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Abstract

The standard framework for using a convolutional neu-
ral network (CNN) for face verification is to compare the
feature vectors taken from the penultimate network layer of
a CNN trained to classify the identity of an input face using
a softmax loss over identities. Feature vectors are typically
compared using the simple L2 distance. We demonstrate
that the L2 distance is not the best distance to use in this
scenario, and propose the hyperplane similarity as a more
appropriate similarity function that is derived from the soft-
max loss function used to train the network. We demonstrate
that hyperplane similarity improves verification results es-
pecially for low false acceptance rates which are usually
the most important operating regimes for real applications.
We also propose a fast algorithm for finding the separating
hyperplanes needed to compute hyperplane similarity.

1. Introduction

In recent years a standard deep convolutional neural net-
work (CNN) architecture for face recognition has emerged
that achieves excellent accuracy on various difficult test sets
[13, 16, 21, 20]. The architecture takes a cropped face im-
age as input and uses a strong baseline CNN such as VGG
[18] or ResNet [7] to compute a feature vector followed by
a fully connected layer that outputs a vector of length C
where C is the number of unique identities in the training
set. The network is trained to minimize the softmax loss
between the output vector and a one-hot encoding of the
correct identity for the input face image. After training, the
final fully connected layer plus softmax function that gives
the probability of each training identity is discarded since
the training identities are not the same as the identities en-
countered during testing. Instead, the output of the layer
before the final fully connected layer is used as a feature
vector. Feature vectors for two testing face images are L2

normalized and compared using a simply L2 distance (or,

equivalently, cosine similarity).
Despite the good results achieved with this basic archi-

tecture [16, 18, 13, 23], there is a fundamental mismatch be-
tween how the network is trained and how it is used during
testing. During testing in which feature vectors are com-
pared using L2 distance, the assumption is that feature vec-
tors for same-face pairs will be close in feature space while
feature vectors for different-face pairs will be farther apart.
However, this property is not being optimized during train-
ing. The property that is being optimized is that feature
vectors for a particular person are linearly separable from
feature vectors for all other people [23]. To address this
mismatch, we propose to compare feature vectors accord-
ing to their distance to hyperplanes that separate one per-
son’s feature vectors from all other person’s feature vectors.
This is in accordance with the training loss.

The basic idea is to use feature vectors for a set of nega-
tive faces, which are simply faces from a variety of different
people, and compute hyperplanes between these faces and
each of the two faces being compared. The sum of the mar-
gins to these hyperplanes from the feature vectors of the
two test faces can then be used in place of L2 distance. We
will call this similarity function hyperplane similarity, and
define it more formally in section 3. The negative faces
can be face images from the training set or a random set of
faces collected from the web, for example. The hyperplane
similarity allows us to achieve a significant improvement in
verification accuracy while using an existing deep network
trained for face identification with the simple softmax loss.
Another advantage of hyperplane similarity is that it natu-
rally extends to comparing sets of images. We will show
test results on the IJB-A face recognition test set [9] which
compares sets of images and videos of a person (called a
template) to other sets.

While the advantage of the hyperplane similarity idea is
accuracy, the main drawback is speed. The straightforward
method to estimate hyperplanes at test time is to use a lin-
ear support vector machine (SVM) solver, but this is much
slower than using L2 distance. To address this drawback,
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we introduce a simple algorithm to compute a separating
hyperplane that does not involve SVM optimization. In our
experiments, this simple algorithm proves to have accuracy
close to the SVM hyperplane with much greater speed.

In the remainder of the paper we will motivate and ex-
plain hyperplane similarity, show that it improves accuracy
on multiple face verification and person re-identification
test sets, and propose an approximation algorithm that com-
putes hyperplanes much faster than SVM while maintaining
improved accuracy compared to L2 distance.

