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Abstract
We present direct multichannel tracking, an algorithm for tracking the pose of a monocu-
lar camera (visual odometry) using high-dimensional features in a direct image alignment
framework. Instead of using a single grayscale channel and assuming intensity constancy as
in existing approaches, we extract multichannel features at each pixel from each image and
assume feature constancy among consecutive images. High-dimensional features are more
discriminative and robust to noise and image variations than intensities, enabling more ac-
curate camera tracking. We demonstrate our claim using conventional hand-crafted features
such as SIFT as well as more recent features extracted from convolutional neural networks
(CNNs) such as Siamese and AlexNet networks. We evaluate the performance of our algo-
rithm against the baseline case (singlechannel tracking) using several public datasets, where
the AlexNet feature provides the best pose estimation results.
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Abstract

We present direct multichannel tracking, an algorithm
for tracking the pose of a monocular camera (visual odome-
try) using high-dimensional features in a direct image align-
ment framework. Instead of using a single grayscale chan-
nel and assuming intensity constancy as in existing ap-
proaches, we extract multichannel features at each pixel
from each image and assume feature constancy among con-
secutive images. High-dimensional features are more dis-
criminative and robust to noise and image variations than
intensities, enabling more accurate camera tracking. We
demonstrate our claim using conventional hand-crafted fea-
tures such as SIFT as well as more recent features ex-
tracted from convolutional neural networks (CNNs) such
as Siamese and AlexNet networks. We evaluate the perfor-
mance of our algorithm against the baseline case (single-
channel tracking) using several public datasets, where the
AlexNet feature provides the best pose estimation results.

1. Introduction

Visual odometry and simultaneous localization and map-
ping (SLAM) are an important building block for several
applications, such as robot navigation, autonomous driving,
and augmented reality. The majority of conventional ap-
proaches are based on sparse feature extraction and match-
ing [6, 18]: They extract sparse features from each image,
match them among images with RANSAC, and triangulate
correspondences to obtain 3D landmarks, which are fur-
ther matched with the subsequent images. Recently, direct
methods that do not require sparse feature extraction have
emerged [26, 10, 8, 12]: They are based on direct image
alignment that matches dense or semi-dense pixels between
images assuming intensity constancy. Although these meth-
ods demonstrated impressive results, raw intensity values
are not discriminative and matching them has difficulties in
weakly textured scenes and due to big illumination changes.

∗This work was done while interning at MERL.

In this paper, we propose direct multichannel tracking,
which extends the existing direct method using a single in-
tensity channel by using multichannel features extracted at
each pixel. We use conventional hand-crafted features such
as SIFT [21] and features extracted from convolutional neu-
ral networks (CNNs) [19, 33]. These features are computed
on a patch around each pixel and contain more context than
the single pixel. Thus, they are more discriminative than
intensities and can match even with large image variations.
Moreover, direct methods mainly use pixels with large gra-
dients, i.e., edges, as valid 3D landmarks. The number of
edges is limited in single-channel intensity images, thus
existing approaches have difficulties in weakly textured
scenes. On the other hand, the multichannel features can
have gradients in a wider variety of regions (e.g., blob re-
gions for SIFT, regions that match the convolutional filter
shape for CNNs), increasing the number of valid 3D land-
marks and leading to better tracking accuracy. We demon-
strate these advantages of our algorithm in experiments us-
ing several public benchmark datasets [13, 28, 16, 8, 11].

1.1. Related work

1.1.1 Visual odometry and SLAM

MonoSLAM [6] and PTAM [18] were earlier examples of
real-time SLAM systems based on the sparse feature extrac-
tion and matching. Those approaches have been sophisti-
cated and demonstrated state-of-the-art performance in sev-
eral practical scenarios [25, 24]. Direct methods [26, 10, 12]
have been proposed as an alternative to the sparse-feature-
based approaches. They do not extract features, but rather
directly use raw intensity values and minimize the photo-
metric errors of corresponding pixels for estimating depth
maps and camera poses. Newcombe et al. [26] used an en-
tire set of pixels and implemented a real-time camera track-
ing and dense depth reconstruction system on GPU. Engel
et al. [10] showed that using semi-dense pixels that have
non-negligible gradients (i.e., edges) is sufficient for accu-
rate camera tracking in real-time. Forster et al. [12] used
patches around sparse keypoints with direct alignment to
estimate an initial camera pose, which was further refined



using sparse-feature-based bundle adjustments.
Engel et al. [8] demonstrated large-scale direct SLAM

(LSD-SLAM), which incorporated the semi-dense visual
odometry algorithm [10] into a SLAM framework with
keyframe selection and global pose graph optimization to
reconstruct large-scale 3D models. Engel et al. [7] also ex-
tended [10] by using window-based bundle adjustment that
jointly minimizes the photometric errors in multiple con-
secutive images. A multi-level mapping approach to LSD-
SLAM was proposed by Greene et al. [14] such that cor-
respondence search can take place at coarser resolutions
in order to fill up holes in the depth map and improve the
tracking accuracy. Note that those extensions are orthogo-
nal to our extension using multichannel features: Our al-
gorithm can be easily incorporated into the LSD-SLAM
framework [8] with global pose graph optimization and
window-based bundle adjustment [7] and multi-level map-
ping [14]. Hence, in this paper, we evaluate our algorithm
using multichannel features with respect to the baseline al-
gorithm using the single-channel intensities [10].

