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Abstract
This paper presents our approach to improve video captioning by integrating audio and video
features. Video captioning is the task of generating a textual description to describe the
content of a video. State-of-the-art approaches to video captioning are based on sequence-
to-sequence models, in which a single neural network accepts sequential images and audio
data, and outputs a sequence of words that best describe the input data in natural lan-
guage. The network thus learns to encode the video input into an intermediate semantic
representation, which can be useful in applications such as multimedia indexing, automatic
narration, and audio-visual question answering. In our prior work, we proposed an attention-
based multi-modal fusion mechanism to integrate image, motion, and audio features, where
the multiple features are integrated in the network. Here, we apply hypothesis-level integra-
tion based on minimum Bayes-risk (MBR) decoding to further improve the caption quality,
focusing on well-known evaluation metrics (BLEU and METEOR scores). Experiments with
the YouTube2Text and MSR-VTT datasets demonstrate that combinations of early and late
integration of multimodal features significantly improve the audio-visual semantic representa-
tion, as measured by the resulting caption quality. In addition, we compared the performance
of our method using two different types of audio features: MFCC features, and the audio fea-
tures extracted using SoundNet, which was trained to recognize objects and scenes from
videos using only the audio signals.
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ABSTRACT
This paper presents our approach to improve video captioning by
integrating audio and video features. Video captioning is the task
of generating a textual description to describe the content of a
video. State-of-the-art approaches to video captioning are based
on sequence-to-sequence models, in which a single neural network
accepts sequential images and audio data, and outputs a sequence
of words that best describe the input data in natural language. The
network thus learns to encode the video input into an intermedi-
ate semantic representation, which can be useful in applications
such as multimedia indexing, automatic narration, and audio-visual
question answering. In our prior work, we proposed an attention-
based multi-modal fusion mechanism to integrate image, motion,
and audio features, where the multiple features are integrated in the
network. Here, we apply hypothesis-level integration based on min-
imum Bayes-risk (MBR) decoding to further improve the caption
quality, focusing on well-known evaluation metrics (BLEU and ME-
TEOR scores). Experiments with the YouTube2Text and MSR-VTT
datasets demonstrate that combinations of early and late integration
of multimodal features significantly improve the audio-visual se-
mantic representation, as measured by the resulting caption quality.
In addition, we compared the performance of our method using two
different types of audio features: MFCC features, and the audio
features extracted using SoundNet, which was trained to recognize
objects and scenes from videos using only the audio signals.

Index Terms— video description, audio feature, SoundNet,
MFCC, encoder-decoder, deep learning

1. INTRODUCTION

Automatic video description, also known as video captioning, refers
to the automatic generation of a natural language description (e.g.,
a sentence) that summarizes an input video. Recent work in video
description has demonstrated the advantages of integrating tempo-
ral attention mechanisms into encoder-decoder neural networks, in
which the decoder network predicts each word in the description by
selectively giving more weight to encoded features from different
times in the video. Typically, two different types of features are used:
image features (extracted by a network that was trained to perform
object classification), and spatiotemporal motion features (extracted
by a network that was trained to perform action recognition). These
two types of features are typically combined by naı̈ve concatena-
tion in the input to the video description model. Because different
feature modalities may carry task-relevant information at different
times, fusing them by naı̈ve concatenation limits the model’s ability
to dynamically determine the relevance of each type of feature to dif-
ferent parts of the description. In this paper, we expand the feature

set to include the audio modality, in addition to image and motion
features.

In our prior work, we proposed a new use of attention: to fuse
information across different modalities [1]. We use the term modal-
ity loosely: In addition to referring to features from different types
of sensors, such as video and audio features, we also refer to dif-
ferent types of features derived from the image sequence, such as
features describing image appearance , motion, or depth, as different
modalities. Depending on the context, different modalities of input
may be important for selecting the next word in different parts of
the description. Not only do the relevant modalities change from
sentence to sentence, but also from word to word, e.g., as we move
from action words that describe motion to nouns that define object
types. Attention to the appropriate modalities, as a function of the
word’s context, may help with choosing the right words for the video
description. Often features from different modalities can be com-
plementary, in that they can provide reliable cues at different times
for some aspect of a scene. Multimodal fusion is thus an important
strategy for robustness. However, optimally combining information
requires estimating the reliability of each modality, which remains a
challenging problem.