2. Related Work
Recently a number of state-of-the-art papers on face

recognition have used the basic framework sketched in the
last section, namely a CNN with a fully connected last layer
that outputs a probability of each training identity, and is
trained using a softmax loss [13, 21]. Various researchers
have noted the mismatch between the training criteria and
the usage of the penultimate network layer as a feature vec-
tor with distance between feature vectors measured with L2

distance. Most previous work attempts to address this mis-
match by proposing a new loss function for training.

One of the best known alternative loss functions is the
triplet loss [6, 17]. The triplet loss takes an “anchor” face
as well as positive and negative example images of the an-
chor’s identity as an input example. The triplet loss attempts
to minimize the distance between the anchor and positive
feature vectors minus the distance between the anchor and
negative feature vectors. In other words, the triplet loss
explicitely tries to minimize the distance between same-
face pairs while maximizing distance between different-
face pairs. One difficulty with this loss is that the number of
triples of face images for training becomes very large and
some kind of hard-negative mining is needed. Another loss
function, known as contrastive loss [19, 6], has a similar ef-
fect to the triplet loss using a slightly different loss function.

The center loss proposed by [23] attempts to minimize
the distance between a face’s feature vector and the mean
feature vector for the class (the set of face images for a par-
ticular person). Using center loss plus softmax loss tends
to yield clusters of feature vectors for each person that are
compact and separable from other identities.

Three other related loss functions, A-softmax [11] (for
angular softmax), large-margin softmax [12] and L2-
constrained softmax [14] modify the standard softmax loss
function in a way that encourages feature vectors of a par-
ticular identity to cluster near each other.

A different way to formulate the face recognition prob-
lem is to formulate it as a verification problem in which
two face images are given as input and a “Siamese-network”
CNN is trained to predict whether the two face images are
of the same person or different people [21, 19].

All of these various formulations have their advantages

and disadvantages. They represent an alternative to the ap-
proach we take which is to use a CNN trained using stan-
dard softmax loss, but instead change the distance function
used to compare feature vectors.

The only other paper to take a similar approach to ours
(to the best of our knowledge) is an arXiv paper by Cross-
white et al. [3] that uses a technique they call template adap-
tation. While the motivation for their method is different
from ours, the technique of learning separating hyperplanes
to measure the distance between face images (or two sets of
face images) is the same. However, our work differs from
theirs in a number of ways. In addition to our alternative
justification for this formulation, we also demonstrate that
it improves verification accuracy on multiple test sets ([3]
only used IJB-A), and propose a fast approximation algo-
rithm for finding separating hyperplanes.

We should also note that various papers have replaced
the last fully connected layer of a CNN (trained for an im-
age recognition or classification task) with a support vector
machine [8, 22]. However, these are not the same as our
hyperplane similarity function. In these previous papers,
the SVM performed the same function as the last fully con-
nected layer - mapping a feature vector to one of the training
classes. In contrast, the hyperplanes we learn are not used
to classify the input as a training class, but instead are used
to define a similarity function between feature vectors.

3. SVM Face Verification

In this section, we explain the face verification method
using hyperplane similarity and the justification for the al-
gorithm. We also discuss the effect from templates with
multiple images.

3.1. Verification algorithm

For the sake of generality, we explain hyperplane simi-
larity using templates, where a template is a set of one or
more images of a particular person. This is consistent with
the terminology used for the IJB-A test set [9]. Given a pair
of templates P and Q, the goal of the verification problem is
to correctly classify whether they belong to the same iden-
tity or not. The 1:N identification problem is also solved in
a similar way by interpreting it as a combination of N veri-
fication problems and selecting the identity with the largest
similarity score.

To solve the verification problem, we assume a CNN has
already been trained in the standard way (as described in
the introduction) so that a feature vector is produced by the
output of the penultimate network layer. A template, P ,
can then be represented by the set of feature vectors, FP ,
calculated by the CNN for each image in the template. A
hyperplane is calculated to discriminate the feature vectors,
FP , from a set of negative feature vectors, FN , extracted



from a set of negative images, N . N is a set of face im-
ages of many different people. Let Hp be the hyperplane
that separates FP and FN . Hp is defined by a normal vec-
tor, wp, with the same dimensionality as a feature vector
and a scalar offset, bp. All feature vectors are L2 normal-
ized before hyperplane calculation. Similarly, template Q is
represented by feature vectors FQ and hyperplane HQ.

