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Abstract
This paper considers angular-domain channel estimation for massive MIMO systems with
one-bit analog-to-digital converters (ADCs) equipped at base stations for the sake of lower
power consumption and reduced hardware cost. We characterize analytical performance,
in terms of the Cramer-Rao bound (CRB), on estimating the two-dimensional channel ma-
trix (including angle-of-departure, angleof-arrival and associated channel path gains) in the
angular-domain representation. Our analysis provides a simple tool to compare the channel
estimation performance among several one-bit quantization schemes. Particularly, we study
the performance trade-off between fixed (zero-threshold) and time-varying one-bit quanti-
zation schemes. Numerical results are provided for analytical performance verification as a
function of SNR and the number of pilots.
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ABSTRACT

This paper considers angular-domain channel estimation for massive
MIMO systems with one-bit analog-to-digital converters (ADCs)
equipped at base stations for the sake of lower power consumption
and reduced hardware cost. We characterize analytical performance,
in terms of the Cramér-Rao bound (CRB), on estimating the two-
dimensional channel matrix (including angle-of-departure, angle-
of-arrival and associated channel path gains) in the angular-domain
representation. Our analysis provides a simple tool to compare the
channel estimation performance among several one-bit quantiza-
tion schemes. Particularly, we study the performance trade-off be-
tween fixed (zero-threshold) and time-varying one-bit quantization
schemes. Numerical results are provided for analytical performance
verification as a function of SNR and the number of pilots.

1. INTRODUCTION

Leveraging a large number of base station antennas to support many
single-/multiple-antenna users, massive multiple-input multiple-
output (MIMO) systems can significantly increase the spectral
efficiency and average out the channel noise and fading [1–3].
More specifically, massive MIMO systems can mitigate propagation
loss by exploiting large array gain due to coherent beamform-
ing/combining, reduce interference-leakage as channel estimation
errors vanish asymptotically in the large-dimensional vector space,
simplify signal processing algorithms, and reduce inter-user inter-
ference with the high beamforming resolution.

Despite all these benefits, massive MIMO systems pose new
challenges for system design and hardware implementation. For
example, the hardware cost and power consumption become pro-
hibitively high as the number of antennas is large and high-resolution
analog-to-digital convertors (ADCs) are employed. Those chal-
lenges become more severe when the system operates at the millimeter-
wave (mmWave) frequency band to exploit the large bandwidth
[4–7]. Coined as mmWave massive MIMO systems [8, 9], a large
number of antennas must be used for the array gain and link margin
to compensate for significant path loss due to the high attenuation
and absorption at the mmWave band.

To meet these challenges, several transceiver architectures have
been proposed for massive MIMO signal processing, including pre-
coding, combining and channel estimation. An analog architecture
relies on the RF-domain processing to reduce the number of RF
chains. By changing relative phases of the signals, they use a net-
work of analog phase shifters to steer the transmit/receive beams in
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the desired directions [10, 11]. Potential issues of the analog archi-
tecture include the coarse quantization levels of the phase shifting
angles, the aging of analog components, and the support of only a
single-stream MIMO transmission. A hybrid analog/digital architec-
ture can reduce the number of RF chains by combining sub-arrays
of antennas with switches, phase shifters and lenses, followed by
the digital sampling of the combined signals [12–14]. With more de-
grees of freedom, a hybrid precoder can support multi-stream and
multi-user transmission, while keeping the system cost, complex-
ity, and power consumption low. The third option is a fully digital
architecture with low-resolution ADCs. Extensive studies have con-
sidered channel estimation and symbol detection for massive MIMO
systems with low-resolution ADCs (e.g. 1-3 bits) [15–21].

In this paper, we are interested in characterizing the analyti-
cal performance of massive MIMO channel estimation when only
one-bit ADCs are used. Particularly, we derive the Cramér-Rao
bound (CRB) on estimating the angular-domain channel parameters
including angle-of-departure (AoD), angle-of-arrival (AoA), and as-
sociated channel path gains. Our analysis provides a simple tool to
compare the channel estimation performance among several one-bit
quantization schemes. Moreover, it reflects, with a fixed threshold
at zero, the ambiguity between the channel path gain and the noise
variance as the complete Fisher information matrix (FIM) becomes
singular. Meanwhile, this ambiguity can be removed if the one-bit
ADC uses a time-varying threshold quantization scheme.

