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Huazhen Fang, Member, IEEE, Ning Tian, Yebin Wang, Senior Member, IEEE, and Mengchu Zhou, Fellow, IEEE

Abstract—This article presents an up-to-date tutorial
review of nonlinear Bayesian estimation. State estimation
for nonlinear systems has been a challenge encountered in
a wide range of engineering fields, attracting decades of
research effort. To date, one of the most promising and
popular approaches is to view and address the problem
from a Bayesian probabilistic perspective, which enables
estimation of the unknown state variables by tracking
their probabilistic distribution or statistics (e.g., mean and
covariance) conditioned on the system’s measurement data.
This article offers a systematic introduction of the Bayesian
state estimation framework and reviews various Kalman
filtering (KF) techniques, progressively from the standard
KF for linear systems to extended KF, unscented KF and
ensemble KF for nonlinear systems. It also overviews other
prominent or emerging Bayesian estimation methods inclu-
ding the Gaussian filtering, Gaussian-sum filtering, particle
filtering and moving horizon estimation and extends the
discussion of state estimation forward to more complicated
problems such as simultaneous state and parameter/input
estimation.

Index Terms—State estimation; nonlinear Bayesian es-
timation; Kalman filtering; stochastic estimation.

I. INTRODUCTION

State estimation for nonlinear dynamic systems was
undergoing active research and development during the
past few decades as a core subject of control systems
theory. Considerable attention was also gained from a
wider community of researchers, thanks to its signi-
ficant application in signal processing, navigation and
guidance, and econometrics, just to name a few. When
stochastic systems, i.e., systems subjected to the effects
of noise, are considered in this regard, the Bayesian
estimation approaches have evolved as a leading esti-
mation tool enjoying wide popularity. Bayesian analysis
traces back to the 1763 essay [1], published two years
after the death of its author, Rev. Thomas Bayes. The
seminal work was meant to tackle the following question:
“Given the number of times in which an unknown

H. Fang and N. Tian are with the Department of Mechanical
Engineering, University of Kansas, Lawrence, KS 66045, USA (e-
mail: {fang, ning.tian} @ku.edu).

Y. Wang is with the Mitsubishi Electric Research Laboratories,
Cambridge, MA 02139, USA (e-mail: yebinwang @ieee.org).

M. Zhou is with the Department of Electrical and Computer
Engineering, New Jersey Institute of Technology Newark, NJ 07102,
USA (e-mail: zhou@njit.edu).

event has happened and failed: Required the chance
that the probability of its happening in a single trial
lies somewhere between any two degrees of probability
that can be named”. Rev. Bayes developed a solution to
examine the case of only continuous probability, single
parameter and a uniform prior, which is an early form of
the Bayes’ rule known to us nowadays. Despite its preci-
ousness, this work remained obscure for many scientists
and even mathematicians of that era. The change came
when the French mathematician Pierre-Simon de Laplace
rediscovered the result and presented the theorem in the
complete and modern form. A historical account and
comparison of Bayes’ and Laplace’s work can be found
in [2]. From today’s perspective, the Bayes’ theorem is
a probability-based answer to a philosophical question:
How should one update an existing belief when given
new evidence? [3]. Quantifying the degree of belief by
probability, the theorem modifies the original belief via
producing the probability conditioned on new evidence
from the initial probability. This idea has been applied in
the past century from one field to another whenever the
belief update question arose, driving numerous intriguing
explorations. Among them, a topic of relentless interest
is Bayesian state estimation, which is concerned with
determining the unknown state variables of a dynamic
system using the Bayesian theory.

The capacity of the Bayesian analysis to provide a
powerful framework for state estimation has been well
recognized now. A representative method within the
framework is the well-known Kalman filter (KF), which
“revolutionized the field of estimation ... (and) opened
up many new theoretical and practical possibilities” [4].
The KF was initially developed by using the least squares
in the 1960 paper [5] but reinterpreted from a Bayesian
perspective in [6], only four years after its invention.
Further envisioned in [6] was that “the Bayesian appro-
ach offers a unified and intuitive viewpoint particularly
adaptable to handling modern-day control problems”.
This investigation and vision ushered a new statistical
treatment of nonlinear estimation problems, laying a
foundation for prosperity of research on this subject.

In this article, we offer an introduction of the major
Bayesian state estimators, with a particular emphasis on
the KF family. A systematic, bottom-to-up introduction
is given. We begin with outlining the essence of Bayesian
thinking for state estimation problems, showing that its
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core is the model-based prediction and measurement-
based update of the probabilistic belief of unknown
state variables. A conceptual KF formulation can be
made readily in the Bayesian setting, which tracks the
mean and covariance of the states modeled as random
vectors throughout the running of the system. Turning
the conceptual KF into executable algorithms requires
certain approximations to nonlinear systems; depending
on the approximation adopted, different KF methods
are derived. We demonstrate three primary members
of the KF family in this context: extended KF (EKF),
unscented KF (UKF), and ensemble KF (EnKF), all of
which have achieved proven success both theoretically
and practically. A review of other important Bayesian
estimators and estimation problems is also presented
briefly in order to introduce the reader to the state of
the art of this vibrant research area.

II. A BAYESIAN VIEW OF STATE ESTIMATION

We consider the following nonlinear discrete-time
system:
X1 = f () +wi,

1
vk = h(xi) + v, M

where x; € R™ is the unknown system state, and y;, € R
the output, with both n, and n, being positive integers.
The process noise wj and the measurement noise vy
are mutually independent, zero-mean white Gaussian
sequences with covariances Q; and Ry, respectively. The
nonlinear mappings f : R™ — R™ and h: R"™ — R
represent the process dynamics and the measurement
model, respectively. The system in (1) is assumed input-
free for simplicity of presentation, but the following
results can be easily extended to an input-driven system.

The state vector x; comprises a set of variables that
fully describe the status or condition of the system. It
evolves through time as a result of the system dynamics.
The process of states over time hence represents the
system’s behavior. Because it is unrealistic to measure
the complete state in most practical applications, state
estimation is needed to infer x; from the output yy.
More specifically, the significance of estimation comes
from the crucial role it plays in the study of dynamic
systems. First, one can monitor how a system behaves
with state information and take corresponding actions
when any adjustment is necessary. This is particularly
important to ensure the detection and handling of internal
faults and anomalies at the earliest phase. Second, high-
performing state estimation is the basis for the design
and implementation of many control strategies. The past
decades have witnessed a rapid growth of control theo-
ries, and most of them, including optimal control, model

predictive control, sliding mode control and adaptive
control, premise the design on the availability of state
information. While state estimation can be tackled in
a variety of ways, the stochastic estimation has drawn
remarkable attention and been profoundly developed in
terms of both theory and applications. Today, it is still
receiving continued interest and intense research effort.

From a stochastic perspective, the system in (1) can
be viewed as a generator of random vectors x; and
vk- The reasoning is as follows. Owing to the initial
uncertainty or lack of knowledge of the initial condi-
tion, xp can be considered as a random vector subject
to variation due to chance. Then, f(xo) represents a
nonlinear transformation of xg, and its combination with
wo modeled as another random vector generates a new
random vector x;. Following this line, x; for any k is
a random vector, and the same idea applies to y;. In
practice, one can obtain the sensor measurement of the
output at each time k, which can be considered as a
sample drawn from the distribution of the random vector
vx. For simplicity of notation, we also denote the output
measurement as y; and the measurement set at time k
as Yi :={y1,y2,--,y}- The state estimation then is
to build an estimate of x; using Y at each time k.
To this end, one’s interest then lies in how to capture
p(x¢| Yy), i.e., the probability density function (pdf) of x;
conditioned on Y. This is because p(xi|Y}) captures the
information of x; conveyed in Y}. Once it is determined,
one can readily estimate xy.

