Illustration of how the Student-t approaches a Gaussian as the degrees
of freedom increase.

follows from lim
ν→∞

St(µ,Λ, ν) = N (µ,Λ) and from the sum
of Gaussian variables being a Gaussian variable. �

Note that while Proposition 1 states an asymptotic property
of our approximation, the moment matching of the first and
second moments holds also during transients. We compute the
likelihood (18a) by using Approximation 1 and (31)–(35), and
the subsequent measurement update (17) becomes

qik ∝ qik−1St(µ∗, Λ̃
∗
, ν̃∗), (36)

where

µ∗ = hk + bk|k−1 + dkµ̂k|k−1,

Λ̃
∗

=
1 + γk|k−1

ν̃k|k−1
dkΛk|k−1d

T
k +

ν̃k|k−1 − 2

ν̃k|k−1
(R+ P k|k−1).

Eq. (36) provides the importance weights that are used in the
particle filter (15), and for combining the estimates of the bias
obtained by (30) for each particle and the parameter density
(25), resulting in (28).

Remark 4: According to Proposition 1, Approximation 1
is arbitrarily precise as k → ∞ for λ = 1. However,
introducing exponential forgetting is important for avoiding
accumulation of errors. Thus, the particular choice of λ is
a tradeoff between the presence of path degeneracy and the
accuracy of Approximation 1.3

We now turn to the predictive density (18b). Similarly
to (31), using Lemma 2 leads to

p(xk+1|x0:k,y0:k) ∝ p(g−†k (xk+1 − fk)|x0:k,y0:k)

= p(g−†k (xk+1 − fk)|ē0:k)

= p(wk(xk+1)|ē0:k), (37)

where g−†k is the pseudo-inverse of gk. By integrating over
the noise parameters in (18b),

p(xk+1|x0:k,y0:k) =

∫
p(xk+1|θk,xk,yk)

· p(θk|x0:k−1,y0:k−1) dθk. (38)

The integrand in (38) is the product of a Gaussian distribution
and a Normal-inverse-Wishart distribution, which is a Student-

3Path degeneracy means that the number of unique particle trajectories will
decrease as time proceeds.



t distribution. Combining with (37), the predictive distribution
of wk is also a Student-t,

p(wk(xk+1)|ē0:k) = St(µ̂∗k, Λ̃
∗
k, ν
∗
k). (39)

Using (19), the samples from (39) are used to update (25) (i.e.,
the second term on the right-hand side of (28)) and (26).

Theorem 1: The hyperparameters in (39) are given by

ν∗k = νk|k−1 − ne + 1,

µ∗k = µ̂k|k−1 + dkΛk|k−1Λ̃
−1

ē,k|k−1zk,

Λ̃
∗
k =

νk|k−1 − d+ 1 + zkΛ̃
−1

ē,k|k−1z
T
k

νk|k−1 − ne + 1

(
Λk|k−1

− dkΛk|k−1Λ̃
−1

ē,k|k−1Λ
T
k|k−1d

T
k

)
,

zk = ēk − µ̂ē,k|k−1.

(40)

Proof 2: First, given Approximation 1, the joint predictive
distribution of wk and ēk is a Student-t. For x1 ∈ Rd1 and
x2 ∈ Rd2 jointly distributed according to a Student-t,

p(x1,x2) = St

([
µ1

µ2

]
,

[
Λ11 Λ12

ΛT
12 Λ22

]
, ν

)
,

and by using the factorization p(x1|x2) = p(x1,x2)/p(x2),
it can be shown [36] that the conditional density is given by

p(x1|x2) = St(x1|µ1|2,Λ1|2, ν1|2), (41)

where

ν1|2 = ν + d2,

µ1|2 = µ1 + Λ12Λ
−1
22 (x2 − µ2),

Λ12 =
ν + (x2 − µ2)Λ−1

22 (x2 − µ2)T

ν + d2

·
(
Λ11 −Λ12Λ

−1
22 ΛT

12

)
.