The rest of the paper is organized as follows. Section 2 intro-
duces the massive MIMO system model for channel estimation. Sec-
tion 3 specifies the signal model of one-bit channel measurements.
The CRB expressions are derived in Section 4 with known and un-
known noise variances. Numerical results are provided in Section 5,
followed by concluding remarks in Section 6.

2. MASSIVE MIMO CHANNEL MODEL

Consider a point-to-point uplink massive MIMO system in Fig. 1,
with Nt antennas at the mobile station (MS) and Nr antennas at a
base station (BS). At time instant k, the MS transmits pilot signals
sk ∈ CNt×1 with a normalized transmitting power. At the BS, the
received signal yk ∈ CNr×1 is

yk = Hsk + vk, k = 1, 2, · · · ,K, (1)

where H ∈ CNr×Nt is the complex channel matrix, and vk is white
Gaussian noise with variance σ2, and K is the number of pilots.

The channel matrix H in (1) can be represented by a geomet-
ric channel model with Ns scatterers between the BS and the MS.



Fig. 1. The massive MIMO system with one-bit ADCs (from [22]).

Specifically,

H =

Ns∑
i=1

αiαBS(θi)α
H
MS(φi) (2)

where αi is the complex path gain associated with the i-th ge-
ometric channel path characterized by the AoA θi and AoD φi,
respectively. αBS(θi) and αMS(φi) denote, respectively, the receiv-
ing and transmitting array response vectors. In the case of a uniform
linear array (ULA), the array response vectors can be written as
αBS(θ) = [1, ej2πdr sin(θ)/λ, · · · , ej(Nr−1)2πdr sin(θ)/λ]T /

√
Nr ,

andαMS(φ) = [1, ej2πdt sin(φ)/λ, · · · , ej(Nt−1)2πdt sin(φ)/λ]T /
√
Nt

where dr and dt denote, respectively, the inter-element spacings of
the receiving array at the BS and the transmitting array at the MS,
and λ is the wavelength. (2) can be rewritten as

H = ABS(θ)HaA
H
MS(φ) (3)

where ABS(θ) = [αBS(θ1), · · · ,αBS(θNs)], AMS(φ) = [αMS(φ1),
· · · ,αMS(φNs)], and Ha = diag [α1, · · · , αNs ] is a diagonal ma-
trix with diagonal elements given by the channel path gain αi.

CombiningK received signals and assuming the channel matrix
H is time-invariant over the K time instants, we have

Y = [y1,y2, · · · ,yK ] = ABS(θ)HaA
H
MS(φ)S + V, (4)

where S = [s1, · · · , sK ] and V = [v1, · · · ,vK ]. With vec(ABC) =(
CT ⊗A

)
vec(B), we can vectorize the received signal matrix as

y =vec(Y) = vec
(
ABS(θ)HaA

H
MS(φ)S

)
+ v

=
[(

STA∗MS(φ)
)
⊗ABS(θ)

]
h + v

4
= A(φ,θ)h + v (5)

where h = vec(Ha) = [α1e
T
1 , · · · , αNseTNs ]

T with ei denoting
an Ns × 1 vector with 1 at the i-th element and 0 elsewhere. It is
seen from (5) that the matrix A(φ,θ) includes the angle parameters,
i.e., the AoDs φi and AoAs θi, and the pilot signals S, while the
structural vector h includes the complex channel path gain αi.

3. ONE-BIT MASSIVE MIMO SYSTEMS

The use of low-resolution ADCs (e.g., 1-3 bits) for massive MIMO
systems has been considered to reduce the hardware complexity and
power consumption. In the extreme case of one-bit, the ADC sim-
ply compares the input analog signal with a threshold and, hence,
requires minimum cost and power consumption.