A “prediction-update” procedure! can be recursively
executed to obtain p(xg|Yy). Standing at time k— 1, we
can predict what p(x;|Yy_1) is like using p(xg—1|Yi—1).
When the new measurement y; conveying information
about x; arrives, we can update p(xi|Y_1) to p(xg| Yy).
Characterizing a probabilistic belief about x; before and
after the arrival of yi, p(xx| Yi—1) and p(x;| Yy ) are refer-
red to as the a priori and a posteriori pdf’s, respectively.
Specifically, the prediction at time k — 1, demonstrating
the pass from p(xg_;|Yi_1) to p(xx|Yi—1), is given by

x| Yi—1) :/P(xk|xk71)p(xk71‘kal)dxkfl- (2)

Let us explain how to achieve (2). By the Chapman-
Kolmogorov equation, it can be seen that

x| Yi—1) :/p(xkaxk—1|yk—l)dxk—la

which, according to the Bayes’ rule, can be written as
| Yi1) =/P(Xk|xk71,kal)P(qu!kal)dxkfl-

'The two steps are equivalently referred to as ‘time-update’ and
‘measurement-update’, or ‘forecast’ and ‘analysis’, in different lite-
rature.
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Fig. 1. The Bayesian filtering principle. The running of a dynamic
system propagates the state x; through time and produces output
measurement y; at each time k. For the purpose of estimation, the
Bayesian filtering principle tracks the pdf of x; given the measure-
ment set Y = {y1,y2," -+, ¥k }- It consists of two steps: the prediction
step from p(xp_1|Yi_1) to p(xx|Yy_1), and the update step from
p(xx| Yi_1) to p(xx| Yy) upon the arrival of yy.

It reduces to (2), because p(x|xk—1, Yi—1) = p(xrxe—1)
as a result of the Markovian propagation of the state.
Then on the arrival of yi, p(x¢|Yx_1) can be updated to
yield p(xx|Y%), which is governed by

POkle) p (x| Yi—1)
POkl Yi1)

The above equation is also owing to the use of the Bayes’
rule:

P Yy) = 3)

(el Vi) = pxx, Yy) _ (X, Vi Y1)
p(Yi) POk, Yi1)
_ pOklxe, Y1) pla, Yio1)
Pk, Y1)
_ POk, Vi) p(xi| Yi—1)
POk Yi—1) .

Note that we have p(y|xx, Yi—1) = p(yk|xx) from the
fact that y; only depends on x;. Then (3) is obtained.
Together, (2)-(3) represent the fundamental principle
of Bayesian state estimation for the system in (1),
describing the sequential propagation of the a priori
and a posteriori pdf’s. The former captures our belief
over the unknown quantities in the presence of only
the prior evidence, and the latter updates this belief
using the Bayesian theory when new evidence becomes
available. The two steps, prediction and update, are
executed alternately through time, as illustrated in Fig. 1.

Looking at the above Bayesian filtering principle,
we can summarize three elements that constitute the
thinking of Bayesian estimation. First and foremost, all
the unknown quantities or uncertainties in a system, e.g.,
state, are viewed from the probabilistic perspective. In ot-
her words, any unknown variable is regarded as a random
variable. Second, the output measurements of the system
are samples drawn from a certain probability distribution

dependent on the concerned variables. Finally, a model-
based description is available for the system, which
characterizes the propagation and observation of the
system’s unknown variables over time adequately in the
situation of interest. Originating from the philosophical
abstraction that anything unknown, in one’s mind, is
subject to variations due to chance, the randomness-
based representation enjoys universal applicability even
when the unknown or uncertain quantities are not ne-
cessarily random in physical sense. In addition, it can
easily translate into a convenient ‘engineering’ way for
estimation of the unknown to be shown in the following
discussions.

III. FROM BAYESIAN FILTERING TO KALMAN
FILTERING

In the above discussion, we have shown the pro-
babilistic nature of the state estimation problem and
the Bayesian filtering principle as a result. However,
despite the revealing equations (2)-(3), using them to
track the pdf of a random vector subject to nonlinear
transformations is still formidable, if not impossible,
often coming without an exact or closed-form solu-
tion. This challenge turns against the development of
executable state estimation algorithms, since a dynamic
system’s state propagation and observation are based on
the nonlinear functions of the random state vector xy,
i.e., f(xx) and h(xy). Yet for the sake of estimation, one
only needs the statistics (mean and covariance) of x;
conditioned on the measurements in most circumstances,
rather than an exact knowledge of its conditional pdf. A
straightforward and justifiable way is to use the mean
as the estimate of x; and the covariance as the confi-
dence (or equivalently, uncertainty) measure. Reducing
the pdf tracking to the mean and covariance tracking
can significantly mitigate the difficulty in the design of
state estimators. To simplify the problem further, certain
Gaussianity approximations can be made because of
the mathematical tractability and statistical soundness
of Gaussian distributions (for the reader’s convenience,
several properties of the Gaussian distribution to be used
next are summarized in the Appendix.). Proceeding in
this direction, we can reach a stochastic formulation of
a Kalman filtering (KF) methodology, as shown below.

In order to predict x; at time k — 1, we consider the
minimum-variance unbiased estimation, which gives that
the best estimate of x; given Yy, denoted as £ 1, is
E(x¢| Y—1) [7, Theorem 3.1]. That is,

Bek—1 = B Yi—1) :/xkp(xk|yk71)dxk‘ “4)
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Inserting (2) into the above equation, we have

-1 = / [/xkp(xk|xk—1)dxk}

P (k1| Yi—)dxg—s.- (5)

By assuming that wy is a white Gaussian noise inde-
pendent of x;, we have xg|x;_1 ~ A (f(xx—1),0) and
then [xxp(xg|xk—1)dxy = f(xk—1) according to (A.1).
Hence, (5) becomes

Kk—1 = /f(xk—l)P(xk—1|Yk—1)ka—1
=E[f (1| Yi-1)]- (6)

For fx—1 1n (6), the associated prediction error covari-
ance is

P =E [(xk — Kik—1) (% — B )T]
= /(xk—ﬁk\kfl)(xk_)ek|k71)TP(xk|Yk71)dxk- @)

With the use of (2) and (A.1), we can obtain
Pk = /xkxljp(xkyykfl)dxk_fk|k71)21;r|k71

= / [/xkx;—p(xk|xkl)dxk] P Vi1 )doxe—y
—)ek|k_1)e,j|k71

=/[f(xk71)fT(Xk71)+Q] P (k1| Vi) doe—1
_£k|k*1£l—cr|k—l

:/[f(xkfl)_ﬁk\kfl] [f (k1) — Rt

P(o1| Yi—1)dxg—1 +Q
= Cov [f(xx-1)| Yi-1] + 0.
When y, becomes available, we assume that

p(xk,vk| Yi—1) can be approximated by a Gaussian dis-
tribution

]T

®)

R Px PY

_ klk—1 klk—1
(e [ BN

Vklk—1 (ka\}kfl> Py

where $;x—; is the prediction of y; given Yj;_; and
expressed as

k-1 =EO| Yi-1) = /ykp(yka—l)dyk- (10)
The associated covariance is

P13|k71 Z/()’k—fkvc—l) ()’k—ﬁkvc—l)T

P (k| Yi—1) dyr. (11)

Prediction
k-1)
Bl
z
Bk

Prediction

Prediction:  Zy—1 = B [f (2k-1) | Yi—1]
Biig—1 = Cov [f (wp-1)| Y] + Q

Update: g1 = B [h(w)| Vi1]
By = Cov [h(zp)| Y] + Q
PI:TI{-—I = Cov [z, (k)| Vi)

-1
Tk = Tp—1 + Pyh (Pﬁk,l) (Yk — Ykjk—1)

-1 T
Pl = Pije-1 — Pk\'%,A (PI;-UC—I) (Pkﬁc—l)

Fig. 2. A schematic sketch of the KF technique. KF performs the
prediction-update procedure recursively to track the mean and covari-
ance of x; for estimation. The equations show that its implementation
depends on determining the mean and covariance of the random state
vector through nonlinear functions f(-) and A(-).

