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Abstract
In this paper, we provide a solution to the HJB equation associated with LQR-type problems
for fully-actuated left-invariant control systems on compact connected Lie groups. We obtain
the corresponding algebraic/differential Riccati equation and in turn generalize some of the
results in to a broader class of Lie groups. Closed-loop stability results are also derived.
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Abstract

In this paper, we provide a solution to the HJB equation associated with LQR-type problems for fully-actuated left-invariant
control systems on compact connected Lie groups. We obtain the corresponding algebraic/differential Riccati equation and in
turn generalize some of the results in [3] to a broader class of Lie groups. Closed-loop stability results are also derived.
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1 Introduction

The Hamilton-Jacobi-Bellman (HJB) equation on
smooth manifolds has received considerable attention
(see, e.g., [1, Chapter 17], [16] and references therein),
yet the HJB equation on Lie groups has not been as
extensively studied. In the literature, the HJB equation
on Lie groups has been considered from both the control
[3,11,12,14,15] and filtering [13] perspectives. Except
for the case of Rn, in general there is no well-known
form for the value function for LQR-type problems on
Lie groups. Some results in this direction have been ob-
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tained for the case of the Lie group SO(3) in [11], which
used the Euclidean distance obtained by embedding
SO(3) in R3×3, and later in [3], which used the geodesic
distance.

In this paper, we provide a solution to the HJB equation
associated with LQR-type problems for fully-actuated
left-invariant control systems on compact connected Lie
groups. 1 We generalize the results of [3], which are ap-
plicable to SO(3), to a broader class of Lie groups. Fur-
thermore, for the special class of discounted-cost infinite-
horizon LQR-type problems, we demonstrate exponen-
tial stability with no restrictions on the discount rate.
Note that this property fails to hold more generally.
Specifically, when there is an inverse of an exponential
function multiplying the state and control costs, it is
possible to have a mode of the closed-loop system that
diverges at an exponential rate slower than half of the
discount rate. For more details, we refer the interested
reader to [6,10].

We remark that even though our generalization is based
on the ideas of [3], our results are not merely a straight-
forward extension of those in that work. In particular, to
obtain these results we need to exploit a much more in-
volved technical machinery. Furthermore, the results ob-
tained in this paper are useful not only from the theoret-

1 Examples of these include SO(n) and Sp(2n).
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ical viewpoint but are also practical; apart from SO(3),
which arises in attitude control problems, the results are
also applicable to SU(2n), which arises in quantum con-
trol problems [14,15]. In addition, they are also useful in
constructing a Lyapunov function for such control sys-
tems.

The classes of optimal control problems (OCPs) that we
consider in this paper are well-defined under the assump-
tion that the optimal trajectory does not encounter any
singularities of the exponential map. This assumption
helps in exploiting the inherent geometric nature of the
problem in an efficient way. For example, the work of
[11,12] considers an LQR-type problem for SO(3) that
is well-defined everywhere, by embedding it in a finite-
dimensional Euclidean space and then using the met-
ric induced from the Frobenius norm. However, this re-
quires the use of a non-differentiable value function, for
which the concept of a viscosity solution associated to
the HJB equation has to be used, as in [12]. For further
discussion, see [3].

1.1 Notation

Most of the notation is standard, with a few exceptions.
We will denote an n-dimensional compact connected Lie
group by G and its Lie algebra by g. The identity ele-
ment of G is denoted by e. The tangent space of G at
g ∈ G is denoted by TgG. The left and right translation
maps on G are denoted by Lg and Rg, respectively. The
tangent map (differential) of Lg at h ∈ G is denoted by
ThLg and the cotangent map (which is defined to be the
adjoint of the tangent map ThLg) is denoted by T ∗

hLg.
The differential of a smooth mapping f : M → N be-
tween two smooth manifolds M and N at x ∈ M is
denoted by d fx. Similarly, the differential of a smooth
mapping f : M × [0, 1] → N (where M and N are
smooth manifolds) at (x, t) ∈ M × [0, 1] with respect to
its first argument is denoted by d1 f(x,t). The exponen-
tial map is denoted by exp and the inverse of the expo-
nential map is denoted by log. The Ad-invariant inner
product (positive definite symmetric bilinear form) on
g is denoted by 〈·, ·〉. The natural pairing between the
tangent and cotangent spaces is denoted by 〈〈·, ·〉〉. The
map ad : g → gl(g) is the adjoint representation of g.
For x ∈ g, the adjoint action of x on g is given by the
endomorphism adx : g → g, with adx(y) = [x, y] for all
y ∈ g, where [·, ·] denotes the Lie bracket.