In this work, we introduce hypothesis-level fusion across dif-
ferent modalities, which we call late integration of multimodal fea-
tures, to the video description task. Our late integration approach
is a form of system combination, where each component system
generates sentence hypotheses based on a single modality, and the
generated sentences are combined across systems to generate a bet-
ter sentence. In this work, we apply a minimum Bayes-risk (MBR)
framework to optimize the sentence combination to explicitly im-
prove an evaluation metric such as the BLEU or METEOR scores.
Moreover, we combine the early integration method proposed in our
prior work with the MBR-based late integration, which increases the
robustness of video description and can exploit relatively unreliable
but nevertheless useful features such as audio features. In addition,
we compared basic mel-frequency cepstral coefficients (MFCCs) to
more advanced audio features extracted using a multi-modal network
called SoundNet. SoundNet was trained from 2,000,000 unlabeled
videos to recognize objects and scenes of video using only the audio
signal [2]. We present results on two large datasets: YouTube2Text,
and the subset of MSR-VTT that was available at the time of the
experiments. We show that our combined early+late integration ap-
proach including audio features significantly improves caption qual-
ity.
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Fig. 1. An encoder-decoder based sentence generator with temporal
attention mechanism.

2. VIDEO DESCRIPTION WITH TEMPORAL ATTENTION

This section describes the basic architecture of our video descrip-
tion system for single modality inputs. The system is based on an
attention-based sequence generator [3], which enables the network
to emphasize features from specific time frames depending on the
current context, enabling the next word to be predicted more accu-
rately. The attention-based generator can exploit input features se-
lectively according to the input and output contexts. The efficacy
of attention models has been shown in many tasks such as machine
translation [4].

Figure 1 shows an example of the attention-based sentence gen-
erator. The input features are extracted from the video sequence at
each time step, and the temporal attention mechanism selectively
weights input features from different time steps.

Given an input sequence,X = x1, x2, . . . , xL, each frame sam-
ple is first fed to a feature extractor. For an image sequence, the fea-
ture extractors may be pre-trained CNNs that were trained for image
classification, such as GoogLeNet [5] or VGG-16 [6], or for video
classification, such as C3D [7]. If audio data are available, we can
extract classical audio features such as mel-frequency cepstral coef-
ficients (MFCCs) or more advanced audio features obtained by a pre-
trained CNN such as SoundNet [2]. When using a CNN for feature
extraction, the sequence of feature vectors, X ′ = x′1, x

′
2, . . . , x

′
L,

is obtained by extracting the activation vector of a fully-connected
layer of the CNN for each input frame.1

The feature vectors are then optionally fed to a bidirectional
LSTM (BLSTM) encoder, to obtain a sequence of hidden vectors.
The LSTM decoder iteratively receives a semantic vector that con-
tains a summary (via an attention mechanism) of the hidden state
vector sequence, and predicts the next word based on that semantic
vector and the current decoder state. When using CNN-based feature
extractors, the feature vectors already provide an effective represen-
tation that may be fed directly to the LSTM decoder, so the BLSTM
encoder is optional. When the BLSTM encoder is not used, it may
be replaced by a feed-forward layer to reduce the dimensionality of

1In the case of C3D, multiple images are fed to the network at once to
capture dynamic features in the video.

the feature vectors.
If we use the CNN features directly, without a BLSTM encoder

or additional feedforward layer, then we simply set ht = x′t. If the
feature extractor is followed by a feed-forward layer, however, then
the hidden activation vector is calculated as

ht = tanh(Wpx
′
t + bp), (1)

where Wp is a weight matrix and bp is a bias vector.
On the other hand, if we use a BLSTM encoder following fea-

ture extraction, then the activation vectors (i.e., encoder states) are
obtained as

ht =

[
h
(f)
t

h
(b)
t

]
, (2)

where h(f)
t and h(b)

t are the forward and backward hidden activation
vectors:

h
(f)
t = LSTM(h

(f)
t−1, x

′
t;λ

(f)
E ) (3)

h
(b)
t = LSTM(h

(b)
t+1, x

′
t;λ

(b)
E ). (4)

Here, LSTM() denotes a function to update the hidden vectors in the
forward or backward direction using the matrix parameters λ(f)

E and
bias parameters λ(b)