Hence, the hyperparameters (40) follow from (41) by utilizing
(35), (36), yielding

ν = νk|k−1 − d+ 1, d2 = ne,

µ1 = µw,k|k−1,

Λ11 = Λw,k|k−1,

Λ12 = ḡkΛw,k|k−1,

Λ22 = Λ̃ē,k|k−1,

x2 − µ2 = ēk − µ̂ē,k|k−1.

�
Using the prediction model as proposal density in the

particle filter greatly simplifies the algorithm, since we can
draw samples from (39), and use these samples both to create
particles xik+1 according to (9), thereby finding an expression
for (18b), and to update the sufficient statistics in (19). Note
also that the correlation between process and measurement
noise is accounted for by inserting (40) into (39), and that the
bias term affects the update of the noise statistics through the
error term zk in (40).

Particle filters can often benefit from an improved proposal
distribution π(·), but the simplification by using the sampled
noise values in both the measurement update of the sufficient

statistics and the weight update is particularly appealing in
applications with reduced computational capabilities. Further-
more, for non-Gaussian process noise, which is the case here
when the mean and variance are unknown, it is nontrivial to
find good proposal densities.

Finally, to obtain an approximation of the filtering distri-
bution (14a), we marginalize out x0:k−1 from the third term
on the right-hand side of (28) (i.e., (15)), which amounts to
extracting the last state,

p(xk|y0:k) ≈
N∑
i=1

qikδ(xk − xik). (42)

Algorithm 1 summarizes the method for the convenient choice
of the prediction model as proposal, and Fig. 3 contains a
conceptual flowchart of the algorithm.

Algorithm 1 Pseudo-code of the estimation algorithm
Initialize: Set {xi0}Ni=1 ∼ p0(x0), {qi0}Ni=1 = 1/N ,
{Si0}Ni=1 = {γi0,µi0,Λ

i
0, ν

i
0}, {b

i
0}Ni=1 ∼ p0(b0)

1: for k ← 0 to T do
2: for each particle i ∈ {1, . . . , N} do
3: Update weight q̄ik using (36).
4: Update noise statistics Sik|k using (19).
5: end for
6: Normalize weights as qik = q̄ik/(

∑N
i=1 q̄

i
k).

7: Compute Neff = 1/(
∑N
i=1(qik)2)

8: if Neff ≤ Nthr then
9: Resample particles and copy the corresponding

statistics. Set {qik}Ni=1 = 1/N .
10: end if
11: Approximate state filtering posterior with (42).
12: Approximate parameter posterior with (26).
13: Compute estimates of noise parameters using (27).
14: for each particle i ∈ {1, . . . , N} do
15: Measurement update of bias using (30).
16: Predict noise statistics Sik+1|k using (20).
17: Sample wi

k from (39).
18: Predict state xik+1 using (9).
19: Predict bias using (29).
20: end for
21: end for

Remark 5: Both (42), (26), and similarly (30) overlook a
potential path-degeneracy problem, but taking into account
different paths leads to an algorithm that is O(N2) and
therefore often intractable in real-time implementations when
computational resources are limited. Furthermore, for suffi-
cient mixing in the dynamic model (9), errors in the state are
forgotten as time progresses, which ensures convergence of
(42) as N → ∞ [17]. For (26), the use of exponential for-
getting suppresses the path-degeneracy problem, which causes
issues in the estimation of static parameters [24]. Exponential
forgetting includes mixing in the parameter estimation.

V. ASPECTS OF THE IN-VEHICLE IMPLEMENTATION

In actual in-vehicle implementations, the steer angle δ (i.e.,
the road-wheel angle) is not usually measured. Furthermore,
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Fig. 3. A simplified flowchart of the proposed method. The bias blocks
are not shown because they are byproducts from the estimation procedure.
The measurements are compared to the predicted particles and a subsequent
updated set of states are generated, together with an actual point estimate of
the state. The predicted states are used to update the parameters, from which
point estimates of the tire stiffness and associated covariances are computed.

in practice the Ackermann steering configuration causes a
slight deviation between the left and right wheel. We assume
a single-track model (see Fig. 1), where δ is modeled as the
average between the left and right wheel angles. In general, δ
can be calculated from a nonlinear map of the steering-wheel
angle, which is measured.