It is noted that
Pk Y1) :/p(xkvyk|yk71)dxk
Z/P(yk\xk)P(xk\kal)dxk-

Combining (10)-(11) with (12) yields

(12)

k-1 = / D (el ) dyie) p (e Yie—1)dox
:/h(xk)p(xk|yk71)dxk =E[h(x)| Yi-1], (13)
Pl :/(h(xk)_)?ﬂkfl) (hx) = Fe-1)

-p(xk| Yi—1)dxg +R

= Cov [h(xk)]Yk,1]+R. (14)

The cross-covariance between x; and yj is

B = [ (=) (e =S)”
P (%, k| Yie—1) dedyk
:/(xk_)ek\k—l) U (yk_)?k|k71)—rp(yk|xk)d)’k
P (x| Yi—1) dx
Z/(xk—)?k\k—l) (h(xk)_yk|k—1)TP(xk‘Yk71)dxk
— Cov [re, h(x)| Vi) (15)

For two jointly Gaussian random vectors, the conditio-
nal distribution of one given another is also Gaussian,
which is summarized in (A.4) in Section IV. It then
follows from (9) that a Gaussian approximation can be
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constructed for p (xx|Yy). Its mean and covariance can
be expressed as

—1

)ek\k:ﬁk\kfl""ka‘k 1<k\k 1) Ok = Fuk—1),  (16)
Kalman gain

f}x\ = Tklk—1 ka\yk 1<Plf\k71> (ka\)l)c 1) a7

Putting together (6)-(8), (13)-(14) and (15)-(17), we
can establish a conceptual description of the KF techni-
que, which is outlined in Fig. 2. Built in the Bayesian-
Gaussian setting, it achieves state estimation through
tracking the mean and covariance of a random state
vector. It is noteworthy that one needs to develop explicit
expressions to enable the use of the above KF equations.
The key that bridges the gap is to find the mean and
covariance of a random vector passing through nonlinear
functions. For linear dynamic systems, the development
is straightforward, because, in the considered context the
involved pdf’s are strictly Gaussian and the linear trans-
formation of the Gaussian state variables can be readily
handled. The result is the standard KF to be shown in the
next section. However, complications arise in the case
of nonlinear systems. This issue has drawn significant
interest from researchers. A wide range of ideas and
methodologies have been developed, leading to a family
of nonlinear KFs. The three most representative among
them are extended KF (EKF), unscented KF (UKF), and
ensemble KF (EnKF) to be introduced following the
review of the linear KF.

IV. STANDARD LINEAR KALMAN FILTER

In this section, KF for linear systems is reviewed
briefly in order to pave the way for discussion of
nonlinear KFs. Consider a linear time-invariant discrete-
time system of the form

Xk+1
Yk

where: 1) {w;} and {v;} are zero-mean white Gaussian
noise sequences with wy ~ .47(0,Q) and vy ~ .4 (0,R),
2) xp is Gaussian with xo ~ A (%o, Py), and 3) xo, {wi}
and {v;} are independent of each other. Then from x; =
Fxy+wo and (A.2)-(A.3), we can conclude that x; is
Gaussian with x; ~ .4 (FXo, FPoF " + Q). By induction,
{x¢} is a Gaussian process with x; ~ .4 (X, P;), where

= Fxi + wg,

18
= Hxi + v, (1%)

k—1
X =F', Po=F'RF*" +Y FQF'",
i=0

19)

Because yy is the linear combination of two independent
Gaussian random variables, x; and vy, it also follows the

Gaussian distribution with y; ~ A4 (HX, HPH " +R).
The reader is referred to [7] for a detailed derivation.

Using the above results, we visualize the state and
output statistics in Fig. 3 for a system with

1.3 04 0.2
F= [0.3 1_2] , H=1[0.6 0.5], xo= [0_3],

05 0 01 0
PO_[O 1}’Q_{0 0.1]’R_0'2'

Figs. 3(a)-3(c) show the bivariate Gaussian pdf’s of x;
for k=0,1,2, which is given by

plet) = o 550 R 50|

(20)
The pdf’s of the scalar output y; for k=0,1,2 are illus-
trated in Fig. 3(d). It is seen that the system propagation
through time is pivoted on the evolving distribution of the
state and output variables. This implies that the system’s
dynamic behavior can be captured through characterizing
the state’s pdf as time passes.

The standard KF for the linear dynamic system in (18)
can then be readily derived by using the above results
and according to the conceptual KF summarized in
Fig. 2. Since the system is linear and under a Gaus-
sian setting, p (xx—1|Yx—1) and p (x¢|Yy_1) are strictly
Gaussian according to the properties of Gaussian vectors.
Specifically, xj_i|Yi_; ~ A (ﬁk_l‘k_l,P,f_l‘ k—l) and

x| Yoy ~ N ()Ek|k,1,P,§k_1>. According to (6) and (8),
the prediction is

fipe—1 = E(Fxp1| Yi—1) = Fipp1, (1)
ka\kfl = Cov (kafl‘ykfl) +0
=FP | FT+0, (22)

The update can be accomplished along the similar
lines. Based on (13)-(15), we have Y1 = Hxp—1.
Pl =HPqH' +R, and Py | =Py H'. Then,
as indicated by (16)-(17), the updated state estimate is
—1

e = Zuq—1 + B H ' (HP/Q/{AHT +R>

Kalman gain

- (k= H&gp—1) (23)
T T -1
Pk =Py — P (Hf}x\qu "’R)

Together, (21)-(24) form the linear KF. Through the
prediction-update procedure, it generates the state esti-
mates and associated estimation error covariances recur-
sively over time when the output measurement arrives.
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015 .. ‘ N

(a) (b)

Fig. 3. The state and output pdf’s of the considered linear dynamic system: (a) the Gaussian pdf of xp; (b) the Gaussian pdf of x;; (c) the

Gaussian pdf of x;; and (d) the Gaussian pdf’s of yj for k ={0,1,2}.

Initial state guess Prediction Step

Tp—1p—1

Based on prior knowledge of —>» P, —> Based on physical model,
initial state k=1lk-1 e.g., state equation
Next time step Lhlk—1
kek+1 Prje—
.’i‘k‘;‘. Update Step Measurements
P <“—— Compare predictionto <€—
Kk measurements Yk

v

Export state estimate

Fig. 4. A schematic of the KF/EKF structure, modified from [8].
KF/EKF comprises two steps sequentially executed through time,
prediction and update. For prediction, x; is predicted by using the
data up to time k — 1. The forecast is denoted as £;;_ and subject
to uncertainty quantified by the prediction error covariance Fy;_j.
The update step occurs upon the arrival of the new measurement
yk- In this step, y; is leveraged to correct £, and produce the
updated estimate £y Meanwhile, P ;_; is updated to generate Py
to quantify the uncertainty imposed on £ .

From the probabilistic perspective, £y and Py together
determine the Gaussian distribution of x; conditioned on
Y%. The covariance, quantifying how widely the random
vector x; can potentially spread out, can be interpreted
as a measure of the confidence on or uncertainty of the
estimate. A schematic diagram of the KF is shown in
Fig. 4 (it can also be used to demonstrate EKF to be
shown next).

Given that (F,H) is detectable and (F,Q%) stabili-
zable, P,f‘k_l converges to a fixed point, which is the
solution to a discrete-time algebraic Riccati equation
(DARE)

X=FXF' —FXH"(HXH" +R)"'HXF' + Q.

This implies that KF can approach a steady state after
a few time instants. With this idea, one can design a
steady-state KF by solving the DARE offline to obtain
the Kalman gain and then apply it to run the KF online,

according to [7]. Obviating the need for computing the
gain and covariance at every time instant, the steady-state
KF, though suboptimal, presents higher computational
efficiency than the standard KF.

V. REVIEW OF NONLINEAR KALMAN FILTERS

In this section, an introductory overview of the major
nonlinear KF techniques is offered, including the cele-
brated EKF and UKF in the field of control systems and
the EnKF popular in the data assimilation community.