At each antenna, the in-phase (I) and quadrature (Q) components
of the baseband analog signal are quantized separately with a pair
of one-bit ADCs. First, we rewrite the complex-valued baseband
analog signal at the BS in the real-valued form

ȳ =

[
yR
yI

]
= Ā(φ,θ)h̄ + v̄ (6)

where

Ā =

[
AR −AI

AI AR

]
, h̄ =

[
hR
hI

]
, and v̄ =

[
vR
vI

]
.

with XR
4
= <{X} and XI

4
= ={X} denoting the real and imag-

inary parts of X. Note that the real-valued noise is distributed as
v̄ ∼ N (0, σ

2

2
I2KNr ). Since the real component is independent of

the imaginary component, we can rewrite (6) as

yR = ARhR −AIhI + vR (7a)
yI = AIhR + ARhI + vI (7b)

where vR ∼ N (0, σ
2

2
IKNr ) and vI ∼ N (0, σ

2

2
IKNr ).

Then, the one-bit quantized output of the received signal is

zR = sign(yR − λR), (8a)
zI = sign(yI − λI), (8b)

where λR ∈ RKNr×1 and λI ∈ RKNr×1 denote, respectively, the
thresholds used at the I and Q channels for allNr antennas acrossK
pilot signals.

4. CRAMÉR-RAO BOUNDS ON ONE-BIT MASSIVE MIMO
CHANNEL ESTIMATION

The problem of interest here is to estimate the angular AoDs (θ) and
AoAs (φ), as well as the associated channel path gains α from the
quantized signal z = [zTR, z

T
I ]T . In the following, we derive the

performance bound in terms of the CRBs for any unbiased estimator
of these unknown parameters.

First group all unknown real-valued parameters as

ψ = [θT ,φT ,αTR,α
T
I , σ

2]T , (9)

where αR = <{α} and αI = ={α}. Invoking the independence
across K time instants and between the real and imaginary compo-
nents, the joint log-likelihood function of z can be expressed as

ln p(z|ψ) =

KNr∑
m=1

[ln Φ (zR(m)ηm) + ln Φ (zI(m)ζm)] , (10)

where

ηm =
AT
R(m)hR −AT

I (m)hI − λR(m)

σ/
√

2
, (11a)

ζm =
AT
I (m)hR + AT

R(m)hI − λI(m)

σ/
√

2
, (11b)

Φ(·) is the cumulative density function (CDF) of a standard normal
random variable, zR/I(m) is the m-th element of zR/I , AT

R/I(m)
denotes the m-th row of AR/I in (6), and we ignore their depen-
dence on φ and θ for brevity. With the joint log-likelihood function
of z, the general expression of each element of FIM is given by

Fp,q(ψ) = −E
{
∂2 ln p(z|ψ)

∂ψp∂ψq

}
. (12)

where p, q ∈ {1, 2, · · · , 4Ns + 1} and

F(ψ) =

[
FA,A(ψ) FA,σ2(ψ)
FTA,σ2(ψ) Fσ2,σ2(ψ)

]
∈ R(4Ns+1)×(4Ns+1) (13)



where FA,A(ψ) is the FIM block for the angle parameters

FA,A(ψ) =


Fθ,θ Fθ,φ Fθ,αR Fθ,αI
FTθ,φ Fφ,φ Fφ,αR Fφ,αI

FTθ,αR
FTφ,αR

FαR,αR FαR,αI

FTθ,αI
FTφ,αI

FTαR,αI FαI ,αI

 . (14)

For any unbiased estimator of ψ, the CRB provides a lower
bound on the estimation variance

cov(ψ̂p) ≥
[
F−1(ψ)

]
p,p
, (15)

where F(ψ) is the complete FIM given by (13). With (10), we are
ready to derive the FIM in (13) and establish the performance bounds
on the estimation of all unknown parameters ψ.