E .
The attention mechanism uses attention weights to perform a

weighted average of the hidden activation vectors across the input
sequence. These weights enable the network to emphasize features
from those time steps that are most important for predicting the next
output word. Let αi,t be the attention weight to the ith output word
from the tth input feature vector. For the ith output word, the vector
representing the relevant content of the input sequence is obtained as
a weighted average of hidden unit activation vectors:

ci =

L∑
t=1

αi,tht. (5)

The decoder network is an attention-based recurrent sequence
generator (ARSG) [4, 3] that uses content vectors ci to generate
an output word sequence. The decoder predicts the next word it-
eratively beginning with the start-of-sentence token, <sos>, until
it predicts the end-of-sentence token, <eos>. Given decoder state
si−1 and content vector ci, the decoder network λD infers the next
word probability distribution as

P (y|si−1, ci) = softmax
(
W (λD)
s si−1 +W (λD)

c ci + b(λD)
s

)
,

(6)
where the decoder network λD is defined by weight matrices
W

(λD)
s , W (λD)

c and bias vector b(λD)
s . Word yi, is generated

using
yi = argmax

y∈V
P (y|si−1, ci), (7)

where V denotes the vocabulary.
The probability distribution is conditioned on the content vec-

tor ci, which emphasizes specific features that are most relevant to
predicting each subsequent word. An additional feed-forward layer
may optionally be inserted before the softmax layer. In this case, the
probabilities are computed as follows:

gi = tanh
(
W (λD)
s si−1 +W (λD)

c ci + b(λD)
s

)
, (8)

and
P (y|si−1, ci) = softmax(W (λD)

g gi + b(λD)
g ). (9)



To prepare for predicting the next word, the decoder state is up-
dated:

si = LSTM(si−1, y
′
i;λD), (10)

where y′i = embed(yi)
def
=W

(λD)
y onehot(yi) is a word-embedding

vector selected from the columns of a dictionary matrixW (λD)
y , and

onehot(yi) is the one-hot vector representation of yi. The initial
deocder state s0 is obtained from the final encoder state hL and y′0 =
embed(<sos>).

The attention weights are computed from the output context and
input context as in [4]:

αi,t =
exp(ei,t)∑L
τ=1 exp(ei,τ )

, (11)

where
ei,t = wᵀ

A tanh(WAsi−1 + VAht + bA). (12)
Here ei,t is a scalar, WA and VA are matrices, and wA and bA are
vectors.

In the training phase, Y = y1, . . . , yM is a known sentence, but
in the test phase, the best word sequence needs to be found based on

Ŷ = arg max
Y ∈V ∗

P (Y |X) (13)

= argmax
y1,...,yM∈V ∗

P (y1|s0)P (y2|s1)· · ·P (yM |sM−1)P (<eos>|sM ).

Accordingly, we use a beam search in the test phase to keep multiple
state sequence hypotheses with the highest cumulative probabilities
at each step m ≤ M , pruning out those with lower probability. The
best state sequence is then selected from among those that reach the
end-of-sentence token.

3. MULTIMODAL FEATURE INTEGRATION

3.1. Early Integration

We utilize an attention model to handle early integration of mul-
tiple modalities, where each modality has its own sequence of fea-
ture vectors. For video description, multimodal inputs such as image
features, motion features, and audio features are available. Further-
more, combination of multiple features from different feature extrac-
tion methods are often effective to improve the description accuracy.
However, these different feature types are defined on asynchronous
time scales, and hence it is not straightforward to fuse them directly
at the feature level. In order to fuse them, some sort of cross-modal
alignment is necessary, and this is provided by the attention model.

We use a method for multimodal fusion that we proposed in our
prior work [1]. Using this multimodal attention mechanism, based
on the current decoder state, the decoder network can selectively
attend to specific modalities of input (i.e., specific feature types)
to predict the next word. Let K be the number of modalities, or
equivalently the number of sequences of input feature vectors. Our
attention-based feature fusion is performed using

gi = tanh

(
W (λD)
s si−1 +

K∑
k=1

βk,idk,i + b(λD)
s

)
, (14)

where
dk,i =W

(λD)
ck ck,i + b

(λD)
ck . (15)

The multimodal attention weights βk,i are obtained in a similar way
to the temporal attention mechanism of Equations (11) and (12):

βk,i =
exp(vk,i)∑K
κ=1 exp(vκ,i)

, (16)
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Fig. 2. Our multimodal attention mechanism.

where

vk,i = wᵀ
B tanh(WBsi−1 + VBkck,i + bBk), (17)

Here vk,i is a scalar,WB and VBk are matrices, and wB and bBk are
vectors.

