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Abstract
This paper considers speed estimation for contactless electromagnetic (EM) encoder system
with a moving readhead and spatially periodic placed reflectors. We first introduce a new
signal model to capture reflected signals from these spatially periodic placed reflectors. Then
an instantaneous phase-based speed estimator is proposed by using the phase unwrapping
technique followed by a nonlinear least square method for motion-related parameters. The
proposed speed estimator is verified by 1) Monte-Carlo simulations to confirm its statisti-
cal efficiency as the numerical mean squared errors approach to corresponding Cramer-Rao
bounds and 2) a semi-analytical dataset by accounting for real system specificaltions such as
the antenna beampattern, 3-dB beamwidth, and noise.
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Abstract—This paper considers speed estimation for contact-
less electromagnetic (EM) encoder system with a moving read-
head and spatially periodic placed reflectors. We first introduce a
new signal model to capture reflected signals from these spatially
periodic placed reflectors. Then an instantaneous phase-based
speed estimator is proposed by using the phase unwrapping
technique followed by a nonlinear least square method for
motion-related parameters. The proposed speed estimator is
verified by 1) Monte-Carlo simulations to confirm its statistical
efficiency as the numerical mean squared errors approach to
corresponding Cramér-Rao bounds and 2) a semi-analytical
dataset by accounting for real system specificaltions such as the
antenna beampattern, 3-dB beamwidth, and noise.

I. INTRODUCTION

Encoders, e.g., linear encoders, for precise position and/or
speed measurements are required in many applications. The
estimated positions can be used as position values for mea-
suring purposes, and fed back to a position control loop.
Such encoders are accordingly used in devices such as co-
ordinate measuring machines, geodetic devices, robot arms,
radar, sonar, communications, acoustics, optics or hydraulic
actuators. Beside the position measurement, accurate speed
measurement is also highly desired for the contactless encoder
system. Optical, electric conducting (sliding contact) and mag-
netic encoders are commonly used for high accuracy motion
and position measurements in motion control applications such
as auto-tuning drives, smart conveyors, and kit motors [1]–[5].
Here, we consider contactless electromagnetic (EM) encoders,
which provide robust sensing capability of position and motion
in hash operating environments, e.g., moisture, heat, vibration
and smoke.

As shown in Fig. 1, the contactless encoder system normally
consists of a stationary scale and a moving read-head, or vice
versa. The source EM transceivers are mounted on the moving
readhead with a distance of r to the scale platform. Uniformly
spaced reflectors, e.g., rectangular bars, are installed on the
scale platform to constitute a spatial period with an inter-
reflector spacing of h. The position encoding is achieved
by observing the same reflected EM signals at two spatial
positions with a distance of h. A refiner position encoding is
also enabled by detecting a fractional phase change between

Fig. 1. The geometric configuration of linear electromagnetic encoder
systems. The source transceivers are mounted on a moving read-head with
a distance to the scale platform. On the scale platform, uniformly spaced bars
are installed.

two spatial positions (with a distance less than h) with respect
to a full radian period of 2π for a distance of h.

In this paper, we are interested in estimating the speed of
the moving read-head by using the contactless encoder system
with uniformly spaced reflectors. In principle, the speed can
directly be estimated from the relative phase change between
two consecutive samples. However, due to the periodic pat-
tern of the reflectors in the scale, a sinusoidal frequency
modulated (FM) component is also present in the phase of
the reflected signal. Moreover, the sinusoidal FM frequency
is speed-dependent. That is, if the read-head moves faster,
the sinusoidal FM frequency becomes larger. As a result,
the reflected signal is a combination of a polynomial phase
signal (PPS) component to capture the motion of the moving
read-head and a sinusoidal FM component due to the use of
uniformly spaced reflectors.