The stiffness parameters can be bounded in an interval,
which includes the range of stiffness values that can be
obtained on different surfaces. This amounts to a parameter
projection, which is applied whenever the parameter values
are outside the bound. Note that in the experiments and
simulations we have undertaken, this projection has never
been applied for our approach, but proved valuable when
implementing the linear estimators used in this paper for
comparison.

In an actual implementation, the algorithm should only be
executed when the system is observable. One option is to
verify this relying on the discussion in Section II-B, which
amounts to thresholding the activation of the algorithm based
on the values of the inputs. This is the approach used for
obtaining the results in this paper.

In the two sections that follow, we evaluate the algorithm
on synthetic data and on a number of real data sets. The real
data sets are collected with a mid-size SUV on both snow
and dry asphalt, in normal driving. For the simulation results,
we compare the method against a state-augmented particle
filter (AUGPF) and a method based on linear regression (RLS),
similar to that presented in [8]. The state-augmented particle
filter models the deviation of the stiffness components as
three extra states, in addition to the associated variance of
each stiffness component, and is included to show the benefits

with our adaptive particle filter where we marginalize out the
stiffness parameters, thereby reducing the dimension of the
particle filter.

In the experimental evaluation, we also compare with an
EKF (denoted by EKF). This comparison is included to show
the potential benefits with a particle filter compared to methods
based on (local) linear and Gaussian assumptions. We have
made extensive tuning of the EKF, but we acknowledge that it
is difficult to make fair comparisons with experimental data.

VI. SIMULATION STUDY

This section evaluates the proposed method in simulation
and compares it with two other methods.

A. Problem Setup

For generating synthetic data, we use a single-track model
with steering angle and wheel torque as inputs. The inputs
are square waves with period time 4 s and 5 s, respectively,
and they are chosen such that the longitudinal wheel slip
is below 5% and the small-slip approximations (4) for the
wheel-slip angles hold. The tire-stiffness parameters are indi-
vidually independent and Gaussian distributed with standard
deviation approximately 5% of the true values. At the 30 s
mark a sudden change in road surface occurs, which results
in a 50% decrease in tire stiffness. In the simulations, the
mean of the initial vehicle state and the initial covariance
are x0 = [22 0 0]T, P0 = diag([1 1 π/180]2), which are also
used to generate the ground truth. The initial standard devia-
tion of the stiffness estimates is 30% of the true values and the
stiffness values are 70% of the true values. The noise values
of the measurements are typical for automotive grade inertial
sensors. The bias is set to zero for simplicity, as its impact is
better tested later, in experiments.

We initialize all the methods with the same values for the
variables in common. In AUGPF, the state vector also includes
the unknown parameters of the process noise, resulting in a
state vector x ∈ R9 to be estimated with a particle filter, as op-
posed to x ∈ R3 for our proposed method. Both filters use the
weighted mean of the particles as state estimates. In AUGPF,
the mean is modeled as a Gaussian random walk, and the
inverse-Wishart distribution is used to propagate the unknown
variance for each component, p(Σw,k|Σw,k−1) = iW(α, β).4

The deviation of the random walk is set to 2% of the value of
the true parameter, and α, β are set such that the mean value
is held constant and the deviation of the distribution is 1%
of the previous value. These are the values that result in the
smallest root-mean-square error (RMSE) on 100 Monte-Carlo
executions.

RLS is based on linear regression, but the combined es-
timation of longitudinal and lateral dynamics, and of the
tire stiffness results in a model with sharp nonlinearities
due to the longitudinal velocity. Therefore, we found that a
better performance is obtained by first estimating the lateral
dynamics by a Kalman filter, and then feeding the obtained
estimate to the linear regression, where we also use the true

4The inverse-Wishart is the conjugate prior for unknown variance [22].



longitudinal velocity to obtain a more challenging comparison
for our proposed approach.