A. Extended Kalman Filter

EKF is arguably the most celebrated nonlinear state
estimation technique, with numerous applications across
a variety of engineering areas and beyond [9]. It is
based on the linearization of nonlinear functions around
the most recent state estimate. When the state estimate
fk—1jx—1 18 generated, consider the first-order Taylor
expansion of f(x;_1) at this point:

Fa—1) = fRcipmt) + Feot (-1 —Becipemr) - (25)

d
Fr = o

Be—1jk—1

(26)

For simplicity, let p(xx_1|Yk_1) be approximated by a
distribution with mean £; ;1 and covariance ,f_” 1"
Then inserting (25) to (6)-(8), we can readily obtain the

one-step-forward prediction

Bt = E[f (o1 V)] & f (Rec1peet) 5 (27)
Plf\k—l = Cov [kaYk—l] +0
:kalf?(x_l‘k_leT,l +Q- (28)

Looking into (25), we find that the Taylor expansion
approximates the nonlinear transformation of the random
vector x; by an affine one. Proceeding on this approxi-
mation, we can easily estimate the mean and covariance
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of f(xx—1) once provided the mean and covariance
information of x;_; conditioned on Yj_;. This, after
being integrated with the effect of the noise wy on the
prediction error covariance, establishes a prediction of
xk, as specified in (27)-(28). After £y is produced,
we can investigate the linearization of A(xy) around this
new operating point in order to update the prediction.
That is,

h(xi) =~ h (Repe—1) +Hie (X6 — Tt ) (29)
oh
Hy= - (30)
X Kkjk—1

Similarly, we assume that p(x;|Y;_;) can be repla-
ced by a distribution with mean f£;_; and covari-
ance P,f‘k_l. Using (29), the evaluation of (13)-(15)
yields Pep_1 ~ h (Rge_1)- Pék_l ~ HkP]f‘klekT +R, and
P ~ By 1 Hy -

Here, the approximate mean and covariance informa-
tion of i(x;) and yj are obtained through the linearization
of h(x;) around f;_;. With the aid of the Gaussianity
assumption in (9), an updated estimate of x; is produced
as follows:

-1
Xl = i1 +ka\k71H1;r (HkPI:\klelj +R)

e —n (Fepe) ] (31)
-1
P = P _P/f\klel;r (HkPl?\klelj +R)
HP - (32)

Then, EKF consists of (27)-(28) for prediction and (31)-
(32) for update. When comparing it with the standard
KF in (21)-(24), we can find that they share significant
resemblance in structure, except that EKF introduces
the linearization procedure to accommodate the system
nonlinearities.

Since the 1960s, EKF has gained its wide use in
the areas of aerospace, robotics, biomedical, mechanical,
chemical, electrical and civil engineering, with great
success in the real world witnessed. This is often ascri-
bed to its relative easiness of design and execution. Anot-
her important reason is its good convergence from a the-
oretical viewpoint. In spite of the linearization-induced
errors, EKF has provable asymptotic convergence under
some conditions that can be satisfied by many practical
systems [10]-[14]. However, it also suffers from some
shortcomings. The foremost one is the inadequacy of
its first-order accuracy for highly nonlinear systems. In
addition, the need for explicit derivative matrices not
only renders EKF futile for discontinuous or other non-
differentiable systems, but also pulls it away from con-
venient use in view of programming and debugging, es-
pecially when nonlinear functions of a complex structure

are faced. This factor, together with the computational
complexity at O(n3), limits the application of EKF to
only low-dimensional systems.

Some modified EKFs have been introduced for im-
proved accuracy or efficiency. In this regard, a natural
extension is through the second-order Taylor expansion,
which leads to the second-order EKF with more accurate
estimation [15]-[17]. Another important variant, named
iterated EKF (IEKF), iteratively refines the state estimate
around the current point at each time instant [18], [19].
Though coming at the expense of an increased compu-
tational cost, it can achieve higher estimation accuracy
even in the presence of severe nonlinearities ingrained
in systems.

B. Unscented Kalman Filter

As the performance of EKF degrades for systems
with strong nonlinearities, researchers have been seeking
better ways to conduct nonlinear state estimation. In the
1990s, the unscented Kalman filter (UKF) was inven-
ted [20], [21]. Since then, it has been gaining significant
popularity among researchers and practitioners. This
technique is based on the so-called “unscented trans-
form (UT)”, which exploits the utility of deterministic
sampling to track the mean and covariance information
of a random variable through a nonlinear transforma-
tion [22]-[24]. The basic idea is to approximately repre-
sent a random variable by a set of sample points (sigma
points) chosen deterministically to completely capture
the mean and covariance. Then, projecting the sigma
points through the nonlinear function concerned, one
obtains a new set of sigma points and then use them
to form the mean and covariance of the transformed
variable for estimation.

UT is a means to track the statistics of a nonlinearly
transformed random variable. We consider a random
variable x € R" and a nonlinear function z = g(x). It
is assumed that the mean and covariance of x are X and
Py, respectively. The UT proceeds as follows [22], [23].

First, a set of sigma points {x',i = 0,1,---,2n} are
chosen deterministically according to

L =5, (33)
xi:.f—i-vn—f—l[\/]?x]i, i:1,2,"',l’l, (34)
X =x—\n+A[VP],, i=12,n, (35)

where [-]; represents the i-th column of the matrix and the
matrix square root is defined by \/ﬁ\/ﬁT = P achievable
through the Cholesky decomposition. The sigma points
spreads across the space around x. The width of spread is
dependent on the covariance P and the scaling parameter
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A, where A = a?(n+ k) —n. Typically, & is a small
positive value (e.g., 107%), and « is usually set to O or
3 —n [20]. Then the sigma points are propagated through
the nonlinear function g(-) to generate the sigma points
for the transformed variable z, i.e.,

Z=g(x'), i=0,1,---,2n.

Then the mean and covariance of 7z are estimated as

2n
z=E[g(x)] ~ Zw/i(m) i

(36)
i=0
P =E[(s() -2 (s0) -]
2n
~Y WO (-9 (d -2 (37)
i=0
where the weights are
m _ A
W = n+A’ 58)
(©_ _* -
WO _n—|—7L+(1 a +ﬁ)7 (39)
m) _ o) _ 1 _ -
W =W, =3t A) i=1,2,---2n. (40)

The parameter  in (39) can be used to include prior
information on the distribution of x. When x is Gaussian,
B =2 is optimal.

To develop UKE, it is necessary to apply UT at both
prediction and update steps, which involve nonlinear
state transformations based on f and 4, respectively. For
prediction, suppose that the mean and covariance of x;_1,
Lk 1x—1 and P,f_” «_1» are given. To begin with, the sigma
points for x;_; are generated:

A0 .

XIE_)”k_l =X 1jk—1 (41)

o) /

Bl = Bt + Vet [\/ k—1]k— 1}
i=1,2,-,n, (42)

(t+nx)

B 11 = T 1_\/”x+7t[\/ k1]~ 1}
l:1723"'7nx (43)

Then, they are propagated forward through the nonlinear
function f(-), that is,

(i)

Kelk—1 (44)

2n,.

:f<’21(31|k71>> i=0,1,---

L—1]k—1

pe

&
& QO\ _________ |
g :
- co =TT = & (@
& /e, <
&

Prediction: Generate sigma points 70

k1 k-
(i) o) _
rk]\k = (“Lk—l\k—l) ; 0=0,1,---,2n,
2n )
Gper = 3 WME0
i=0

2ng

Pii = Z W ( k-1 -i‘k|k—1> (fﬁ)k_l - -?A?A~\1.~,_1)T +Q

i=0

p1=0,1,--- 2n,

Generate sigma points iy\)kq i=0,1,--+,2n,

i =h (rk‘k 1), i=0,1,-,2n,
2n,
Jk\k I*ZW m)yk‘k 1

an

T
],‘k 1 ZW (J/c\k 1 ?:/k\k, 1) (yk\k 1 gk\k—l> +R

i=0
2ng T
7(e) [ (1) P -
P)ﬁi 1 Zwi (1’k|k—1 = Thlk— 1) (yk\k 1 C‘/k\k%)
i=0
T = Epn-1 + Py (P;f‘k,l) (e — Depp—1)

Py = P = Pt () (1)

Update:

Fig. 5. A schematic of UKF. Following the prediction-update
procedure, UKF tracks the mean and covariance of state x; using
sigma points chosen deterministically. A state estimate is graphically
denoted by a red five-pointed star mean surrounded by a covariance
ellipse, and the sigma points are colored in blue dots.

These new sigma points are considered capable of cap-
turing the mean and covariance of f(x;_1). Using them,
the prediction of x; can be achieved as follows:

2ny
Rek—1 =E[f (xk—1) [ Yi1] ZW k\k)l’ (45)
Py = Cov[f (xx—1) | Yir1] +Q
an e (i R T
= Z‘/I/l( ) ()?kw((zl _ﬁk\k71> (]ek|l(cll _xk|k71)
i=0
+ 0. (46)

By analogy, the sigma points for x; need to be
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generated first in order to perform the update, which are

~+(0 o
S = R, (47)
ﬁ;ﬁ;(il = -1 + Ve + A [\/ ,f‘k_l}i,
i=1,2,---,n,, (48)
'),C\/—J/Elj_l _xk\k l_\/nx"i_l |:\/ k|k— 1}
l_1727"'7 My (49)

Propagating them through A(-), we can obtain the sigma
points for h(x;), given by

o(0) (@) P
yk‘k 1 h(xk‘k 1), i=0,1,---,2n.