By taking into account both signal components, we propose
a speed estimator by first extracting the phase information of
the reflected signal, and then using a nonlinear least square
approach to estimate the motion-related phase parameters.
Referred to the phase unwrapping least square (PULS) method,
the proposed estimator is much faster than the optimal max-
imum likelihood estimation (MLE) which requires a multi-
dimensional search over the nonlinear parameter space. It is
further verified with extensive Monte-Carlo simulations and a



semi-analytical dataset with real system specifications.
The remainder of this paper is organized as follows. In

Section II, we begin with a simple scenario when the read-
head moves with a constantly accelerated velocity, and then
generalize the signal model for any arbitrary dynamic motion.
Section III quickly reviews the optimal MLE for the given sig-
nal model and introduces the proposed PULS speed estimator,
which is numerically verified in Section IV. A brief summary
is given in Section V.

II. SIGNAL MODEL FOR CONTACTLESS EM ENCODERS

Given the configuration of Fig. 1, the equivalent baseband
signal reflected from the spatially periodic reflectors on the
linear scale can be written as

x(d) = Ae
j2π

[
d
h+

M∑
m=1

bm sin( 2πmd
h +φm)+ψ0

]
, (1)

where A is the unknown amplitude, d is the axial position
index of the moving read-head, bm > 0 and φm are the
modulation index and, respectively, the initial phase of the m-
th sinusoidal FM component, M is the number of sinusoidal
FM components in the phase, and ψ0 is the initial phase.

On the right side of (1), the first phase term is due to
the fractional phase change proportional to the inter-reflector
spacing of h. Therefore, the moving distance and speed of the
moving readhead can be inferred from the change in the first
phase term. Meanwhile, the second phase term is, induced by
the spatially periodic reflectors, the motion-related sinusoidal
FM component. From (1), we have x(d) = x(d+ lh), where l
is an integer. That is the moving read-head receives exactly the
same waveforms (in the noiseless case) at two axial positions
which are at a distance of (an integer multiple of) h apart from
each other.

A. The Constant-Acceleration Case

With a sampling interval of ∆T and assuming that the
readhead moves at an initial velocity of v0 and a constant
acceleration of a, we can map the position index to the
discrete-time index via d = v0t + at2/2|t=n∆T = v0n∆T +
a(n∆T )2/2, n = n0, · · · , n0 +N−1 with n0 and N denoting
the initial sampling index and the number of total samples,
respectively. As a result, the discrete-time version of the
reflected signal of (1) is given as

x(n) =Ae
j2π

[
(v0∆T )n+(0.5a(∆T )2)n2

h +ψ0

]

× e
j
M∑
m=1

2π

[
bm sin

(
2πm

v0∆Tn+0.5a(∆T )2n2

h +φm

)]
, (2)

which consists a second-order motion-induced PPS (i.e., the
first exponential term on n) and a sinusoidal FM signal,
i.e., the second exponential term. In (2), the sinusoidal FM
frequency is now a function of the motion-related phase
parameter (e.g., v0 and a) of the moving read-head.

B. The Generalized Signal Model

To derive the signal model in (2), we assume that the
read-head moves at a constant acceleration, i.e., d = v0t +
at2/2|t=n∆T = v0n∆T + a(n∆T )2/2. For more dynamic
motions of the read-head, higher-order phase terms appear in
the reflected signal. For instance, if the acceleration is time-
varying, a third-order phase term (on t3) may be required
to model the reflected signal, i.e., d = v0t + at2/2 + gt3/6
where g denotes the acceleration rate. To describe any arbitrary
dynamic motion, we introduce below a generalized coupled
mixture of the PPS and sinusoidal FM signals for the contact-
less EM encoder system

x(n) = Ae
j2π

[
P∑
p=0

apn
p

p! +
M∑
m=1

bm sin(2πmf0(aP )n+φm)

]
, (3)

where the fundamental sinusoidal FM frequency f0 is now
coupled with the PPS phase parameters, aP

4
= [a1, · · · , aP ]T

with ap contributing to the dynamic motion of the read-head,
e.g., a1 is proportional to the initial velocity, a2 is related to
the acceleration, and a3 reflects the acceleration rate. For our
application, f0(aP ) =

∑P
p=1 apn

p−1/p! is a linear function
with respect to the PPS phase parameters aP .