2 Preliminaries

A fully-actuated left-invariant control system on G is
given by

ġ = TeLg(u), (1)

where g(·) ∈ C1([0, T ], G) and u is a curve in g. More
precisely, if g = span{e1, . . . , en}, then u is given by

u(t) =

n∑
i=1

ui(t)ei,

where the n-tuple of control inputs [u1 · · · un]T is an
element of Rn.

A compact connected Lie group is a connected Lie group
which has a compact Lie algebra. A Lie algebra g is
compact if there exists an ad-invariant inner product
〈·, ·〉 on g, i.e., 〈·, ·〉 satisfies the relationship

〈adx(y), z〉+ 〈y, adx(z)〉 = 0 (2)

for all x, y, z ∈ g. The Ad-invariant inner products on
a Lie algebra are in bijective correspondence with the
bi-invariant metrics on the corresponding Lie group [7,
Proposition 18.3]. Furthermore, in the case where the
Lie group is connected, as is the case for G, an inner
product 〈·, ·〉 on g induces a bi-invariant metric on G if
and only if the linear map adx : g → g is skew-adjoint
for all x ∈ g, i.e., it satisfies the relationship

〈adx(y), z〉 = −〈y, adx(z)〉

for all x, y, z ∈ g [9, Lemma 7.2], which is equivalent
to (2). Therefore, 〈·, ·〉 is Ad-invariant only if it is ad-
invariant and the converse holds since G is connected.

Note that if the Lie algebra of a compact Lie group is
simple, then the bi-invariant metric is unique up to mul-
tiplication by a positive constant [9, Lemma 7.6]. Fur-
thermore, it is also a well-known result in the theory of
Lie algebras that on a compact and semisimple Lie alge-
bra, the Killing form is negative definite. 2 Since simple
Lie algebras are also semisimple, from our above discus-
sion, it now follows that the only possible choice for an
ad-invariant inner product on a compact and simple Lie
algebra is given by the negative of the Killing form up
to a positive multiple.

We present the following results, which will be useful in
proving subsequent results in the paper. They are proven
for the general case of any Lie group, and are similar to
the results of [5, Theorems 2-3].

Theorem 1 LetG be a Lie group and g be its Lie algebra.
For z ∈ C near zero, consider the function

f1(z):=
z

1− e−z
=

∞∑
n=0

(−1)nBn

n!
zk, (3)

2 The Killing form κ(x, y):= tr(adx ◦ ady) is an ad-invariant
(and also an Ad-invariant) symmetric bilinear form on g.
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where {Bn}∞n=0 are the Bernoulli numbers. If g(·) ∈
C1([0, 1], G) is a trajectory of (1) obtained using u, which
never passes through the singularity of the exponential
map, then

ċ = f1(adc)(u) =

∞∑
n=0

(−1)nBn

n!
(adc)

n(u), (4)

where c(t) := log(g(t)).

PROOF. Following the steps of the proof in [8, Lemma
4.27] for any x ∈ g which avoids being a singularity of
the exponential map, it can be shown that

Texp(x)Lexp(x)−1◦d expx =

∞∑
n=0

(−1)n

(n+ 1)!
(adx)

n = f2(adx),

(5)
where f2(z) := f1(z)

−1. Using (5) and again following
the steps in [8, Theorem 4.29], it can now be shown that

Texp(c(t))Lexp(c(t))−1

(
d

dt
exp(c(t))

)
= f2(adc(t))(ċ(t)),

implying that

TgLg−1(ġ) = f2(adc)(ċ).

From (1),

u = TgLg−1(TeLg(u)) = f2(adc)(ċ).

Observe that f1 · f2 ≡ 1. Therefore,

ċ = f1(adc)(u) =

∞∑
n=0

(−1)nBn

n!
(adc)

n(u). 2

We now define the distance between the identity element
e ∈ G and an element g ∈ G as follows

d(e, g) :=
√
〈log(g), log(g)〉, (6)

whenever the inverse of the exponential map log is well-
defined. The distance (6) defines an appropriate metric
because it is closely related to the notion of geodesic dis-
tance. In fact, if γ : [0, 1] → G is a minimizing geodesic,
with γ(0) = g1 and γ(1) = g2, then the geodesic or Rie-
mannian distance between the elements g1, g2 ∈ G is
given by

dg(g1, g2) =

√
〈log(g−1

1 g2), log(g
−1
1 g2)〉, (7)

whenever the inverse of the exponential map log is well-
defined.