4.1. General Expressions for Fisher Information Matrix

Note that

E

{
1

Φ2 (zR(m)ηm)

}
=

1

Φ (ηm)
+

1

Φ (−ηm)
, (19)

E

{
1

Φ2 (zI(m)ζm)

}
=

1

Φ (ζm)
+

1

Φ (−ζm)
. (20)

Taking the expectation over the second derivatives of the log-
likelihood function and invoking the independence over k and
I/Q components yield the general expressions of FIM shown in
(16) for FA,A(ψ), (17) for FA,σ2(ψ), and (18) for Fσ2,σ2(ψ),
where ∂AT

R(m)/∂θi is the m-th row of ∂AR/∂θi. To compute
(16), (17) and (18), we still need to compute the following par-
tial derivatives: ∂AT

R(m)/∂θi, ∂AT
I (m)/∂θi, ∂AT

R(m)/∂φi,
∂AT

I (m)/∂φi, ∂hR/∂αR,i and ∂hI/∂αI,i.

4.2. Partial Derivatives for Fisher Information Matrix

Given that A =
(
STA∗MS(φ)

)
⊗ABS(θ), we have

AR =
(
S
T
RA

R
MS + S

T
I A

I
MS

)
⊗ A

R
BS −

(
S
T
I A

R
MS − S

T
RA

I
MS

)
⊗ A

I
BS,

AI =
(
S
T
RA

R
MS + S

T
I A

I
MS

)
⊗ A

I
BS +

(
S
T
I A

R
MS − S

T
RA

I
MS

)
⊗ A

R
BS,

where the sub-index and super-index (I/R) indicate the real or imag-
inary part of the corresponding matrix. Similarly, we have hR =
[αR,1e

T
1 , · · · , αR,NseTNs ]

T and hI = [αI,1e
T
1 , · · · , αI,NseTNs ]

T .
First, we derive the partial derivatives of AR and AI w.r.t. the

AoA and AoD

∂AR

∂θi

=(S
T
RA

R
MS + S

T
I A

I
MS) ⊗

∂ARBS
∂θi

− (S
T
I A

R
MS − S

T
RA

I
MS) ⊗

∂AIBS
∂θi

, (21)

∂AI

∂θi

=(S
T
RA

R
MS + S

T
I A

I
MS) ⊗

∂AIBS
∂θi

+ (S
T
I A

R
MS − S

T
RA

I
MS) ⊗

∂ARBS
∂θi

, (22)

∂AR

∂φi

=(S
T
R

∂ARMS
∂φi

+ S
T
I

∂AIMS
∂φi

) ⊗A
R
BS − (S

T
I

∂ARMS
∂φi

− S
T
R

∂AIMS
∂φi

) ⊗A
I
BS, (23)

∂AI

∂φi

=(S
T
R

∂ARMS
∂φi

+ S
T
I

∂AIMS
∂φi

) ⊗A
I
BS + (S

T
I

∂ARMS
∂φi

− S
T
R

∂AIMS
∂φi

) ⊗A
R
BS. (24)

In the case of ULA, we have

∂A
R/I
BS

∂θi
=[0Nr×(i−1), a

′
BS,R/I(θi), 0Nr×(Ns−i)],

∂A
R/I
MS

∂φi
=[0Nr×(i−1), a

′
MS,R/I(φi), 0Nr×(Ns−i)],

where

a
′
BS,R(θi) =

−2πdr

λ
√
Nr

[
0, · · · , (Nr − 1) sin

(
(Nr − 1)2πdr sin(θi)

λ

)
cos(θi)

]T
,

a
′
BS,I (θi) =

−2πdr

λ
√
Nr

[
0, · · · , (Nr − 1) cos

(
(Nr − 1)2πdr sin(θi)

λ

)
cos(θi)

]T
,

a
′
MS,R(φi) =

−2πdt

λ
√
Nt

[
0, · · · , (Nt − 1) sin

(
(Nt − 1)2πdt sin(φi)

λ

)
cos(φi)

]T
,

a
′
MS,I (φi) =

2πdt

λ
√
Nt

[
0, · · · , (Nt − 1) cos

(
(Nt − 1)2πdt sin(φi)

λ

)
cos(φi)

]T
.