To see how the linear encoder example fits into the coupled
mixture of (3), we can establish the following variable changes
between (2) and (3)

bm = bm, a0 = ψ0, a1 =
v0∆T

h
, a2 =

a(∆T )2

h
, (4)

f0(aP ) =
v0∆T

h
+
a(∆T )2

h
n/2 = a1 + a2n/2,

with a PPS order of P = 2 in (3).

C. Relevance to Existing PPS Models

It is worth noting that the above coupled mixture model
is related to two existing PPS models. One is the pure PPS
model used often in radar, sonar, communications, acoustics
and optics [6]–[9]

x(n) = Ae
j2π

P∑
p=0

ap
p! n

p

(5)

which is a special case of (3) by imposing the FM indices
into zeros, i.e., bm = 0,m = 1, · · · ,M . The other is an
independent mixture of PPS and sinusoidal FM signal, a well-
studied signal model found in applications in pulse Doppler
radar systems [10]–[13]

x(n) = Ae
j2π

[
P∑
p=0

apn
p

p! +
M∑
m=1

bm sin(2πmf0n+φm)

]
, (6)

where the FM frequency f0 is independent of the PPS param-
eters {ap}Pp=1.

With the generalized signal model given in (3), the prob-
lem of interest is to estimate the motion-related parameters
{ap}Pp=1 from a finite number of noisy samples

y(n) = x(n) + v(n), n = n0, n0 + 1, · · · , n0 +N − 1, (7)



where x(n) is given by (3) and v(n) is assumed to be Gaussian
distributed with zero mean and variance σ2. With the estimated
phase parameters {ap}Pp=1, one can recover the motion-related
parameters, e.g., v0 and a, via (4). In certain applications, other
parameters, e.g., A, {bm}Mm=1 and φm, may be of interest.

III. CONTACTLESS SPEED ESTIMATION

We start with a brief review of the maximum likelihood
(ML) estimation which is optimal to the signal model in (3),
and then introduce the proposed PULS estimator which is
computationally more efficient than the ML estimator.

A. Maximum Likelihood Estimator

The ML estimator minimizes the following negative log-
likelihood function [14]

Λ =

∑
n

∣∣∣∣∣∣y(n)−Ae
j2π

[
P∑
p=0

apn
p

p! +
∑
m
bm sin(2πmf0(a)n+φm)

]∣∣∣∣∣∣
2

σ2

(8)

with respect to A, {ap}Pp=0, and {bm, φm}Mm=1. It results
in a multi-dimensional search over (2M + P ) nonlinear
phase parameters of {ap}Pp=1 and {bm, φm}Mm=1

1. To find the
global minimal, the ML estimation in (8) involves a multi-
dimensional search and, hence, is computationally prohibited
from practical applications. It may converge to a local minimal
if the initial guess is far away from the global minimal.

B. Proposed PULS Speed Estimator

The PULS method, on the other hand, is a computationally
lighter approach which first extracts the instantaneous phase
information from the reflected signal, and then estimates
the motion-related parameters from the extracted phase. The
flowchart for the proposed PULS estimator is summarized in
Fig. 2.

1) Step I: Phase Unwrapping: The first step is to extract the
phase of the received signal of (7) and unwrap the extracted
phase using a standard phase unwrapping technique,

φ̂(n) =
∠y(n)

2π
, n = n0, · · · , n0 +N − 1, (9)

=

P∑
p=0

apn
p +

M∑
m=1

bm sin(2πmf0(a)n+ φm) + w(n)

where w(n) is the equivalent noise contribution to the un-
wrapped phase. The phase unwrapping essentially transforms
the original signal samples of y(n) into the phase measure-
ments of φ̂(n) which provide more direct inference on the
phase parameters of interest, e.g., ap and bm.