The hyperplane similarity, S(P,Q,N), between two
templates can now be defined.

S(P,Q,N) =
1

2
M(HP , FQ) +

1

2
M(HQ, FP ), (1)

where M(HP , FQ) is the margin between the set of feature
vectors, FQ, and the hyperplane, HP , optimized to separate
Fp from FN . M(HP , FQ) is the average of all the margins
from the n ≥ 1 feature vectors in FQ. More formally,

M(Hp, FQ) =
1

n

n∑
i=1

margin(Hp, FQ(i)) (2)

margin(Hp, FQ(i)) = wp · FQ(i) + bp (3)

where wp is the normal vector for hyperplane Hp, bp is the
offset and FQ(i) is the ith feature vector in set FQ. Note
that the margin between a feature vector and a hyperplane
is the signed distance to the hyperplane, i.e. if a feature
vector is on the “negative” side of the hyperplane defined
by the normal, the margin will be negative.

3.2. Justification for the Hyperplane Similarity

If f is the feature vector for training example x taken
from the CNN layer before the last fully connected layer,
the output of the fully connected layer z is

z = W · f + b (4)

where W is the weight matrix of the last fully connected
layer and f is the vector of biases. z is a vector of length
C representing, for each of the C training identities, the
probability that img x belongs to that identity.

During training, the network parameters are optimized
the softmax loss over all training examples is minimized.
The softmax loss for training example x is near 0 (mini-
mum) when the element of z corresponding to the correct
identity is large (positive) compared to the elements of z
corresponding to the wrong identities (which optimally are
negative). This will occur if Wi (the weights for the ith

output) maps feature vectors of identity i to positive values
and feature vectors of all other identities to negative val-
ues. In other words, the softmax loss is minimized when
the columns of matrix W (along with offsets b) are separat-
ing hyperplanes for each of the different training identities.
This is the motivation for hyperplane similarity, which is to
match the criteria that is optimized during training.

Figure 1. Feature vectors and classification layer weights (=hyper-
planes) are trained to maximize the margin between features and
the corresponding class hyperplane. When L2 distance is used as
a verification metric, negative pair A-B has smaller distance than
positive pair B-C.

It is not guaranteed that the L2 distance between feature
vectors of the same identity is smaller than the distance be-
tween different identities. This can be seen in the example
shown in Figure 1. Features represented by blue circles are
trained to be linearly separable from the features of other
classes (represented by black triangles). In this case, all the
features and the hyperplane satisfy the training criteria, but
the L2 distance of the negative pair A-B is smaller than the
positive pair B-C. For correct verification using L2 distance,
all the features in the same class need to exist in a very tight
area, which does not directly match how the CNN is trained.

Face images in the test set contain identities not seen dur-
ing training and thus separating hyperplanes are not known
for them. However, they can be computed given one or
more feature vectors for a testing identity along with a set
of “negative” feature vectors of other identities.

Multi Image Template Intuitively, the hyperplane can
explain a class’s feature distribution better when more im-
ages are available in the template. To evaluate the im-
provement gained from the multi-image template, Table 3.2
shows the verification result on IJB-A with different tem-
plate subsets. The table contains the true acceptance rate
(TAR) for given false acceptance rates (FAR). One media
uses only one media per template where a media is defined
as either a single photo or a single video clip. Averaged
uses the average of all the feature vectors in the template as
the only positive example for hyperplane estmation. Non-
averaged uses all the template feature vectors as positive
examples for hyperplane estimation. Two different metrics
are compared, L2 distance and hyperplane similarity (HS).
Linear SVM is used for hyperplane estimation.