Figure 2 shows the architecture of our sentence generator, in-
cluding the multimodal attention mechanism. Like the temporal at-
tention weights α, the feature-level attention weights β can change
according to the decoder state and the content vectors This enables
the decoder network to attend to a different set of features and/or
modalities when predicting each subsequent word in the description.

3.2. Late Integration

We now introduce a method that is novel to video description, which
we call late integration of multi-modal features. This technique,
which combines different features at the hypothesis level, is a kind
of system combination. Each component system generates sentence
hypotheses based on a single modality, and the hypotheses of multi-
ple systems are combined to generate a better description. Although
system combination has already been applied to speech recognition
[8, 9] and machine translation [10], it has not yet been used for video
description (to the best of our knowledge).

To perform late integration, we apply a minimum Bayes-risk
(MBR) decoding [11, 12], which can improve the caption quality
by focusing on a specific evaluation metric. Here we use BLEU [13]
and METEOR [14] scores.

In MBR decoding, the decoding objective is defined as

Ŷ = arg max
Y ∈V ∗

∑
Y ′∈V ∗

P (Y ′|X)E(Y ′, Y ), (18)

where E(Y ′, Y ) denotes an evaluation metric assuming Y ′ is a ref-
erence (ground-truth) and Y is a hypothesis (generated description).
For the BLEU [13] score, the evaluation metric can be computed as

E(Y ′, Y ) = exp

(
N∑
n=1

log
pn(Y

′, Y )

N

)
× γ(Y ′, Y ), (19)



where N is the order of the BLEU score (usually N = 4), and
pn(Y

′, Y ) is the precision of n-grams in hypothesis Y . The
penalty term, γ(Y ′, Y ) = 1 if len(Y ′) < len(Y ) and exp(1 −
len(Y )/ len(Y )) otherwise, penalizes hypotheses Y that are shorter
than reference Y ′. Since it is intractable to enumerate all possible
word sequences in vocabulary V , we usually limit them to the n-best
hypotheses generated by the system. Although in theory the distri-
bution P (Y ′|Y ) should be the true distribution, we instead estimate
it using the encoder-decoder model.

In our late integration model, each modality has its own uni-
modal encoder-decoder based sentence generator with temporal at-
tention (described in Figure 1 and Section 2). To combine these
unimodal systems, we first merge the n-best lists generated by the
multiple systems, then apply MBR decoding to choose the best de-
scription.

3.3. Early+Late Integration

In general, system combination provides a better hypothesis when
using an ensemble of complementary systems in which every system
has good performance to some extent. However, when one of the
systems strongly under-performs the other systems, such as when
one modality suffers from interference, it will not contribute to the
final result at all and may even degrade the result.

To overcome this problem, we combine early and late integra-
tion approaches. That is, we apply our late integration scheme to
the results of different early integration systems, for instance, early
integration systems that use different subsets of features.

4. EXPERIMENTS

4.1. Datasets

We evaluated our proposed feature fusion methods using the
YouTube2Text [15] and MSR-VTT [16] video datasets.

4.1.1. YouTube2Text

This dataset has 1,970 video clips, each annotated with multiple
descriptions (sentences) provided by different Amazon Mechanical
Turk workers. There are 80,839 sentences in total, with about 41
annotated sentences per clip. The average sentence length is about 8
words. The words contained in all the sentences constitute a vocab-
ulary of 13,010 unique lexical entries. The dataset is open-domain
and covers a wide range of topics including sports, animals, and mu-
sic. Following [38], we split the dataset into a training set of 1,200
video clips, a validation set of 100 clips, and a test set consisting of
the remaining 670 clips.

4.1.2. MSR-VTT

MSR-VTT [16] consists of 10,000 web video clips, each annotated
with about 20 natural language sentences by Amazon Mechanical
Turk workers. The dataset contains a total of 41.2 hours of video,
containing a wide variety of video content in 20 categories. The
dataset is split into training (65%), validation(5%), and testing (30%)
sets, respectively corresponding to 6,513, 497, and 2,990 clips. Be-
cause the video clips are hosted on YouTube, however, some of the
MSR-VTT videos have been removed due to content or copyright
issues. At the time we downloaded the videos (February 2017),
approximately 12% were unavailable. Thus, we trained and tested
our approach using just the subset of MSR-VTT that was available,

which consists of 5,763, 419, and 2,616 clips respectively for train,
validation, and test. We call this the MSR-VTT Subset.