The predicted mean and covariance of y; and the pre-
dicted cross-covariance between x; and y; are as follows:

(50)

yAk‘k*I - yk’Yk 1 ZWm k‘k 1 (51)
Plf\k—l = Cov[h (Xk)’qu] +R
2ny ‘ ; i ) -
(52)
P]:‘}I;i = COV [Xka h(.Xk) | Yk—l] (53)

_ZW (xk|k 1~ Kk~ 1) (yA,({l&,l—)?Mk—l)T, (54

With the above quantities becoming available, the Gaus-
sian update in (16)-(17) can be leveraged to enable
the projection from the predicted estimate £;;_; to the
updated estimate £y;.

Summarizing the above equations leads to UKF ske-
tched in Fig. 5. Compared with EKF, UKF incurs a
computational cost of the same order O(n}) but offers
second-order accuracy [22], implying an overall smaller
estimation error. In addition, its operations are derivative-
free, exempt from the burdensome calculation of the
Jacobian matrices in EKF. This will not only bring
convenience to practical implementation but also imply
its applicability to discontinuous undifferentiable nonli-
near transformations. Yet, it is noteworthy that, with a
complexity of O(n}) and operations of 21, + 1 sigma
points, UKF faces substantial computational expenses
when the system is high-dimensional with a large n,,
thus unsuitable for this kind of estimation problems.

Owing to its merits, UKF has seen a growing momen-
tum of research since its advent. A large body of work is
devoted to the development of modified versions. In this
respect, square-root UKF (SR-UKF) directly propagates
a square root matrix, which enjoys better numerical

stability than squaring the propagated covariance matri-
ces [25]; iterative refinement of the state estimate can
also be adopted to enhance UKF as in IEKF , leading
to iterated UKF (IUKF). The performance of UKF can
be improved by selecting the sigma points in different
ways. While the standard UKF employs symmetrically
distributed 2n, + 1 sigma points, asymmetric sets or
sets with a larger number of points may bring better
accuracy [26]-[29]. Another interesting question is the
determination of the optimal scaling parameter k, which
is investigated in [30]. UKF can be generalized to the so-
called sigma-point Kalman filtering (SPKF), which refers
to the class of filters that uses deterministic sampling
points to determine the mean and covariance of a random
vector through nonlinear transformation [31], [32]. Other
SPKF techniques include the central-difference Kalman
filter (CDKF) and Gauss-Hermite filter (GHKF), which
perform sigma-point-based filtering and can also be
interpreted from the perspective of Gaussian-quadrature-
based filtering [33] (GHKF will receive further discus-
sion in Section VII).

C. Ensemble Kalman Filter

Since its early development in [34]-[36], ensemble
Kalman filter (EnKF) has established a strong presence
in state estimation for large-scale nonlinear systems.
Its design is built on an integration of KF with the
Monte Carlo method, which is a prominent statistical
method concerning simulation-based approximation of
probability distributions using samples directly drawn
from certain distributions. Basically, EnKF maintains an
ensemble representing the conditional distribution of a
random state vector given the measurement set. The
state estimate is generated from the sample mean and
covariance of the ensemble. In view of the sample-based
approximation of probability distributions, EnKF shares
similarity with UKF; however, the latter employs deter-
ministic sampling while EnKF adopts non-deterministic
sampling.

Suppose that there is an ensemble of samples, 321(21‘ 1
fori=1,2,--- Ny, drawn from p(x;_1|Y;_1) to approx-
imately represent this pdf Next, let an ensemble of sam-
ples, {wk (} fori=1,2,--- Ny, be drawn independently
and identically from the Gaussian distribution .4°(0,0Q)
in order to account for the process noise at time k — 1.
Then, )2,(21‘ (1 can hence be projected to generate a

priori ensemble {)?](;'L_l} that represents p (x| Yy_1) as

follows:

B = (8 )+l =120 N 59)
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The sample mean and covariance of this ensemble can
be calculated as:

. 1 & G
Lu—1 = E (| Yi—1) = N Zx,(c&_l, (56)
N l:1

ka\k—l = COV(kaYk_])

R . () . T

N—1& Kk—1 — Xlk=1 ) \Xpje—1 — Xklk—1) >
1=

(57)

~
~

which form the prediction formulae.
The update step begins with the construction of the
ensemble for p (yi|Yy_1) by means of

S =h (i) s i=120

where v}( is generated as per the Gaussian distribution
A (0,R) to delineate the measurement noise vi. The
sample mean of this ensemble is

A (58)

. 1 Ns i
k=1 = 37 Zy;((l&(,p (59)
S i=1
with the associated sample covariance
1 &/ .
Pk|k 17N, —1 Zi (yk\k—l *Yk\k—l>
: -

(i) . T

’ yk‘k_l_)’k\kfl (60)

The cross-covariance between x; and y; given Yj_; is

1Y

(i) .
Pk = N—1 I:Zi (xk\kq —Xk\k71>

A7) . T
’ yk\kfl — YVilk—1 (61)
Once it arrives, the latest measurement y; can be applied
to update each member of a priori ensemble in the way

defined by (16), i.e.,

) a0) y -1 NG!
xk|k_xk|k 1+ka|k 1(k|k 1) (yk—ykucq)7
i=1,2,-- N,

NG

This a posteriori ensemble {xk&} can be regarded as

(62)

an approximate representation of p(x;|Yy). Then, the
updated estimation of the mean and covariance of x;
can be achieved by

lNc .

B = 3 Lt (63)
| I E ) . )T
Po= 1 & (S —2u) (S —2) - o

s i=1

The above ensemble-based prediction and update
will be repeated recursively, forming EnKF. Note that

Prediction Prediction

p(ap—1|Yi1) P(Tria| Vi)
~ YRS Update ST Prediction %
W P"edlctmn pdate @ rediction ‘
Tp-1lk-1 Thlk-1 By o
Prediction: IHA =r (:E' k= |) +'uv,('_'z“ i=1,2,---, N,
&
— -(1)
Lklk = TZ'I'H/\'*I
S i=1
Update: !7&);-71 =h (I:i)]‘_il) + ui_'). i=1,2,--+ N
N
y 1 T
Pm 1SN 1 Z (’/m 1~ Yklk (I/HA 1~ Yk |)
$ i=1
N,
1 () N () - T
1)1.'\(1{ = N Z (IHL - .’zrw.,]) (ykl\k—l - yk.‘k.,])
s i=1
. -1
A0 _ A1) y g ) (1) S 16 AT
T = Tpper + P (Pk/\k 1) (v‘/k = Ynik 1) s =12, Ny
Thr = Z B

Fig. 6. A schematic of EnKF. EnKF maintains an ensemble of sample
points for the state vector xy. It propagates and updates the ensemble
to track the distribution of x;. The state estimation is conducted by
calculating the sample mean (red five-pointed-star) and covariance
(red ellipse) of the ensemble.

the computation of estimation error covariance in (57)
and (64) can be skipped if a user has no interest in
learning about the estimation accuracy. This can cut
down EnKF’s storage and computational cost.