With both metrics, using averaged features achieved
significantly better accuracy compared with using only
one feature. Moreover, the hyperplane similarity method
achieved a better result with non-averaged features. This re-
sult shows that the hyperplane similarity method can utilize
the feature distribution information from multiple images
for better similarity estimation.



IJB-A Verification (TAR@FAR)
method 0.1 0.01 0.001
l2 norm (one media) 0.834 0.545 0.287
l2 norm (averaged) 0.959 0.830 0.617
HS (one media) 0.828 0.623 0.421
HS (averaged) 0.971 0.905 0.797
HS (non-averaged) 0.980 0.924 0.830

Table 1. Verification result on IJB-A with different subset of the
template.

4. Computation Reduction
To compute the hyperplane that separates features of one

identity from others, the straightforward way is to solve lin-
ear SVM. However, solving SVM for each verification test
is computationally expensive. In this section, we propose a
computationally efficient algorithm to estimate a discrimi-
native hyperplane.

4.1. Discriminative Hyperplane Approximation

The intuition behind our fast method for finding a dis-
criminating hyperplane separating a set of positive and neg-
ative feature vectors is illustrated in Figure 2. For many dis-
tributions of positive and negative feature vectors, the vec-
tor pointing from the mean of the negative feature vectors
to the mean of the positive feature vectors is normal to a
separating hyperplane. Therefore, we set the normal of the
separating hyperplane to the difference between the mean
positive feature vector and the mean negative feature vec-
tor:

w =
1

p

p∑
i=1

FP (i)−
1

n

n∑
j=1

FN (j) (5)

where FP (i) is the ith positive feature vector, FN (j) is the
jth negative feature vector, p is the number of positive fea-
ture vectors, and n is the number of negative feature vectors.

After we have the normal for the separating hyperplane,
we just need the offset which tells the position along the nor-
mal that best separates positive from negative feature vec-
tors. This is done by computing the dot product of each
positive and negative feature vector with the normal vector.
The offset is then set to the average of the minimum positive
dot product and the maximum negative dot product.

b =
1

2
min
i
(w · FP (i)) +

1

2
max

j
(w · FN (j)) (6)

This corresponds to the midpoint between the smallest pro-
jection of positive feature vectors onto the normal and the
largest negative projection. We refer to the hyperplane de-
fined by w and b in equations 5 and 6 as the discriminative
hyperplane approximation (DHA).

Figure 2. Blue circles represent positive feature vectors, black tri-
angles represent negative feature vectors. The white circle is the
mean positive vector and the white triangle is the mean negative
vector. The vector pointing from the mean of positive vector to
the mean negative feature vector usually gives a good normal for
a separating hyperplane. The offset along the normal is then com-
puted as the average of the minumum positive projection and the
maximum negative projection.

In practice, to compute the normal w, we found that L2

normalizing the average positive feature vector (which were
already individually L2 normalized) but not normalizing the
average negative feature vector (which were individually L2

normalized) gave the best results.
This method can fail to find a hyperplane that separates

the positive and negative feature vectors well, although it
will always yield a valid hyperplane. Mainly, the failure
mode occurs when the positive or negative data has a strong
cluster of feature vectors plus some outliers. The strong
cluster will be well separated, but the outliers may not be.

The DHA is very fast to compute and our experiments
will show that it works well in practice.

4.2. Data Reduction

In this section we discuss other methods for speeding
up computation that can be used in conjunction with any
method for computing separating hyperplanes. We discuss
two data reduction methods and combine them with hyper-
plane similarity to validate the effect on the calculation time
and the accuracy.

The first method is to reduce the number of samples in
the negative data. The k negative feature vectors closest
to the mean positive data are extracted from the negative
data by nearest neighbors. Since the SVM computation in-
creases at least quadratically [1] with the number of sam-
ples, this method can greatly reduce the SVM calculation
time. At the same time, until a certain number of nearest
neighbors, this method only eliminates the feature vectors
that do not support the separating hyperplane, and thus have
no influence on the accuracy.