In what follows, all results for the stiffness are presented
in normalized scale, with normalization with respect to the
true value on asphalt as obtained in bench testing with high-
accuracy calibration sensors, to better highlight relative, i.e.,
percentage, estimation errors.5 Note that the deviation from
the true stiffness values are modeled as a Gaussian disturbance
with unknown mean and covariance as in (8). Hence, the mean
of the stiffness deviations are computed from (27a) and the
estimated stiffness values shown in the following plots are the
total stiffness values as defined in (7), and the corresponding
confidence intervals are computed from (27b).

B. Results

Fig. 4 shows the results for the front wheel for one Monte-
Carlo trial. The results are similar for the rear lateral stiffness.
Algorithm 1 and AUGPF use 500 particles. Algorithm 1 shows
improvements in the estimation performance. The accuracy of
the estimated standard deviation in stationarity for Algorithm 1
in this realization is within 5%. Note that the estimates for
AUGPF have larger variability. Indeed, changing the tuning of
the noise sources to the artificial dynamics in AUGPF can result
in smoother estimates, but also leads to slower convergence
when the friction changes. RLS works reasonably well, how-
ever, it converges slower and the estimates are biased. Note
also that RLS assumes perfect knowledge of the longitudinal
dynamics that amounts to an idealized implementation, and
this is why the RLS estimate for Cxf is not shown in Fig. 4.
Even if in Fig. 4 AUGPF gives worse performance for the
longitudinal stiffness than the lateral stiffness, this is not
the case for all the simulations, as for other realizations the
longitudinal stiffness is more accurately estimated than the
lateral stiffness. However, we did not find a case where both
estimates show a performance superior to those generated from
Algorithm 1.

It is instructive to see how the performance varies with
the number of particles. The variation in the time-averaged
RMSE of the lateral velocity is shown in Fig. 5. This plot
clearly shows the benefit from modeling the tire stiffness as
an unknown disturbance in a marginalized approach. Although
the state-augmented particle filter in the limit N → ∞ will
achieve a performance similar to Algorithm 1, the number of
particles in automotive application is limited by the compu-
tational resources. Note that Algorithm 1 and AUGPF have
comparable per-particle computation burden and both have
complexity O(N). Due to avoiding introducing artificial dy-
namics, Algorithm 1 solves an estimation problem of smaller
dimension, and hence needs fewer particles to achieve a certain
performance metrics, thus allowing for implementation in
applications with limited computational resources.

Fig. 6 displays histograms over the estimated mean and
standard deviation associated with the front lateral stiffness.

5Note to the Reviewers and AE: this is also due to confidentiality, since the
tires are product of a third party manufacturer whose data cannot be disclosed
publicly.
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Fig. 4. Estimated normalized front-wheel tire stiffness (red) and associated
standard deviation (green) for 500 particles with a forgetting factor of λ =
0.99, for one realization. Normalized due to confidentiality. The estimated
tire stiffness are the sum of the nominal stiffness value and µk (i.e., ∆Cy
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r ) as computed from (27a).
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Fig. 5. Time-averaged RMSE of the lateral velocity for different number of
particles, averaged over 100 Monte-Carlo executions.

The plots show the probability over 100 Monte-Carlo execu-
tions on the y-axis and the error percentage of the true values
on the x-axis. The error of the mean value should ideally be
Gaussian distributed, since all available information is utilized
if the error is Gaussian. For Algorithm 1, the error of the
stiffness is centered around zero with the error distribution
resembling a Gaussian, as it should be when all available
information is utilized correctly. This is clearly not the case
for AUGPF. For the standard deviation error, Algorithm 1 gives
close to correct estimates, while the estimates from AUGPF
are biased. In accordance with the previous discussion, from
Figs. 5 and 6 one can infer that AUGPF will need a significantly
larger number of particles to achieve performance similar to
that of Algorithm 1, which is due to the estimation problem
being of higher dimension, and goes against the limitations in
computational resources typical of automotive applications.
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Fig. 6. Histograms of the mean and standard deviation error for the
front lateral stiffness, using 500 particles over 100 Monte-Carlo executions.
Algorithm 1 in red, AUGPF in cyan, and RLS in blue. Results are similar for
the other stiffness quantities. The estimated tire stiffness are the sum of the
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and the standard deviation is the square root of the diagonal elements of (27).