EnKF is illustrated schematically in Fig. 6. It fe-
atures direct operation on the ensembles as a Monte
Carlo-based extension of KF. Essentially, it represents
the pdf of a state vector by using an ensemble of
samples, propagates the ensemble members and makes
estimation by computing the mean and covariance of the
ensemble at each time instant. Its complexity is O(n +
ny 2N, —f—n}N2 +nN?) (> ny for high-dimensional sy-
stems) [37], which contrasts with O(n}) of EKF and
UKEF. This, along with the derivative-free computation
and freedom from covariance matrix propagation, makes
EnKF efficiently implementable and often the method
of choice for high-dimensional nonlinear systems. An
additional contributing factor in this respect is that the
ensemble-based computational structure places it in an
advantageous position for parallel implementation [38].
It has been reported that convergence of the EnKF can
be fast even with a reasonable small ensemble size [39],
[40]. In particular, its convergence to KF in the limit
for large ensemble size and Gaussian state probability
distributions is proven in [40].
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VI. APPLICATION TO SPEED SENSORLESS
INDUCTION MOTORS

This section presents a case study of applying EKF,
UKF and EnKF to state estimation for speed sensor-
less induction motors. Induction motors are used as an
enabling component for numerous industrial systems,
e.g., manufacturing machines, belt conveyors, cranes,
lifts, compressors, trolleys, electric vehicles, pumps, and
fans [41]. In an induction motor, electromagnetic in-
duction from the magnetic field of the stator winding
is used to generate the electric current that drives the
rotor to produce torque. This dynamic process must be
delicately controlled to ensure accurate and responsive
operation. Hence, control design for this application has
been researched extensively during the past decades,
e.g., [41]-[43]. Recent years have seen a growing interest
in speed sensorless induction motors, which have no
sensors to measure the rotor speed to reduce costs and
increase reliability. However, the absence of the rotor
speed makes control design more challenging. Toward
addressing this challenge, state estimation is exploited
to recover the speed and other unknown variables. It is
also noted that an induction motor as a multivariable and
highly nonlinear system makes a valuable benchmark
for evaluating different state estimation approaches [43],
[44].

The induction motor model in the stationary two-phase
reference frame can be written as

l:ds = —Yigs + Otﬁ WYar + B Yyr® + ”ds/ga
lgs = —Yigs — BWar®+ 0By +ugs/ 0,
Var = OLmigs — AWar — Yyr @,
Yyr = QLyigs + Yar @ — 00y,
1.

W= E (_idsq/qr + Wdriqs) - 77

J

. ids
=[]

In above, (Wy,, Y,r) are the rotor fluxes, (igzy,iqs) are the
stator currents, and (ugs,ugs) are the stator voltages, all
defined in the stationary d-g frame. In addition, @ is
the rotor speed that cannot be measured, J is the rotor
inertia, 77 is the load torque, and y is the output vector
composed of the stator currents. The rest symbols are
parameters, where 6 = L(1 —Lf’n/Ler), o=R,/L,, B =
Ly/oL,, y=Rs;/o+aBLy, u=3L,/2L,; (Rs,Ls) and
(Ry,L,) are the resistance-inductance pairs of the stator
and the rotor, respectively; L,, is the mutual inductance.
As shown above, the state vector x comprises iy, igs,
Yir, WYqr, and @. The parameter setting follows [45].
Note that, because of the focus on state estimation, an
open-loop control scheme is considered with wuy(t) =

380sin(1007¢) and ug,(t) = —380sin(2007z). The state
estimation problem is then to estimate the entire state
vector through time using the measurement data of iy,
igs> Ugs and iy,

In the simulation, the model is initialized with x¢ =
[166.45 0 0 0 0]". The initial state guess for all EKF,
UKF and EnKF is set to be £p = [183.10 0 0 0 o]"
and Py = 10721. For EnKF, its estimation accuracy
depends on the ensemble size. Thus, different sizes are
implemented to examine this effect, with Ny =40, 100,
200 and 400. To make a fair evaluation, every filter is
run for 100 times as a means to reduce the influence of
randomly generated noise. The estimation error for each
run is defined as Y [|xx — £ p/[2; the errors over the 100
runs are averaged to give the final estimation error for
comparison.

Fig. 7 shows the estimation errors for @ along with
+30 bounds in a simulation run of EKF, UKF and
EnKF with ensemble size of 100 (here, ¢ stands for
the standard deviation associated with the estimate of
). It is seen that, in all three cases, the error is large at
the initial stage but gradually decreases to a much lower
level, indicating that the filters successfully adapt their
running according to their own equations. In addition,
EnKF demonstrates the best estimation of @ overall. The
average estimation errors over 100 runs are summarized
in Table I. It shows that the UKF offers the most accurate
estimation when all state variables are considered. In
addition, the estimation accuracy of EnKF improves
when the ensemble size increases.

We draw the following remarks about nonlinear state
estimation from our extensive simulations with this spe-
cific problem and experience with other problems in our
past research.

o The initial estimate can significantly impact the
estimation accuracy. For the problem considered
here, it is found that the EKF and EnKF are more
sensitive to the initial guess. It is noteworthy that
an initial guess, if differing much from the truth,
can lead to divergence of filters. Hence, one is
encouraged to obtain a guess as close as possible
to the truth using prior knowledge or try different
guesses.

o A filter’s performance can be problem-dependent.
A filter can provide estimation at a decent accuracy
when applied to a problem but may fail when
used to handle another. Thus, it is suggested the
practitioner try different filters whenever allowed to
find out the one that performs the best for his/her
specific problem.

o Successful application of a filter usually requires
tuning of the covariance matrices and in some cases,
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Fig. 7. Estimation error for w: (a) EKF; (b) UKF; (c) EnKF with Ny = 100.

TABLE 1
AVERAGE ESTIMATION ERRORS FOR EKF, UKF, AND ENKF.

. EnKF
Filter EKF UKE - —40 TN, =100 [ N, =200 | N, =400
Average estimation error | 1566.67 | 1307.16 | 1822.93 | 1515.06 1462.14 1426.75

parameters involved in the filter (e.g., A, o and
B in UKF), because of their important influence
on estimation [46]. Trial and error represents a
common approach in practice. However, there also
exist some studies of systematic tuning methods,
e.g., [47], [48], The reader may refer to them for
further information.

« In choosing the best filter, one need to take into all
the factors relevant to the problem he/she is addres-
sing, including but not limited to estimation accu-
racy, computational efficiency, system’s structural
complexity, problem size, etc. To facilitate such a
search, Table II summarizes the main differences
and application areas of EKF, UKF and EnKF.

VII. OTHER FILTERING APPROACHES AND
ESTIMATION PROBLEMS

Nonlinear stochastic estimation remains a major re-
search challenge for the control research community.
Continual research effort has been in progress toward the
development of advanced methods and theories including
the surveyed KFs. This section gives an overview of
other major filtering approaches.

Gaussian filters (GFs). GFs are a class of Bayesian
filters enabled by a series of Gaussian distribution ap-
proximations. They bear much resemblance with KFs in
view of their prediction-update structure and thus, in a
broad sense, belong to the KF family. As seen earlier,
the KF-based estimation relies on the evaluation of a
set of integrals indeed—for example, the prediction of

X is attained in (6) by computing the conditional mean
of f(xx—1) on Yj;_;. The equation is repeated here for
convenience of reading:

Rek—1 = E[f (x—1)] Yie—1]
:/f(xkfl)p(xkfl|Yk71)dxk71-

GFs approximates p(x;_1|Y;_;) with a Gaussian
distribution having mean £;_;_; and covariance
Plfi”kil. Namely, p(xx—1|Yx—1) 1is replaced by
/V(ﬁk,l‘k,l,Pgil‘kil) [33]. Continuing with this
assumption, one can use the Gaussian quadrature
integration rules to evaluate the integral. A quadrature
is a means of approximating a definite integral of a
function by a weighted sum of values obtained by
evaluating the function at a set of deterministic points
in the domain of integration. An example of a one-
dimensional Gaussian quadrature is the Gauss-Hermite
quadrature, which plainly states that, for a given
function g(x),

oo m
[ gl (w0 e~ Y wigli),
e i=1
where m is the number of points used, x; for i =
1,2,---,m the roots of the Hermite polynomial H,(x),
and w; the associated weights

2" Im\\/7
m? [Hy1 (7))
Exact equality holds for polynomials of order up to 2m —
1. Applying the multivariate version of this quadrature,
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TABLE II
COMPARISON OF EKF, UKF AND ENKF.
Computational . . . . .
. Jacobian matrix | System dimensions Applications
complexity
Guidance and navigation, flight control, attitude control,
. target tracking, robotics (e.g., simultaneous localization
EKF High Needed Low and mapping), electromechanical systems (e.g., induction
motors and electric drives), vibration control, biomedi-
cal signal processing, sensor fusion, structural system
) ) monitoring, sensor networks, process control, computer
UKF High Not needed Low to medium vision, battery management, HVAC (heating, ventilation
and air conditioning) systems, econometrics

Meteorology, hydrology, weather forecasting, oceano-
EnKF Low Not needed High graphy, reservoir engineering, transportation systems,

power systems

one can obtain a filter in a KF form, which is named
Gauss-Hermite KF (GHKF) [33], [49]. GHKF reduces
to the UKF in certain cases [33]. Besides, the cubature
rules for numerical integration can also be used in favor
of a KF realization, which yields a cubature Kalman
filter (CKF) [50], [51]. It is noteworthy that CKF is a
special case of UKF given ¢ =1, B =0 and x =0 [52].