The second method is to reduce the dimension of the fea-
ture space. The principal components are extracted from
the negative data and all feature vectors are projected onto



these principal components. The principal components and
the dimension reduced negative data need only be calcu-
lated once for the verification test. Thereby, the only addi-
tional calculation for testing is the projection of the positive
feature vectors onto the principal components, which is rel-
atively fast.

5. Datasets and Evaluation Protocols

IARPA Janus Benchmark-A (IJB-A) IJB-A [9] is a face
verification and identification dataset, containing images
captured from unconstrained environments with wide vari-
ations of pose and imaging conditions. There are 500 iden-
tities with a total of 25,813 images (5,397 still images and
20,412 video frames sampled from 2,042 videos).

A set of images for a particular identity is called a tem-
plate. Each template can be a mixture of still images and
sampled video frames. The numbers of images (or frames)
in a template ranges from 1 to 190 with approximately 10
images per template on average. There are 10 training and
testing splits. Each split contains 333 training and 167 test-
ing identities. The training data are not used to train the
CNN, but used as the negative data for hyperplane estima-
tion.

As a feature extractor for IJB-A images, we used the
VGG-Face CNN architecture and parameters from Parkthi
et al. [13]. This network produces feature vectors of length
4096. The dataset provides a ground truth bounding box
for each face with 3 landmarks: center of both eyes and a
nose base. For our results, we cropped the images with the
bounding box enlarged by 1.1 from the provided size. No
2D face alignment is applied, since it had a negligible effect
on the accuracy. Input images are first resized to 256x256
and cropped to 224x224 from the image center to match the
CNN input size, and the mean pixel value of the VGG Face
training dataset [13] is subtracted from each pixel.

YouTubeFaces YouTubeFaces[24] is a video-based face
recognition dataset. It contains 3425 videos of 1595 people
collected from YouTube, with an average of 2 videos per
identity and 181.3 frames per video. It contains 10 folds of
500 video pairs. One fold is chosen as test data, while others
are used as the negative data for hyperplane estimation.

As a feature extractor, we used the same VGG-Face
model that we used for IJB-A. The dataset provides a
ground truth bounding box for each face. We cropped the
face with the given bounding box, and did not apply any 2D
face alignment. Input images are resized to 256x256 and
cropped to 224x224 from the image center, and the mean
pixel value of the training data, VGG Face dataset [13], is
subtracted from each pixel.

When testing, all the features from the same video se-
quence are averaged due to computational efficiency. We

also tested sampling multiple frames from the video, and
dividing video frames into subsets of frames and averaging
the features from each subset, but both did not give any im-
provement to the result.

CUHK03 CUHK03 [10] is a pedestrian re-identification
dataset that contains 14,097 cropped images of 1,467 iden-
tities. Each identity is observed by two camera views and
has 4.8 images on average for each view. The dataset pro-
vides two kinds of bounding boxes, automatically detected
and manually labeled. We evaluated our model with the
manually labled bounding boxes. The dataset is randomly
split into test data with 100 identities and train data with
1,367 identities. The experiment is repeated with 10 random
splits. We tested with the multi-shot protocol, where multi-
ple images from one camera view are used as one query.

The ResNet-50 architecture [7] is used as a feature ex-
tractor. We took the parameters pre-trained on ImageNet
[4], and fine-tuned with CUHK03 and Market1501 [27],
which is another re-id dataset. We trained on two similar
datasets to overcome the limited amount of training data in
CUHK03 alone. Images are resized to 224x224 to match
the CNN input size, and the mean image of the ImageNet
data is subtracted from the resized image.

6. Results
In this section, we first show the verification results on

IJB-A, YTF, and CUHK03 using L2 distance as well as hy-
perplane similarity (HS). Results from both linear SVM and
the discriminative hyperplane approximation (DHA) are re-
ported. We evaluate the relation between accuracy and cal-
culation time among the different methods including the ef-
fect of the data reduction methods described in Section 4.2.