VII. EXPERIMENTAL RESULTS

We have used a mid-size SUV, equipped with industry-grade
validation equipment to gather data, and collected several
different data sets, on both snow and asphalt. The parameters
of the vehicle model and the tire-stiffness parameters are ex-
tracted from data sheets and extensive experimental validation.
The true tire-stiffness parameters are determined with high
precision in bench testing, albeit, because of sensor noise,
calibration uncertainty, and variations due to, for instance,
temperature, loading conditions, and wear, there is some
remaining uncertainty. Nevertheless, in the evaluation, we treat
the bench-determined stiffness as ground truth. Also, note that
we use the standard internal sensors, obtained from the CAN
bus, of the car for estimation, and only consult the state-of-
the-art sensors for validation purposes. In the experimental
setup used for collecting data, we have calibrated ground
truth of the longitudinal velocity, yaw rate, and the lateral
stiffness values. As mentioned in the introduction, and since
we did not have access to the ground truth of the longitudinal
tire stiffness, here we focus on experimentally validating the
estimator performance for the lateral dynamics and stiffness.
Preliminary experimental results for the longitudinal stiffness
can be found in [26].

First we present the results on snow, and then the results
on dry asphalt. We stress that the tuning parameters in the
algorithm are the same for all data sets. Thus, we did not
tune the algorithm to optimize performance for each individual
data set. We use a forgetting factor of λ = 0.997 and set the
measurement noise of the inertial sensors according to the
sensor specifications. We have implemented a method based
on thresholding (Section V) for activating Algorithm 1 when
the conditions that make it observable hold.

A. Validation on Snow

The experimental data on snow have been collected from
a number of test drives, each about 40 s long. The data sets
consist of a straight-line segment followed by a sinusoidal
steering maneuver. The sinusoidal motion takes about 10 s to
complete. Due to the random nature of the algorithm, we have
executed the algorithm 50 times per data set to get statistically
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Fig. 7. Estimated normalized, tire stiffness (black) and associated standard
deviation (gray) using 500 particles for 50 Monte-Carlo executions on snow.
The normalization is with respect to ground truth on asphalt. The estimated tire
stiffness and covariance are computed from (27), and the standard deviation
is the square root of the diagonal elements of (27b).

meaningful results. The initial estimates of the stiffness are
uniformly distributed within the range 150± 10% of the true
values.

Fig. 7 summarizes the results for one typical data set.
The third plot shows the measured (dashed) and estimated
(solid) yaw rate, and the lower-most plot shows the measured
average steering angle of the front wheels. Estimation of the
lateral components is inactivated during approximately the first
22 s. As soon as turning is initiated, the thresholding activates
Algorithm 1, and the correct stiffness values are found within
a few seconds. The estimates are similar irrespective of the
initial conditions, indicating robustness to the initialization
value. The plots show that even with a 50% error in the
initial estimate of the stiffness, steady state is reached within
a few seconds in all executions. This is another indication of
the robustness to large initial condition errors, and that the
algorithm, although probabilistic in its nature, delivers similar
results across different realizations. The maximum error in
steady state is less than 5% across the 50 realizations.