4.2. Video Processing

The image data are extracted from each video clip at 24 frames per
second and rescaled to 224×224-pixel images. For extracting im-
age features, we use a VGG-16 network [6] that was pretrained on
the ImageNet dataset [17]. The hidden activation vectors of fully
connected layer fc7 are used for the image features, which produces
a sequence of 4096-dimensional feature vectors. To model motion
and short-term spatiotemporal activity, we use the pretrained C3D
network [7], which was trained on the Sports-1M dataset [18]. The
C3D network reads sequential frames in the video and outputs a
fixed-length feature vector every 16 frames. We extracted 4096-
dimensional feature vectors from fully connected layer fc6-1.

4.3. Audio Processing

Unlike previous methods that used the YouTube2Text dataset [19,
20, 21], we additionally incorporate audio features. Since the pack-
aged YouTube2Text dataset does not include the audio track from the
YouTube videos, we extracted the audio data via the original video
URLs. Although some of the videos were no longer available on
YouTube, we were able to collect audio data for 1,649 video clips,
which covers 84% of the dataset. The 44 kHz-sampled audio data
are downsampled to 16 kHz, and mel-frequency cepstral coefficients
(MFCCs) are extracted from each 50 ms time window with 25 ms
shift. The sequence of 13-dimensional MFCC features are then con-
catenated into one vector for every group of 20 consecutive frames,
which results in a sequence of 260-dimensional vectors. The MFCC
features are normalized so that the mean and variance vectors are 0
and 1 in the training set. The validation and test sets are also adjusted
using the original mean and variance vectors from the training set.
Unlike for the image features, we apply a BLSTM encoder network
to the MFCC features, which is trained jointly with the decoder net-
work. If audio data were not available for a video clip, then we feed
in a sequence of dummy MFCC features (zero vectors).

We also extracted SoundNet features using a pre-trained CNN
[2]. We extracted 1024-dimensional feature vectors (using fully con-
nected layer conv7) from each video’s audio track. Unlike for MFCC
features, we do not apply a BLSTM encoder for SoundNet features.

4.4. Experimental Setup

The similarity between ground truth and automatic video descrip-
tion results is evaluated using two metrics that were motivated by
machine translation: BLEU [13] and METEOR [14]. We used the
publicly available evaluation script prepared for the image caption-
ing challenge [22].

The caption generation model, i.e., the decoder network, is
trained to minimize the cross entropy criterion using the training
set. Image features are fed to the decoder network through one feed-
forward projection layer of 512 units. The MFCC audio features
are fed to the BLSTM encoder followed by the decoder network.
The encoder network has one projection layer of 512 units and
BLSTM layers of 512 cells. The SoundNet audio features are fed to
the decoder network through only one projection layer of 512 cells
without BLSTM layers. The decoder network has one LSTM layer
with 512 cells. Each word is embedded to a 256-dimensional vector
when it is fed to the LSTM layer. We used the RMSprop optimizer
[23] with L2 regularization. The LSTM and attention models were
implemented using Chainer [24].



In our late integration approach, for each video clip we generate
a 100-best sentences list using each unimodal description system,
then merge the multiple 100-best lists from the target systems into
one list. The best MBR result is selected from the merged list ac-
cording to Eq. (18). When evaluating system performance by BLEU
or METEOR score, we use the result of BLEU-based or METEOR-
based MBR decoding, respectively.

5. RESULTS AND DISCUSSION

Tables 1 and 2 show the evaluation results on the YouTube2Text and
MSR-VTT Subset datasets. On each dataset, we compare the per-
formance of unimodal systems to that of early and late integration
multimodal systems. Early integration refers to our multimodal at-
tention model (attentional fusion). The results for late integration
were obtained by MBR decoding over the unimodal systems.

Unimodal system results show that image-only and motion-only
features provide significantly better BLEU4 and METEOR scores
than audio-only features. Since video description mainly relies on
objects and background scene in the video, it seems to be difficult to
generate appropriate descriptions only using audio features. Further-
more, some YouTube videos include unrelated sound that was not in
the original scene, such as overdubbed music that was added to the
video in post-production, and some video clips have no audio track.
In such cases, it is almost impossible to generate related sentences.