Gaussian-sum filters (GSFs). Though used widely in
the development of GFs and KFs, Gaussianity approxi-
mations are often inadequate and performance-limiting
for many systems. To deal with a non-Gaussian pdf,
GSFs represent it by a weighted sum of Gaussian basis
functions [7]. For instance, the a posteriori pdf of x; is
approximated by

Xk’YK ZWk (xk’x’\;dk’P/i‘k) s

where W/, £ and P,i‘k are the weight, mean and co-
variance of the i-th Gaussian basis function (kernel),
respectively. This can be justified by the Universal Ap-
proximation Theorem, which states that a continuous
function can be approximated by a group of Gaussian
functions with arbitrary accuracy under some conditi-
ons [53]. A GSF then recursively updates )2;;‘ 8 P,ﬁ‘ K and
W’ In the basic form, xk‘k and P, k‘k fori=1,2,---,m

are updated individually through EKF, and Wki updated
according to the output-prediction accuracy of £;. The
assumption for the EKF-based update is that the system’s
nonlinear dynamics can be well represented by aggrega-
ting linearizations around a sufficient number of different
points (means). In recent years, more sophisticated GSFs
have been developed by merging the Gaussian-sum pdf
approximation with other filtering techniques such as
UKEF, EnKF, GFs and PFs [33], [54]-[57] or optimization
techniques [58].

Particle filters (PFs). The PF approach was first
proposed in the 1990s [59] and came to prominence

soon after that owing to its capacity for high-accuracy
nonlinear non-Gaussian estimation. Today they have
grown into a broad class of filters. As random-sampling-
enabled numerical realizations of the Bayesian filtering
principle, they are also known as the sequential Monte
Carlo methods in the literature. Here, we introduce the
essential idea with minimum statistical theory to offer the
reader a flavor of this approach. Suppose that Ns samples,

](c)l‘k , fori=1,2,--- N;are drawn from p(x;_1|Y;_1)
at time k— 1. The i-th sample is associated with a weight
kal, and Z W )1 = 1. Then, p(x3—1| Y1) can be
empirically descrlbed as

Ns
~ (@) A1)
)~ ZWk—l6 Khe—1 =X Zqjk—1 ) -
i=1
This indicates that the estimate of x;_; is

Be—tp—1= /xk—1p(xk—1|Yk—1)dxk—1

N

— (i) A0)
=, IWk—lxk71|k71'
1=

pck—1| Yioy (65)

The samples can be propagated one-step forward to
generate a sampling-based description of xg, i.e.,

= (8 ) ol i= 120 N,
where w,((izl for i=1,2,---,N, are samples drawn from
the distribution of wy_;. After the propagation, each
new sample should take a different weight in order
to be commensurate with its probabilistic importance
with respect to the others. To account for this, one can
, which quantifies the likelihood of
v given the i-th sample )2,(;). Then, the weight can be
updated and normalized on [0, 1] by

evaluate p (yk |)2,(f))

Wk(l) = Wk(i)lp (yk‘fl(cl)> ’ Wk(t) =
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Fig. 8. A graphic diagram of the PF technique modified from [62].
Suppose that a set of samples (particles, as shown in gray color in the
figure) are used to approximate the conditional pdf of the state on the
available measurements as a particle discrete distribution. A one-step-
froward propagation is implemented to generate the samples for the
state at the next time instant. On its arrival, the new measurement will
be used to update the weight of each sample to reflect its importance
relative to others. Some samples may be given almost zero weight,
referred to as degeneracy, and thus have meaningless contribution to
the state estimation. Resampling will then be performed to generate
a new set of samples.

Then an empirical sample-based distribution is built for
p(xx| Yi) as in (65), and the estimate of x; can be
computed as

N N
=Y Wil
i=1

In practical implementation of the above procedure,
the issue of degeneracy may arise, which refers to the
scenario that many or even most samples take almost
zero weights. Any occurrence of degeneracy renders the
affected samples useless. Remedying this situation re-
quires the deployment of resampling, which replaces the
samples by new ones drawn from the discrete empirical
distribution defined by the weights. Summarizing the
steps of sample propagation, weight update and resam-
pling gives rise to a basic PF, which is schematically
shown in Fig. 8. While the above outlines a reasonably
intuitive explanation of the PF approach, a rigorous
development can be made on a statistical foundation, as
detailed in [16], [60], [61].

With the sample-based pdf approximation, PFs can
demonstrate estimation accuracy superior to other filters
given a sufficiently large N;. It can be proven that
their estimation error bound does not depend on the
dimension of the system [63], implying applicability
for high-dimensional systems. A possible limitation is
their computational complexity, which comes at O(Nyn?2)
with Ny > n,. Yet, a strong anticipation is that the
rapid growth of computing power tends to overcome this
limitation, enabling wider application of PFs. A plethora
of research has also been undertaken toward computati-
onally efficient PFs [64]. A representative means is the

Rao-Blackwellization that applies the standard KF to the
linear part of a system and a PF to the nonlinear part and
reduces the number of samples to operate on [16]. The
performance of PFs often relies on the quality of samples
used. To this end, KFs can be used in combination
to provide high-probability particles for PFs, leading
to a series of combined KF-PF techniques [65]-[67].
A recent advance is the implicit PF, which uses the
implicit sampling method to generate samples capable
of an improved approximation of the pdf [68], [69].

Moving-horizon estimators (MHEs). MHEs are an
emerging estimation tool based on constrained optimiza-
tion. In general, it aims to find the state estimate through
minimizing a cost function subject to certain constraints.
The cost function is formulated on the basis of the
system’s behavior in a moving horizon. To demonstrate
the idea, we consider the Maximum a Posteriori esti-
mation (MAP) for the system in (1) during the horizon
[k—N, k] as shown in (66). Assuming wy ~ .47(0,Q) and
vk ~ A (0,R) and using the logarithmic transformation,
the above cost function becomes

k=1 k
min  P(x;_n) + Z w) O w4 Z v Ry,

TNk I=k—N I=k—N
where ®(x;_p) is the arrival cost summarizing the past
information up to the beginning of the horizon. The
minimization here should be subject to the system model
in (1). Meanwhile, some physically motivated constraints
for the system behavior should be incorporated. This
produces the formulation of MHE given as

{fk—n, - X} = argmin P(x;_y)
Xk—Ns Xk

+ kZ’l wlTQfle— i v,TRflvl,
I=k—N I=k—N
X1 = f(x) +wi,
yi = h(x) +vy,
xeX, weW, veV,

subject to :

where X, W and V are, respectively, the sets of all
feasible values for x, w and v and imposed as the con-
straints. It is seen that MHE tackles the state estimation
through constrained optimization executed over time in
a receding-horizon manner, as shown in Fig. 9. For
an unconstrained linear system, MHE reduces to the
standard KF. It is worth noting that the arrival cost
®(x;_n) is crucial for the performance or even success of
MHE approach. In practice, an exact expression is often
unavailable, thus requiring an approximation [70], [71].
With the deployment of constrained optimization, MHE
is computationally expensive and usually more suited for
slow dynamic processes; however, the advancement of
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{x’\k—N}
Xk—N> " Xk

Ay =arg max  plgew,-

k)

k—1

7-xk|yk—N7 e

—arg max P(xk N) H p(vilx:) H p(xr41lx1)

Xk—N>*

k
=arg max p(x_n) H
k 1=k

Xk—N> "%

I=k—N I=k—N
k—1

pvi) T pw).

l=k—N

(66)
“k-N

Output measurements

A

N+1
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i

Arrival cost
P (zp-n)

ococ| I Yk—N
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Fig. 9. MHE performed over a moving observation horizon that
spans N + 1 time instants. For estimation at time k, the arrival cost
®(x;_py) is determined first, which summrizes the information of
the system behavior up to the beginning of the horizon. Then, the
output measurements within the horizon, y;_y,- -, ¥, are used, along
with the arrival cost, to conduct estimation of £;_y,---,%; through
constrained optimization.

real-time optimization has brought some promises to its
faster implementation [72], [73].