6.1. Hyperplane similarity

IJB-A Figure 3 shows the ROC curves (showing true ac-
ceptance rate (TAR) versus false acceptance rate (FAR)) on
the IJB-A dataset for three different verification methods:
L2 distance, and hyperplane similarity using linear SVM
and using DHA. Numbers from the figure are given in Ta-
ble 2 along with calculation times. The table also shows
results from some state-of-the-art methods.

The calculation time is the time spent to calculate the
similarity scores of all the test template pairs. It does not in-
clude the feature extraction time, since all the methods share
the same process. Experiments were processed on the sys-
tem equipped with Intel Xeon CPU (E5-2650 v4/2.20GHz),
256GB memory, and Ubuntu 14.04.4. All the processes
were run with a single core. The algorithms were imple-
mented in Python 2.7.2, and the sklearn package was used
for solving linear SVM.

Both hyperplane similarity methods, SVM and DHA,
achieved better results compared with the L2 distance. The



Figure 3. ROC curves for IJB-A dataset. Both hyperplane similar-
ity methods achieve much better results than L2 distance for lower
false acceptance rates (which are the preferred operating regime).

improvement is greatest for lower FAR rates, which are
more useful in practice. At FAR of 0.001, the true accep-
tance rate increases from 61.7% for L2 distance to 83.0%
(+21.3%) for hyperplane similarity using SVM or 77.7%
(+16%) for hyperplane similarity using DHA. This is a sub-
stantial increase for a face verification system.

Although the result using DHA degrades somewhat com-
pared with SVM, the computation time is significantly less
(from 450.7 seconds for SVM to 27.8 seconds for DHA).
Compared with the state-of-art results, hyperplane similar-
ity achieves comparable results especially considering that
the network was trained with regular softmax loss.

method Verification (TAR@FAR) time
0.1 0.01 0.001 (sec)

L2 distance 0.959 0.830 0.617 9.6
HS+SVM 0.980 0.924 0.830 450.7
HS+DHA 0.971 0.894 0.777 27.8
VGG-Face [13] 0.937 0.805 0.604 -
Crosswhite et al. [3] - 0.939 - -
TPE [15] 0.964 0.900 0.813 -
NAN [26] 0.978 0.941 0.881 -

Table 2. Results on IJB-A dataset. The hyperplane similarity meth-
ods have higher accuracy than L2 distance. The result on DHA
degrades compared with SVM, but the computation speed is sig-
nificantly faster. The hyperplane similarity methods are compet-
itive with the current state-of-the-art results shown in the bottom
part of the table.

YouTubeFaces Figure 4 shows the ROC curve on the
YTF dataset with three verification methods. In Table 3,
TAR for each given FAR, equal error rate (EER), and the
calculation time are reported.

Again, we see that hyperplane similarity is significantly
more accurate than the L2 distance for low false acceptance

rates. For FAR equal to .001, the true acceptance rate in-
creases by about 13 percentage points over the L2 norm for
hyperplane similarity with SVM and by about 10 percent-
age points with DHA. There is not much difference in EER
among the three verification methods since the EER occurs
at a relatively large FAR. Also, as with the results on IJB-A,
the accuracy with DHA degrades compared with SVM but
the computation time is significantly shorter.

Table 4 shows the results from state-of-art methods.
VGG-Face [13] with no embedding learning is using the
exact same CNN feature extractor and distance metric (L2

distance) as we use in our results. We suppose the differ-
ence in our results is caused by a difference in the 2D face
alignment and the frame selection within a video sequence.
Unfortunately, other papers do not report TAR and FAR on
this dataset.

Figure 4. ROC curves for YTF dataset. Both hyperplane similarity
methods achieve higher accuracy for lower FAR.

method EER TAR@FAR time(sec)
0.1 0.01 0.001

L2 distance 0.899 0.893 0.678 0.470 0.3
HS+SVM 0.892 0.888 0.738 0.604 89.6
HS+DHA 0.893 0.885 0.694 0.569 0.7

Table 3. Results on YTF dataset. Once again, hyperplane similar-
ity is significantly more accurate than L2 distance for low FAR.
Using DHA greatly improves speed over SVM with a modest loss
of accuracy.