Theorem 2 If g(·) ∈ C1([0, 1], G) is a trajectory of (1)
obtained using u, which never passes through the singu-
larity of the exponential map, then

d

dt
d2(e, g(t)) = 〈c(t), u(t)〉. (8)

PROOF. Note that

d

dt

1

2
d2(e, g(t)) =

d

dt

1

2
〈c(t), c(t)〉 = 〈c(t), ċ(t)〉.

Using Theorem 1, we have

〈c, ċ〉 =

〈
c,

∞∑
n=0

(−1)nBn

n!
(adc)

n(u)

〉

= 〈c, u〉+

〈
c,

∞∑
n=1

(−1)nBn

n!
(adc)

n(u)

〉
.

The ad-invariance property of 〈·, ·〉 implies that

〈c, ċ〉 = 〈c, u〉.

Therefore,

d

dt

1

2
d2(e, g(t)) = 〈c(t), u(t)〉. 2

3 Optimal control problems

In this section, we consider two types of LQR-type
OCPs. Both are of the form

min
u

J (9a)

s.t. ġ(t) = TeLg(t)(u(t)), g(0) = g0. (9b)

In the first, we minimize a cost function over a finite time
horizon; in the second, we minimize a cost function over
an infinite time horizon with an exponential discount
rate.

3.1 Finite-horizon LQR-type problem

The cost functional in (9a) is given by

J =
kf
2
d2(e, g(1))

+
1

2

∫ 1

0

[
q(t)d2(e, g(t)) + r(t)〈u(t), u(t)〉

]
dt, (10)

where kf ≥ 0, q(t) > 0, and r(t) > 0 for all t ∈ [0, 1].
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The HJB equation for the OCP (9) is

Vt +min
u

H(g, u, d1 V(g,t)) = 0, V (g, 1) = K(g), (11)

where the pre-Hamiltonian and the terminal cost are
given, respectively, by

H(g, u, d1 V(g,t)) =
1

2
[qd2(e, g) + r〈u, u〉]

+ 〈〈d1 V(g,t), TeLg(u)〉〉, (12)

K(g) =
kf
2
d2(e, g), (13)

and V : G × [0, 1] → R is the value function. Since we
can uniquely write d1 V(g,t) = T ∗

g Lg−1(d1 V(e,t)), using
the invariance of 〈〈·, ·〉〉, we obtain the left-trivialized
pre-Hamiltonian,

H l−t(g, u, d1 V(e,t)) =
1

2
[qd2(e, g) + r〈u, u〉]

+ 〈〈d1 V(e,t), u〉〉. (14)

Using the isomorphism I : g → g∗, determined by 〈·, ·〉,
the minimization of (14) with respect to u yields

u∗ = −1

r
I−1(d1 V(e,t)), (15)

where u∗ denotes the optimal control. We now see that
the HJB equation (11) reduces to

Vt +H l−t,∗(g, d1 V(e,t)) = 0, V (g, 1) = K(g), (16)

where the left-trivialized Hamiltonian is given by

H l−t,∗(g, d1 V(e,t)) =
q

2
d2(e, g)

− 1

2r
〈〈d1 V(e,t), I−1(d1 V(e,t))〉〉.

Theorem 3 The optimal control for the OCP (9) with
cost functional (10), is given by

u∗(t) = −p(t)

r(t)
log(g(t)), (17)

where p(·) ∈ C1([0, 1],R) is the positive solution to the
following differential Riccati equation

ṗ(t)− p(t)2

r(t)
+ q(t) = 0, p(1) = kf , (18)

under the assumption that g(·) ∈ C1([0, 1], G) never
passes through the singularity of the exponential map.

PROOF. Let

V (g, t) =
p(t)

2
d2(e, g). (19)

If g(·) ∈ C1([0, 1], G) is a trajectory of (1) obtained
using u, which never passes through the singularity of
the exponential map, then using Theorem 2,

V̇ = p〈log(g), u〉+ ṗ

2
d2(e, g). (20)

It follows from the discussion after (13) and before (14),
and using the isomorphism I : g → g∗, that

V̇ =
〈
I−1(d1 V(e,t)), u

〉
+

ṗ

2
d2(e, g). (21)

Together, (20) and (21) imply that

d1 V(e,t) = I(p log(g)). (22)

The result follows from the substitution of (22) into (15)
and (16) along with the use of the fact that I : g → g∗ is
an isomorphism determined by 〈·, ·〉 and also using the
specific form of the value function in (19). 2