The partial derivatives of hR and hI w.r.t. αR,i and αI,i are
given as

∂hR

∂αR,i
= [0

T
Ns
, · · · , 0TNs︸ ︷︷ ︸

i−1 zero vectors

, e
T
i , 0

T
Ns
, · · · , 0TNs ]

T
, (25)

∂hI

∂αI,i
= [0

T
Ns
, · · · , 0TNs︸ ︷︷ ︸

i−1 zero vectors

, e
T
i , 0

T
Ns
, · · · , 0TNs ]

T
. (26)

With (21), (22), (23), (24) and (25), (26), we obtain all partial deriva-
tives to compute the FIM elemenets of (13) via (16), (17), and (18).

4.3. Observations on CRBs

The following observations on the derived CRB are in order.

• For a clairvoyant quantization scheme (denoted as CQ) with
λ = Γ(φ,θ)h̄ when the noise variance σ2 is unknown, the
corresponding FIM F(ψ) of (13) is singular since FA,σ2(ψ)
and Fσ2,σ2(ψ), defined by (17) and (18), respectively, be-
come zeros.

• For a fixed zero-threshold quantization scheme (denoted as
FQ) (i.e., λ = 0) when σ2 is unknown, the corresponding
FIM of (13) is also singular due to an ambiguity between the
amplitude h and the noise variance σ2. It can be seen that, for
given one-bit measurements zR and zI , two pairs of [h, σ2]
and [sh, (sσ)2] give the same ηm and ζm of (11) and, hence,
the same likelihood function of (10), where s is a scalar. This
ambiguity is removed if a fixed non-zero threshold is used
and the corresponding FIM becomes non-singular.

• When the noise variance σ2 is known, the unknown parame-
ter set reduces to ψ = [θT ,φT ,αTR,α

T
I ]T and the FIM re-

duces to FA,A(ψ) of (14). The CRB with known noise vari-
ance is, therefore, cov(ψ̂p) ≥

[
F−1
A,A(ψ)

]
p,p

. In this case,
the FIMs for the FQ and CQ are both non-singular.

• We also consider a time-varying threshold quantization (de-
noted as TQ) scheme [23, 24], originally proposed for the
(sparse) spectrum analysis, for one-bit massive MIMO chan-
nel estimation. For a given time instant, the TQ randomly
selects a threshold according to a probability distribution
(e.g., the discrete uniform distribution) from a pre-defined
set [−hmax,−hmax + ∆, · · · , 0, · · · , hmax −∆, hmax], where
hmax is the dynamic range and ∆ is the stepsize. For the TQ
scheme, the FIM is non-singular with a high probability for
known and unknown noise variances. It is interesting to note
that the CQ scheme can be considered as a special case of the
TQ scheme, which leads to a singular FIM.



[FA,A(ψ)]p,q =
1

πσ2

KNr∑
m=1

[(
1

Φ (ηm)
+

1

Φ (−ηm)

)
e−η

2
m
∂
(
AT
R(m)hR −AT

I (m)hI
)

∂ψp

∂
(
AT
R(m)hR −AT

I (m)hI
)

∂ψq

+

(
1

Φ (ζm)
+

1

Φ (−ζm)

)
e−ζ

2
m
∂
(
AT
I (m)hR + AT

R(m)hI
)

∂ψp

∂
(
AT
I (m)hR + AT

R(m)hI
)

∂ψq

]
, 1 ≤ p, q ≤ 4Ns, (16)

[FA,σ2 (ψ)]p = −
1

2πσ4

KNr∑
m=1

[(
1

Φ (ηm)
+

1

Φ (−ηm)

)
e−η

2
m
∂
(
AT
R(m)hR −AT

I (m)hI
)

∂ψp

(
AT
R(m)hR −AT

I (m)hI − λR(m)
)

+

(
1

Φ (ζm)
+

1

Φ (−ζm)

)
e−ζ

2
m
∂
(
AT
I (m)hR + AT

R(m)hI
)

∂ψp

(
AT
I (m)hR + AT

R(m)hI − λI(m)
)]

, (17)

Fσ2,σ2 (ψ) =
1

4πσ6

KNr∑
m=1

[(
1

Φ (ηm)
+

1

Φ (−ηm)

)
e−η

2
m

(
AT
R(m)hR −AT

I (m)hI − λR(m)
)2

+

(
1

Φ (ζm)
+

1

Φ (−ζm)

)
e−ζ

2
m

(
AT
I (m)hR + AT

R(m)hI − λI(m)
)2]

. (18)

(a) AoA (b) AoD

(c) Path gain (real) (d) Path gain (imaginary)

Fig. 2. CRB comparison as a function of K when SNR = 0 dB.