CUHK03 Figure 5 shows the ROC curves on the
CUHK03 dataset with three verification methods. In Table
5, the TAR for given FAR, rank-1 identification accuracy,
and the calculation time are reported. Since CUHK03 is an
identification problem, one probe identity is compared with
100 gallery identities. TAR is calculated by regarding them
as 100 verification problems.



method EER ACC
VGG-Face* [13] 0.928 0.916
VGG-Face [13] 0.974 0.973
NAN [26] - 0.957
FaceNet [16] - 0.951
SphereFace [11] - 0.950
L2 distance 0.899 0.905
HS+SVM 0.892 0.908
HS+DHA 0.893 0.902

*Result without embedding learning.

Table 4. Comparison with state-of-art results on YTF dataset. TAR
for low FAR, for which hyperplane similarity works well, cannot
be directly compared since other methods do not report these num-
bers. EER and ACC measures emphasize higher FAR, for which
hyperplane similarity does not improve over L2 distance.

For each hyperplane similarity method, results with two
different negative sets are reported. One is the gallery
data of the test set. The other is a subset of the training
data. From the training data, we only used images from the
gallery camera view, and discarded images from the probe
camera view.

The results on CUHK03 are similar to results on YTF,
where both hyperplane similarity methods achieve better
TAR accuracy with FAR lower than 0.1, but the improve-
ment over L2 distance is smaller than with YTF.

Using gallery data as the negative set yields better accu-
racy compared to using training data in this case. By using
the gallery data, the hyperplane estimation can take advan-
tage of the latent information in the distribution of the can-
didate identities. The usage of this approach (negative data
= gallery) is limited to applications in which a fixed and
reasonably large gallery set can be defined such as for face
identification applications, but not typically for face verifi-
cation applications.

Table 6 shows the results from the state-of-art methods.
True acceptance rates for low false acceptance rates cannot
be directly compared since they are not reported by most of
the methods.

method rank1 TAR@FAR time
0.1 0.01 0.001 (sec)

L2 distance 0.743 0.963 0.782 0.460 0.9
HS+SVM (train) 0.758 0.968 0.821 0.501 137.5
HS+SVM (gal) 0.741 0.963 0.838 0.567 17.2
HS+DHA (train) 0.759 0.971 0.816 0.464 5.1
HS+DHA (gal) 0.741 0.977 0.843 0.476 2.7

Table 5. Results on CUHK03 dataset. The SVM method has
higher accuracy for lower FAR, but the improvement over L2 dis-
tance is smaller than with the other two datasets.

Figure 5. ROC curves on CUHK03 test set for L2 distance and
both hyperplane similarity methods. Once again, we see improve-
ments over L2 distance mainly for lower false acceptance rates.
Improvements are greatest when the gallery set is used as the neg-
ative set for hyperplane estimation.

method rank1 rank5 rank10
Zheng et al. [28] 0.883 0.957 0.978
Deep Transfer Learning [5] 0.854 - -
LSRO [29] 0.846 0.976 0.989
CRAFT [2] 0.843 0.971 0.983
Domain Guided Dropout [25] 0.805 0.949 0.971
L2 distance 0.743 0.963 0.973
HS+SVM (train) 0.758 0.968 0.966
HS+SVM (gallery) 0.741 0.963 0.959
HS+DHA (train) 0.759 0.971 0.972
HS+DHA (gallery) 0.741 0.977 0.971

Table 6. State-of-art results on CUHK03 dataset. Hyperplane sim-
ilarity is mainly effective at improving TAR for low FAR and not
at improving rank-N recognition rates. Unfortunately, results on
CUHK03 typically only report rank-N recognition rates.