To illustrate the repeatability of the algorithm for different
data sets, Fig. 8 displays the average over all 50 Monte-Carlo
trials, for each data set. Since the data sets differ slightly
in when steering is initiated, the estimator is activated and
deactivated at slightly different time steps. However, during the
time when the estimator is active, similar steady-state stiffness
values are achieved, which is an indication of the robustness to
different sensor realizations and steering behavior. In terms of
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Fig. 8. Estimated normalized tire stiffness (black) and associated standard
deviation (gray) using 500 particles, averaged over 50 Monte-Carlo simula-
tions for the data sets collected on snow. The normalization is with respect
to ground truth on asphalt. True values in dashed. The estimated tire stiffness
are the sum of the nominal stiffness value and µk (i.e., ∆Cy

f , ∆Cy
r ) as

computed from (27a), and the standard deviation is the square root of the
diagonal elements of (27b).

quantitative measures, the maximum error is less than 4% for
the front lateral stiffness. The error is less than 1% in steady
state for the rear counterpart. The steady-state deviations
between the datasets that can be seen are suppressed as the
number of Monte-Carlo simulations increase.

1) Comparison with EKF: Fig. 9 shows the resulting es-
timates for EKF for two of the data sets on snow compared
with our proposed approach. We have undertaken extensive
tuning efforts for EKF.6 Even with the best calibration that
we have found, EKF is not able to reliably estimate the
stiffness when the state trajectory is estimated simultaneously,
although it is occasionally successful. To get some insights
into why EKF fails to accurately estimate the stiffness, Fig. 10
shows snapshots of the estimated posterior densities using our
approach at different time steps. The estimated posterior is at
times significantly different from a Gaussian. The underlying
assumption of an EKF is that the sufficient statistics of the
posterior density are the mean and covariance, while Fig. 10
shows that higher-order moments are in general needed to
accurately describe the posterior.

B. Validation on Dry Asphalt

On dry asphalt, the data set consists of normal driving on a
regular road and is about 400 s long. We stress that this data
set is collected from a period of regular driving on a standard
two-lane road and the test was not specifically designed for
this experiment. The road requires only light steering, which
reduces observability, and it has nonzero inclination and bank
angles, which are not explicitly accounted for in the current

6Two work days, i.e., 16 hours.
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Fig. 9. Estimated normalized tire stiffness using EKF (dash-dotted) for two of
the data sets collected on snow. The normalization is with respect to ground
truth on asphalt. True values in dashed and our proposed approach in solid
black. The estimated tire stiffness are the sum of the nominal stiffness value
and µk (i.e., ∆Cy

f , ∆Cy
r ) as computed from (27a).

implementation. Thus, the dataset also tests how robust the
algorithm is to these unmodeled effects.

For the first set of results, we set the initial stiffness estimate
to be uniformly distributed around 75±10% of the true values.
The initial distribution is chosen to reflect that the estimator
initially does not know much about the surface, so a reasonable
guess is to choose something in between snow and asphalt,
which is consistent with the chosen uniform distribution.
Fig. 11 displays the results for one realization. The first 67 s
of the experiment consists of constant-speed driving on a
straight road, and because of that the thresholding strategy
keeps the estimator inactive. At activation, the uncertainty of
the estimate (gray) is initially large but decreases steadily until
it approximately reaches steady state. The different excitation
levels in the input signals and the unevenness of the surface
causes the covariance to fluctuate slightly around the steady
state value. Excluding the transients, the largest error at a
single time instant is 9% (around 270 s), but the average error
is less than 1%. When the largest error occurs there is little
excitation in the system, implying that tuning of the activation
method can partly remove some of the errors. When comparing
with Figs. 7 and 8, the results on asphalt are slightly less
smooth. However, this is expected, since the stiffness values,
and therefore the generated forces, are considerably larger for
the same slip value.

Fig. 12 displays a histogram over the estimated mean
associated with the front lateral stiffness. The figure shows
the probability (summing to one) over 50 Monte-Carlo trials
on the vertical axis and the error percentage on the horizontal
axis. The algorithm is activated approximately 67 s into the
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Fig. 10. Snapshots of the posterior density of the rear lateral tire stiffness as estimated using Algorithm 1, between t = 21–32 s of the data set. The
continuous representation has been obtained from the particles and corresponding weights using a kernel density smoother.
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and the standard deviation is the square root of the diagonal elements of (27b).
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Fig. 12. Histogram (gray) of the mean error for the front lateral stiffness,
using 500 particles in 50 Monte-Carlo trials. The overlaid Gaussian (black)
has a standard deviation of 6.5%.

experiment (see Fig. 11). To remove most of the transients,
only the data points between 75 s and 400 s, for all 50 Monte-
Carlo trials, have been included. The mean average error
over the trials is less than 1%. As previously mentioned, the
error should ideally be Gaussian distributed, since all available
information is utilized if the error is Gaussian. Indeed, the
error distribution fits well with the overlaid Gaussian (black),
which is estimated using a kernel density estimator, verifying
estimator performance.