3.2 Discounted-cost infinite-horizon LQR-type problem

Here we consider the cost functional in (9a) to be given
by

J =
1

2

∫ ∞

0

e−γt
[
qd2(e, g(t)) + r〈u(t), u(t)〉

]
dt, (23)

where γ ≥ 0 is the discount rate, q > 0, and r > 0. The
HJB equation for the OCP (9), with cost functional (23)
reads as follows [2, p. 104], [4, Section 10.1]

−γV +min
u

H(g, u, d1 V(g,t)) = 0, (24)

with the terminal condition

lim
t→∞

V (g(t)) = 0. (25)

It can again be shown that the optimal control is given
by (15), so (24) reduces to

−γV +H l−t,∗(g, d1 V(e,t)) = 0,

where the left-trivialized Hamiltonian is given by

H l−t,∗(g, d1 V(e,t)) =
q

2
d2(e, g)

− 1

2r
〈〈d1 V(e,t), I−1(d1 V(e,t))〉〉.
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Theorem 4 The optimal control for the OCP (9) with
cost functional (23), is given by

u∗(t) = −p

r
log(g(t)), (26)

where p is the positive solution to the following equation

−γp− p2

r
+ q = 0, (27)

under the assumption that g(·) ∈ C1([0,∞), G) never
passes through the singularity of the exponential map.

PROOF. Let

V (g) =
p

2
d2(e, g).

The remainder of the proof follows the steps of the proof
of Theorem 3. 2

Theorem 5 The optimal control (26) ensures exponen-
tial stability of the equilibrium e ∈ G, under the assump-
tion that g(·) ∈ C1([0,∞), G) never passes through the
singularity of the exponential map.

PROOF. Let

V (g) =
p

2
d2(e, g),

be the Lyapunov candidate function for the equilibrium
e ∈ G. Using Theorem 2, we have

V̇ = −p2

r
〈log(g), log(g)〉 = −2p

r
V.

This proves that V is a Lyapunov function and the de-
sired conclusion follows. 2

The following result is specialized for the case where the
discount rate is set to zero.

Corollary 6 Let γ = 0. The optimal control for the
OCP (9) with cost functional (23), is given by

u∗(t) = −
√

q

r
log(g(t)), (28)

under the assumption that g(·) ∈ C1([0,∞), G) never
passes through the singularity of the exponential map.

4 Example

Let us consider the case where G = SO(3). As discussed
in Section 2, since so(3) is compact and simple and,
hence, semisimple, the only possible choice for 〈·, ·〉 is
given by a negative multiple of the Killing form. We
make the following choice

〈x, y〉 = −1

2
tr(xy) (29)

for x, y ∈ so(3). In this case, the exponential map is the
matrix exponential and the inverse of the exponential
map is the matrix logarithm. We now see that Proposi-
tions 1 and 2 in [3] are special cases of Theorems 3 and
4, respectively.

Note that some terms in the results of Theorems 3 and
4 are off by a scalar multiple as compared to the results
in [3]. This is because in [3], the following choice for 〈·, ·〉
is made

〈x, y〉 = − tr(xy)

for x, y ∈ so(3). The choice of 〈·, ·〉 in (29) ensures that, in
addition to being an orthogonal basis, {ei}3i=1 is also an
orthonormal basis. Furthermore, we refer the interested
reader to [3,5,11,12] for details regarding the singularity
of the exponential map.

5 Conclusions

We have provided a solution to the HJB equation as-
sociated with LQR-type problems for fully-actuated
left-invariant control systems on compact connected Lie
groups. The main results obtained in this paper contain
the well known algebraic/differential Riccati equation.
Finally, we have also generalized some of the results in
[3] to a broader class of Lie groups.

References

[1] A. A. Agrachev and Y. L. Sachkov. Control theory from
the geometric viewpoint. Springer Science & Business Media,
2004.

[2] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and
viscosity solutions of Hamilton–Jacobi–Bellman equations.
Springer, 1997.

[3] S. Berkane and A. Tayebi. Some optimization aspects
on the Lie group SO(3). In 15th IFAC Symposium on
Information Control Problems in Manufacturing, volume 48,
pages 1117–1121, 2015.

[4] A. Bressan. Viscosity solutions of Hamilton–Jacobi equations
and optimal control problems, 2011.

[5] F. Bullo and R. M. Murray. Proportional derivative (PD)
control on the Euclidean group. Technical Report 95-010,
Control and Dynamical Systems, California Institute of
Technology, 1995.

5
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