6.2. Data Reduction

To evaluate the relation between accuracy and calcula-
tion time, we experimented with two data reduction meth-
ods on the IJB-A dataset: PCA and nearest neighbors (NN).
With PCA, results are reported with the feature dimension
reduced to d = 32, 64, 128, 256, 512, and 1024. With NN,
results are reported with the number of negative feature vec-
tors reduced to 32, 64, 128, 256, 512, and 1024. For both
data reduction methods, we tested using both hyperplane
estimation methods: SVM and DHA. The calculation time
does not include the feature extraction, the calculation of
principal components, nor the time of dimension reduction
of the negative data, since all the methods share the same
process or need to be processed only once before the eval-
uation. Figure 6 is the plot of the TAR for FAR=0.001 and



Figure 6. The verification accuracy and the calculation time on IJB-A with negative data reduction.

the calculation time for all the experimental results. Table 7
shows some of the results in detail.

SVM+NN with K=256 achieved the best accuracy of all
experiments, 83.5%, and reduced 74.3% of the computa-
tion time compared with using all the data. When NN is
performed with SVM, it does not reduce accuracy until a
certain point, 256 in this case, since it only eliminates the
negative data that do not support the hyperplane anyway.

The accuracy of SVM+PCA gradually decreases as the
number of dimensions gets smaller, due to the lower ex-
plained variance. Most results are inbetween the SVM (all
data) and DHA (all data) results considering both verifica-
tion accuracy and the calculation time.

DHA+PCA with d=1024 gave a small benefit for
both accuracy and calculation time. The combination of
DHA+NN had a longer calculation time compared with us-
ing all the negative data, since the NN calculation time was
larger than what was reduced by data reduction.

As a whole, the combination of the hyperplane calcula-
tion method and the data reduction method gives a range of
options to trade-off between accuracy and calculation time.
The suitable option should be selected depending on the re-
quirements of the application and the system setup.

method TAR@FAR time
0.1 0.01 0.001 (sec)

L2 distance 0.959 0.830 0.617 9.6
HS+SVM 0.980 0.924 0.830 450.7
HS+SVM (NN K=256) 0.980 0.923 0.835 116.1
HS+SVM (PCA d=512) 0.979 0.924 0.829 134.7
HS+DHA 0.971 0.894 0.777 27.8
HS+DHA (NN K=128) 0.971 0.907 0.809 119.4
HS+DHA (PCA d=1024) 0.972 0.898 0.786 22.1

Table 7. Results on IJB-A dataset with data reduction.

6.3. Discussion

The IJB-A dataset showed the biggest improvement in
accuracy using hyperplane similarity compared to YTF and
CUHK03. The major difference between these datasets are
the separability of two templates in the feature space.

An IJB-A template consists of images from multiple
randomly-selected media. Therefore, two same-identity
templates include a wide variety of imaging conditions and
are more likely to have large overlap in the distributions of
their feature vectors. The estimated hyperplanes for each
template will be more similar and achieve high hyperplane
similarity. On the other hand, YTF is a verification be-
tween two video sequences, each video containing frames
that are very similar to each other and thus contain less
variety. This implies that two videos of the same person
are less likely to have overlapping feature vector distribu-
tions. As a result, two templates from the same person are
likely to be more separable in feature space implying that
the hyperplane similarity will be smaller. It is similar with
CUHK03, in which the probe and gallery are always from
different camera views. However, for all the datasets we
experimented on, hyperplane similarity achieved higher ac-
curacy for low FAR compared with L2 distance. Very low
FAR is preferred in most verification applications such as
export control and building security.

7. Conclusion
We have shown that using hyperplane similarity is an

effective method to improve the accuracy of a previously
trained CNN for face verification or person re-id. We
demonstrated a fast algorithm for computing separating hy-
perplanes that is much faster than solving a linear SVM
problem without sacrificing much accuracy. We also ex-
plored the speed versus accuracy trade-off using two data
reduction methods. These techniques allow researchers to
improve the accuracy of existing networks while taking into
account computational efficiency.
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