5. NUMERICAL RESULTS

We now provide simulation results to compare channel estimation
performance among several one-bit quantization schemes1. In par-
ticular, we consider 1) the CQ scheme (i.e., λ = Γ(φ,θ)h̄) with
known noise variance; 2) the zero-threhold FQ scheme (i.e., λ = 0)
with known noise variance; 3) the TQ scheme with either known or
unknown noise variance [23, 24]. It uses the discrete uniform distri-
bution to select the threshold at a given time instant.

We consider a system model consisting of 8 ULA antennas at the
MS and 16 ULA antennas at the BS. The wireless MIMO channel
is assumed to follow a geometric model of Ns = 4 scatterers with
each of AoAs and AoDs from the following 4 clusters:

• AoD1 = [15◦, 18◦] and AoA1 = [−50◦,−45◦];

• AoD2 = [45◦, 50◦] and AoA2 = [−10◦,−5◦];

• AoD3 = [−20◦,−16◦] and AoA3 = [30◦, 36◦];

• AoD4 = [−72◦,−70◦] and AoA4 = [65◦, 75◦].

1The MATLAB code is available at www.merl.com to compute the de-
rived CRB for known and unknown noise variances.

(a) AoA (b) AoD

(c) Path gain (real) (d) Path gain (imaginary)

Fig. 3. CRB comparisons as a function of SNR when K = 100.

First, we compare the CRBs as a function of the number of pi-
lots K when SNR = 0 dB. Specifically, the SNR is defined on a
per receive antenna basis, i.e., SNR = ‖A(φ,θ)h‖2/(KNrσ2).
Since the CRB depends on channel parameters, thresholds, and pilot
signals, we run 100 independent Monte-Carlo simulations. For each
Monte-Carlo run, the four pairs of AoA (θ) and AoD (φ) are ran-
domly drawn from the above clusters. The pilot signal (S) and the
four channel path gain (α) are randomly generated once and then
fixed throughout Monte-Carlo runs. Fig. 2 shows 100 CRB curves
for the one-bit quantization schemes considered for each of the four
channel parameters of AoA, AoD, the real and imaginary parts of
the channel path gain. For the TQ scheme, we further average the
CRB over uniformly drawn thresholds from 8 evenly spaced levels
in [−hmax, hmax] with hmax = max{Γ(φ,θ)h̄}. It is seen that the
CQ scheme with known σ2 provides the lower bounds for the one-
bit channel estimation performance, while the FQ with known σ2

gives slightly worse CRB curves. On the other hand, the TQ scheme
gives very close CRB curves when the noise variance σ2 is known
and unknown. Overall, the CRBs for estimating angle parameters
(i.e., AoA and AoD) are lower than those for estimating path gains.

Second, we compare the CRBs as a function of SNR when



K = 100. Fig. 3 shows 100 CRB curves for the one-bit quantization
schemes considered. It is seen that, for the CQ scheme with known
σ2, its CRB is log-linear with respect to the SNR in the dB scale,
while the CRBs deviate from the log-linear curve at high SNRs for
the FQ and TQ schemes, as the quantization error dominates the
additive noise. It is interesting to see that the TQ scheme gives lower
CRB curves for the channel path gains than the zero-threshold FQ
scheme with known σ2 at high SNRs.

6. CONCLUSION

This paper has considered the CRB for estimating the angular-
domain channel parameters, such as the angle-of-departure, angle-
of-arrival and associated channel path gains, for massive MIMO
systems with one-bit ADCs. By evaluating several one-bit quanti-
zation schemes, the derived CRB provides a simple tool to compare
their channel estimation performance. The numerical comparison
clearly shows the advantage of the time-varying one-bit quantization
scheme for estimating the channel path gains.
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