Simultaneous state and parameter estimation
(SSPE). In state estimation problems, a system model
is considered fully known a priori. This may not be
true in many practical situations, where part or even
all of the model parameters are unknown or subject
to time-varying changes. Lack of knowledge of the
parameters can disable an effort for state estimation in
such a scenario. Hence, SSPE is motivated to enable
state estimation self-adapting to the unknown parame-
ters. Despite the complications, a straightforward and
popular way for SSPE is through state augmentation. To
deal with the parameters, the state vector is augmented
to include them, and on account of this, the state-
space model will be transformed accordingly to one with
increased dimensions. Then a state estimation technique
can be applied directly to the new model to estimate the
augmented state vector, which is a joint estimation of
the state variables and parameters. Study of this means
based on EKF, UKF, EnKF and PFs has been reported in
the literature for a broad range of applications [74]-[77].
Another primary solution is the so-called dual Kalman
filtering. By “dual”, it means that the state estimation and
parameter estimation are performed alternately. As such,

the state estimate is used to estimate the parameters,
and the parameter estimate is used to update the state
estimation. Proceeding with this idea, EKF, UKF and
EnKF can be dualized [78]-[81]. It should be pointed
out that caution should be taken when an SSPE approach
is developed. Almost any SSPE problem is nonlinear
by nature with coupling between state variables and
parameters. The joint state observability and parameter
identifiability may be unavailable, or the estimation may
get stuck in local minima. Consequently, the conver-
gence can be vulnerable or unguaranteed, diminishing
the chance of successful estimation. Thus we recommend
application-specific SSPE analysis and development.

Simultaneous state and input estimation (SSIE).
Some practical applications encounter not only unknown
states but also unknown inputs. An example is the
operation monitoring for an industrial system subject to
unknown disturbance, where the operational status is the
state and the disturbance the input. In maneuvering target
tracking, the tracker often wants to estimate the state of
the target, e.g., position and velocity, and the input, e.g.,
the acceleration. Another example is the wildfire data
assimilation extensively investigated in the literature. The
spread of wildfire is often driven by local meteorological
conditions such as the wind. This gives rise to the need
for a joint estimation of both the fire perimeters (state)
and the wind speed (input) toward accurate monitoring
of the fire growth.

The significance of SSIE has motivated a large body
of work. A lead was taken in [82] with the develop-
ment of a KF-based approach to estimate the state and
external white process noise of a linear discrete-time
system [82]. Most recent research builds on the existing
state estimation techniques. Among them, we highlight
KF [83], [84], MHE [85], H.-filtering [86], sliding mode
observers [87], [88], and minimum-variance unbiased es-
timation [89]-[92]. SSIE for nonlinear systems involves
more complexity, with fewer results reported. In [93],
[94], SSIE is investigated for a special class of nonlinear
systems that consist of a nominally linear part and a
nonlinear part. However, the Bayesian statistical thinking
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has been generalized to address this topic, exemplifying
its power in the development of nonlinear SSIE appro-
aches. In [95], [96], a Bayesian approach along with
numerical optimization is taken to achieve SSIE for
nonlinear systems of a general form. An ensemble-based
SSIE, as a counterpart of EnKEF, is studied in [97] under
a Bayesian framework for high-dimensional nonlinear
systems. It is noteworthy that SSIE and SSPE would
overlap if we consider the parameters as a special kind
of inputs to the system. In this case, the SSIE approaches
may find their use in solving SSPE problems.

VIII. CONCLUSION

This article offered a state-of-the-art review of nonli-
near state estimation approaches. As a fundamental pro-
blem encountered across a few research areas, nonlinear
stochastic estimation has stimulated a sustaining interest
during the past decades. In the pursuit of solutions, the
Bayesian analysis has proven to be a time-tested and
powerful methodology for addressing various types of
problems.In this article, we first introduced the Bayesian
thinking for nonlinear state estimation, showing the na-
ture of state estimation from the perceptive of Bayesian
update. Based on the notion of Bayesian state estimation,
a general form of the renowned is derived. Then, we
illustrated the development of the standard KF for linear
systems and EKF, UKF and EnKF for nonlinear systems.
A case study of state estimation for speed sensorless
induction motors was provided to present a comparison
of the EKF, UKF and EnKF approaches. We further
extended our view to a broader horizon including GF,
GSF, PF and MHE approaches, which are also deeply
rooted in the Bayesian state estimation and thus can be
studied from a unified Bayesian perspective to a large
extent.

Despite remarkable progress thus far, it is anticipated
that nonlinear Bayesian estimation will continue to see
intensive research in the coming decades. This trend will
be partially driven by the need of using state estimation
as a mathematical power tool to enable various emerging
systems in contemporary industry and society, stretching
from autonomous transportation to sustainable energy
and to smart X (grid, city, planet, geosciences, etc.).
Here, we envision several directions that may shape
the future research in this area. The first one lies in
accurately characterizing the result of a nonlinear trans-
formation applied to a probability distribution. Many
of the present methods such as EKF, UKF and EnKF
were more or less motivated to address this fundamen-
tal challenge. However, there still exists no solution
generally acknowledged as satisfactory, leaving room
for further exploration. Second, much research will be

needed to deal with uncertainty. Uncertainty is intrinsic
to many practical systems due to unmodeled dynamics,
external disturbances, inherent variability of the dynamic
process, and sensor noises, representing a major threat to
successful estimation. Although the literature contains a
great many results on state estimation with robustness
to uncertainty, the research has not reached a level
of maturity because of the difficulty involved. A third
research direction is optimal sensing structure design.
Sensing structure or sensor deployment is critical for
data informativeness and thus can significantly affect
the effectiveness of estimation. An important question
thus is how to achieve co-design of the sensing structure
and Bayesian estimation approach toward maximizing
the estimation accuracy. Fourth, Bayesian estimation in
a cyber-physical setting will be an imperative. Standing
at the convergence of computing, communication and
control, cyber-physical systems (CPSs) are a foundati-
onal technology underpinning today’s smart X initiati-
ves. They also present new challenges for estimation,
which include communication constraints or failures,
computing limitations, and cyber data attacks. The cur-
rent research is particularly rare on nonlinear Bayesian
estimation for CPSs. Finally, many emerging industrial
and social applications are data-intensive, thus asking
for a seamless integration of Bayesian estimation with
big data. New principles, approaches and computing
tools must be developed to meet this press need, which
will make an unprecedented opportunity to advance the
Bayesian estimation theory.

APPENDIX

This appendix offers a summary of the properties of
the Gaussian distribution. Suppose z € R" is a Gaussian
random vector with z ~ .#(Z,P;). The pdf of z is
expressed as

p(z) = 1

WO

Some useful properties of the Gaussian vectors are as
follows [98].

1)

~(z-2P '(z-2)").
( )

/ pR)dz =7, / (z-2)(z-2)Tpx)dz=P.,
/d%@&:g+iT (A1)

2) The affine transformation of z, Az+ b, is Gaussian,
ie.,

Az+b~UV<AZ+hAEAT>. (A2)
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3)

4)

(1]

(2]

(3]
(4]
(3]

(6]

(71
(8]

(9]

(10]

(11]

[12]

(13]

The sum of two independent Gaussian random
vectors is Gaussian; i.e., if z; ~ A4(Z;,P;,) and
22 ~ N (Z,P,) and if z; and z, are independent,

then
2+~ N (21 +2,P,+P,). (A.3)

For two random vectors jointly Gaussian, the con-
ditional distribution of one given the other is Gaus-
sian. Specifically, if z; and z, are jointly Gaussian

with
-+ @ %)
<2 <2 1§1zz }22

21|22 ~ JV(Z1 +PZ,ZZPZ;1(Z2 —22),

then

(A.4)

21227 22

Py~ PPy PLL).
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