Our method accurately estimates the bias in the inertial
sensors. Fig. 13 provides a 15 s excerpt of the experiment
(Fig. 11), which shows the true (gray dashed), measured
(gray solid), and estimated (black dashed) yaw rate, and the
estimated yaw rate compensated with the bias estimates (black
solid). The results indicate that the yaw-rate estimates correctly
follow those of the high-precision sensor. Furthermore, the
bias estimator manages to capture the bias inherent in the yaw-
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Fig. 13. Measured (gray solid), true (gray dashed), and estimated (black
dashed) yaw rate. The sum of the estimated yaw rate and bias is shown in
black solid. The bias estimator accurately captures the difference between
measured and true yaw rate.

rate sensor, despite the relatively moderate lateral motion and
the significant noise in the yaw-rate sensor (gray solid).

We conclude the evaluation of our proposed method with
an assessment of the computational load shown in Fig. 14,
where we plot the average computation time for one estimation
iteration of Algorithm 1 for a varying number of particles.
The computer is a standard laptop equipped with a 2014
i5 2.8 GHz processor. We have implemented the algorithm
as C-coded mex functions in MATLAB and measured the
computation time with the built-in tic–toc functionality.
Thus, what we report is an over-estimate of the algorithm
execution time, due to the overhead introduced by the context
switch and the transfer of the variables from MATLAB to C,
and due to the overhead introduced by tic–toc. Fig. 14
displays the average computation time per time step, that is,
Lines 2–19 in Algorithm 1, for different number of particles.
The O(N) line is also shown to verify that the algorithm is
linear in the number of particles. The C-implementation is not
optimized for speed nor for the specific processor, and further
performance improvements can be obtained. Still, judging
from Fig. 14 the approach appears real-time feasible, since
even considering a platform with 50 times less computing
power, which is a reasonable estimate for a mid-level automo-
tive micro-controller, we can execute the algorithm with 500
particles at 20 Hz. Note that by removing the overhead, and by
exploiting code and processor-specific optimization, such rate
can easily be tripled. It is important to note that the real-time
feasibility of the approach is due to the way we structure the
estimation problem, and the approximations we use to being
able to marginalize out the stiffness parameters to obtain a
low-order estimation problem and analytic expressions for the
stiffness estimation. While these are indeed approximations,
they are motivated by moment matching in the transients and
asymptotic convergence, and are the key in achieving real-time
feasibility.

VIII. CONCLUSION

This paper addressed joint tire stiffness and state estima-
tion using wheel-speed and inertial sensors. We defined the
problem in a Bayesian framework. The proposed method
relies on conjugate priors and moment matching to obtain

100 1000 2000 3000 4000 5000

1

2

3

4

5

N

Ti
m

e
[m

s]

Proposed
O(N)

Fig. 14. Average computation time for one iteration of Algorithm 1 for
varying number N of particles. The computation time is measured in MATLAB
on a 2014 i5 2.8 GHz processor.

a computationally efficient marginalized particle filter. The
vehicle model and sensor setup leads to dependence between
the unknown process noise and the measurement noise. We
proposed a real-time viable approach to handle the dependence
that was evaluated both in simulation and on several real data
sets with promising results. For instance, the results from real
data captured on snow shows that the tire stiffness can be
estimated within 4% in steady state on regular basis, even for
initial uncertainties 50% off from the true values. Furthermore,
the results using data for dry asphalt indicate that the estimator
provides a mean average error less than 1% in steady state,
for driving scenarios corresponding to regular driving.
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