However, by performing early integration of audio features
(MFCC, SoundNet) along with the image and motion features, both
BLEU4 and METEOR scores improved over unimodal systems and
over multimoal systems based only on image and motion features.
This result demonstrates that audio features are useful for video
description when they are used as additional information. However,
audio features do not contribute to the performance in late inte-
gration. This is because poor hypotheses from audio-only systems
degrade the combined N -best list for MBR decoding.

Next, we evaluate several combinations of early+late integra-
tion. Tables 3 and 4 show the results on the YouTube2Text and
MSR-VTT Subset datasets. In the experiments, we used late inte-
gration to combine a range of early-integration systems with differ-
ent sets of features. All the systems had at least image (VGG-16)
and motion (C3D) features, and optionally included audio features
(MFCC or SoundNet). As shown in the tables, the BLEU4 and ME-
TEOR scores substantially improve as the number of systems in-
creases. Thus, our early+late integration approach is effective for
video description tasks, even when incorporating audio features that
are not always reliable.

6. CONCLUSION

In our prior work, we proposed a new modality-dependent attention
mechanism which is used as the early integration strategy in this
paper. That approach provides a natural way to fuse multimodal
information for video description. In this work, we also applied
hypothesis-level late integration based on minimum Bayes-risk de-
coding to further improve description quality using BLEU and ME-
TEOR scores. Experiments on the Youtube2Text and MSR-VTT
datasets demonstrate that combinations of early and late integra-
tion of multimodal features significantly improve the audio-visual
semantic representation, as measured by the resulting caption qual-
ity. We also compared the performance using MFCC features to
that using audio features extracted by SoundNet, which was trained
to recognized objects and scenes from video using only the audio

signal. Contrary to our expectations, the audio features extracted
using SoundNet did not always improve the video description per-
formance. This may be because the semantic space represented by
SoundNet does not match well with the datasets used in this study, a
hypothesis that could be tested by fine-tuning of SoundNet for these
datasets.



Table 1. Results of feature integration on YouTube2Text dataset
feature type Evaluation metric

Image Motion Audio BLEU4 METEOR
VGG-16 0.464 0.309

Unimodal C3D 0.464 0.304
systems MFCC 0.267 0.228

SoundNet 0.216 0.177
VGG-16 C3D 0.507 0.318

Early VGG-16 C3D MFCC 0.517 0.320
integration VGG-16 C3D SoundNet 0.517 0.315

VGG-16 C3D MFCC SoundNet 0.519 0.312
VGG-16 C3D 0.499 0.320

Late VGG-16 C3D MFCC 0.461 0.307
integration VGG-16 C3D SoundNet 0.496 0.319

VGG-16 C3D MFCC SoundNet 0.459 0.305

Table 2. Results of feature integration on MSR-VTT Subset dataset
feature type Evaluation metric

Image Motion Audio BLEU4 METEOR
VGG-16 0.361 0.244

Unimodal C3D 0.362 0.246
systems MFCC 0.248 0.209

SoundNet 0.218 0.198
VGG-16 C3D 0.394 0.257

Early VGG-16 C3D MFCC 0.397 0.258
integration VGG-16 C3D SoundNet 0.395 0.253

VGG-16 C3D MFCC SoundNet 0.390 0.254
VGG-16 C3D 0.383 0.257

Late VGG-16 C3D MFCC 0.379 0.254
integration VGG-16 C3D SoundNet 0.374 0.251

VGG-16 C3D MFCC SoundNet 0.356 0.245

Table 3. Results of early+late integration on YouTube2Text dataset
Early integrated systems used for late integration Evaluation metric

System-1 System-2 System-3 BLEU4 METEOR
VGG-16 & C3D & MFCC 0.517 0.320
VGG-16 & C3D & MFCC VGG-16 & C3D & SoundNet 0.525 0.322
VGG-16 & C3D & MFCC VGG-16 & C3D & SoundNet VGG-16 & C3D 0.529 0.333

Table 4. Results of early+late integration on MSR-VTT Subset dataset
Early integrated systems used for late integration Evaluation metric

System-1 System-2 System-3 BLEU4 METEOR
VGG-16 & C3D & MFCC 0.397 0.258
VGG-16 & C3D & MFCC VGG-16 & C3D & SoundNet 0.405 0.272
VGG-16 & C3D & MFCC VGG-16 & C3D & SoundNet VGG-16 & C3D 0.408 0.273
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