1A and a0 are referred to as linear parameters.

Fig. 2. The flowchart of the phase-based PULS speed estimator.

2) Step II: Nonlinear Least Square: From (9), it is seen that
the motion-related parameters, i.e., aP = [a1, a2, · · · , aP ]T ,
are present in the unwrapped phase. More precisely, they
appear in both the first term as linear variables and the
second term as nonlinear variables via the sinusoidal frequency
f0(aP ).

To group linear and nonlinear variables in (9), we further
expand (9) as follows

φ̂(n) =a0 +

P∑
p=1

apn
p +

M∑
m=1

bm cos(φm) sin(2πmf0n)

+

M∑
m=1

bm sin(φm) cos(2πmf0n) + w(n), (10)

which can be further expressed in a compact vector form be-
low. Specifically, we group K ≤ N extracted phase values in

(9) into a column vector Φ̂ =
[
φ̂(n0), · · · , φ̂(n0 +K − 1)

]T
.

By defining the following vectors and matrices

AP = [n1,n2, · · · ,nP ], SM = [s1, s2, · · · , sM ],

CM = [c1, c2, · · · , cM ],

t = [a0, b1 cos(φ1), · · · , bM cos(φM ),

b1 sin(φ1), · · · , bM sin(φM )]T , (11)

where np = [np0, · · · , (n0 +K − 1)p]
T , and

sm = [sin(2πmf0(aP )n0), ..., sin(2πmf0(aP )(n0 +K − 1))]
T
,

cm = [cos(2πmf0(aP )n0), ..., cos(2πmf0(aP )(n0 +K − 1))]
T
,

(9) can be rewritten as

Φ̂ = APaP + [1,SM ,CM ]t
4
= APaP + HaP t (12)

where HaP = [1,SM ,CM ] with 1 denoting an all-one vector.
Note that aP appears in (12) not only in a linear form (the
first term) but also in a nonlinear form via SM and CM .



Fig. 3. The measured MSE of the proposed PULS estimator and correspond-
ing CRBs for estimating a2, a1 and a0 from a finite number of samples
N = 512.

With (12), the nonlinear least square approach is to mini-
mize the following cost function with respect to the unknown
parameters aP and t[

âP , t̂
]

= arg min
aP ,t
‖Φ̂−APaP −HaP t‖2. (13)

If aP is known, so is HaP . Then the remaining unknown
parameter t can be estimated in closed form

t̂ =
(
HT

aPHaP

)−1
HT

aP

(
Φ̂−APaP

)
. (14)

Replacing the above estimate of t back to the cost function
of (13), the parameter aP can be estimated by solving the
following cost function

âP = min
aP
‖Φ̂−APaP −HaP t̂‖2

= min
aP

(
Φ̂−APaP

)T
P⊥HaP

(
Φ̂−APaP

)
(15)

where P⊥HaP
= I −HaP

(
HT

aPHaP

)−1
HT

aP is a projection
matrix which projects into the orthogonal complement of the
range space of HaP . With âP and t̂, the phase parameters
are all estimated. Finally, the estimated phase parameters âP
can be mapped back to the motion parameters, e.g., the initial
velocity and acceleration, by using (4).

C. Statistical Bound for Phase Parameter Estimation

In [15], statistical performance bounds in terms of the
Cramér-Rao bound (CRB) on the parameter estimation have
been derived. It reveals that, on one hand, the derived CRB
is dependent on both PPS-related and sinusoidal FM-related
parameters, different from the pure PPS case where the CRB is
independent of the PPS-related parameters. On the other hand,
the derived CRBs for the PPS-related parameters are lower
than their counterparts of the independent mixture model, as
the sinusoidal FM frequency provides additional information
on the PPS-related parameters. In other words, joint estimation
of the motion-related parameters can lead to more accurate
result from the coupled mixture model than the traditional
independent mixture model.

Fig. 4. A semi-analytical simulator with real system specifications such as
the radiation angle, 3-dB beam width, and transmitting beam pattern.

IV. PERFORMANCE EVALUATION

In this section, simulation results are provided to demon-
strate the performance of the proposed PULS speed estimator.
In the noisy scenario, the signal-to-noise ratio (SNR) is defined
as SNR = A2/σ2.

A. Monte-Carlo Validation

We first synthesize a mixture signal of a single sinusoidal
FM component (M = 1) and a PPS with order P = 2,
according to (3), i.e., a constant acceleration model. Other
parameters are A = 1, a0 = 0, a1 = 0.15, a2 = 1.3889 ·10−4,
b1 = 0.05, φ1 = 0, c0 = 0.1 and N = 512. For the
coupled mixture signal of (3), the sinusoidal FM frequency
is determined by f0(a1, a2) = a1 + a2n/2. The ML estimator
is known to achieve the CRB asymptotically, but it involves
a multi-dimensional search (e.g., a four-dimension search on
(a2, a1, b, φ0) when P = 2) and, hence, it is infeasible to
numerically evaluate its mean squared error (MSE). Instead,
we run 500 independent Monte-Carlo simulations to measure
the empirical MSEs of the proposed PULS estimator. Fig. 3
compares the measured MSEs for estimating the motion-
related parameters a2, a1 and a0 with corresponding CRBs.
It is seeen that, when SNR ≥ 19 dB, the PULS estimator is
almost optimal and approaches to the CRB.

B. Performance Evaluation by A Semi-Analytical Dataset

For a more practical evaluation of the proposed speed
estimator, we simulated a high-speed read-head scenario by
using a semi-analytical simulator (see Fig. 4) by accounting for
the spatially periodic reflectors with real system specifications
such as the radiation angle, 3-dB beam width, and transmitting
beam pattern. The added measurement noise leads to the SNR
of 10 dB.

The simulated speed profile is shown in Fig. 5 (a), which
includes one acceleration phase, one deceleration phase and
two constant-velocity phases. The speed estimates from the
proposed method are denoted by blue circles in Fig. 5 (a) and
the red solid line denotes the true speed used in the simulation.
To implement the proposed PULS method, we set the PPS
order of P = 2 in(3) for the received signal over a short



(a) Global speed profile (b) Zoom-in window 1

(c) Zoom-in window 2 (d) Zoom-in window 3

Fig. 5. Simulated speed profile and speed estimation results by the proposed
PULS estimator.

period of 20 ms. Then, the PULS method uses the sampled
signal over a given period, estimates the phase parameters and
then maps these estimates into the speed estimate.

One can inspect the speed estimation results in three time
intervals at [0, 0.5]s, [0.4, 1.1]s and [1.3, 1.8]s, respectively,
in Fig. 5 (b) - (d). It is seen that the proposed estimator can
track the speed in all three (acceleration, deceleration and
constant-velocity) phases. In Fig. 5 (b) and (c), there is an
over-shooting issue during the transition from the acceleration
phase to the constant-velocity phase. The reason is because,
at the transition phase, the sliding window we used to extract
the phase information includes sampled signals from the
acceleration phase and constant-velocity phase and, hence,
there is a model-order change in the signal model of (3), i.e.,
P = 2 of the acceleration phase to P = 1 of the constant-
velocity phase. This over-shooting issue can be addressed
by locating the sampling time where a model-order change
occurs, which will be addressed in the future.

V. CONCLUSION

In this paper, we introduced a new signal model to describe
the reflected signal from spatially periodic reflectors in the
contactless EM encoder system. According to the signal
model, we proposed a phase-based speed estimator which
makes use of the coupled signal model for additional infor-
mation on the speed. The proposed PULS estimator first uses
the phase unwrapping technique and then fits the extracted
phase by the nonlinear least square method to extract the
motion-related parameters. Finally, the proposed estimator is
numerically verified by the Monte-Carlo simulations and a
semi-analytical dataset with real system specifications.
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