As concurrent work, Park et al. [27] evaluated the robust-
ness of direct camera tracking under illumination changes
with descriptor fields [5] which separate the intensity gra-
dients (computed via a kernel) into 4 channels based on
their respective signs. They also evaluated simple scalar
local descriptors such as the gradient magnitude and the
more sophisticated census transform [32], both of which
were observed to perform well for the real-world dataset
[30] evaluated upon. Alismail et al. [1, 2] presented the
use of Bit-Planes as a binary multichannel feature for direct
visual odometry. The Bit-Planes feature is a simple 8-bit
binary feature descriptor extracted on a small patch of 3×3
pixels by comparing the central pixel to its 8 surrounding
neighbors via a boolean operator such as “>”. Their pa-
per mainly focused on feature description speed and light-
ing robustness, while our paper shows that the use of multi-
channel features can improve tracking accuracy for general
real-world sequences. In fact, we also provide direct com-
parisons between the Bit-Planes feature and our features.

1.1.2 Feature-based dense correspondences

SIFT flow [20] was a pioneering work for using multichan-
nel features instead of intensities to obtain dense correspon-
dences between images. They extracted SIFT features at
each pixel from each image and used the feature distances as
the data term in a discrete optimization framework to obtain
dense optical flow fields. Features extracted from convolu-
tional neural networks (CNNs) have been recently used in
such a framework instead of the conventional hand-crafted
features for stereo [34, 33, 4, 23] and optical flow [15]
problems. Those CNNs, commonly referred to as Siamese
networks, generate a high-dimensional feature vector from

each image patch, and are trained such that similar image
patches produce similar features. The features are matched
with each other using the L2 distance or another neural net-
work, and the matching distances are fed into a discrete op-
timization framework to obtain smooth results. Note that
these existing approaches explicitly match the features by
searching for the minimum feature distance. In contrast,
the tracking part of our algorithm is based on a differential
method that implicitly finds the matching features based on
their gradient, which is rooted in the seminal Lucas-Kanade
optical flow algorithm [22]. Moreover, to the best of our
knowledge, our paper is the first attempt to use pixel-wise
CNN features for the visual odometry problem.

2. Direct multichannel tracking
This section describes the proposed direct multichannel

tracking algorithm and the multichannel features used with
it. Our method is built upon the semi-dense visual odom-
etry algorithm [10] and implemented from the source code
publicly released as a part of the LSD-SLAM system [8].
We thus follow their notation and mainly describe our ex-
tensions that replace the single intensity channel with mul-
tichannel features.

2.1. Multichannel feature extraction

Our algorithm first extracts an N -dimensional feature
F (pi) for each pixel location pi from the input single-
channel intensity image I or 3-channel color image C.
Such features are more discriminative than the original in-
tensity or color of the pixel alone since they are com-
puted on a patch around the pixel and include more con-
text from the surrounding pixels. In this paper, we use
SIFT [21] as a conventional hand-crafted feature, in ad-
dition to learning-based features obtained from two pre-
trained CNNs [19, 33].

2.1.1 Dense SIFT feature

SIFT has been considered one of the most robust features
under several image variations including scale, in-plane ro-
tation, and illumination changes. Liu et al. [20] exploited
it to compute dense optical flow fields under large image
variations. We follow their approach and obtain pixel-wise
SIFT descriptors. Specifically, we adapted the code from
[20] to compute the 128-dimensional SIFT descriptors at a
single scale (original image resolution) and without com-
puting the dominant orientation direction.

2.1.2 CNN features

With the recent progress of deep learning, data-driven fea-
ture extraction based on CNNs are shown to have better per-
formance than hand-crafted ones, in both high-level (object



detection, classification, etc.) and low-level (stereo match-
ing, optical flow, etc.) computer vision tasks. Instead of
using a fixed feature transformation such as SIFT, learning-
based methods search among a large functional space of
feature transformations for one that generalizes well to dif-
ferent cases using a large amount of training data.

One type of CNNs, such as the above-mentioned
Siamese networks [34, 33, 4, 23, 15], was designed and
trained specifically for the low-level vision task of patch
matching: They take an image patch as the input in or-
der to output a high-dimensional feature vector suitable for
matching. These CNNs follow the same design concept as
SIFT, describing a pixel on the image with its neighbor-
hood information using a fixed-dimensional vector, i.e., a
feature descriptor. Meanwhile, another type of CNNs, such
as AlexNet [19], was designed and trained for high-level
vision tasks over a whole image. It has been shown that
the respective layers’ outputs (i.e., features) form a hier-
archy, where low layers correspond to corners and edges,
middle layers to textures, and high layers to class-specific
patches [35]. In particular, the low layers use convolutions
over local image patches and act as a filter bank, from which
we extract low-level features.

We used two representative CNNs among those two
types: the “siam” network from [33] (which we refer to as
Siamese from here on) and AlexNet [19]. We used publicly
available pre-trained weights with certain modifications to
properly apply them to our problem:

Siamese feature: The original Siamese network was
designed to work with single-channel (grayscale) image
patches of 64×64 pixels as the input, and a 256-dimensional
feature vector as the output for each image patch. We for-
ward propagated the 64 × 64 patch centered around each
pixel location of the input image, and then composed all the
outputs into an H ×W × 256 feature map.

AlexNet feature: We used the first convolution layer
“conv1” followed by a rectified linear unit (ReLU) to obtain
an H×W ×96 feature map. To make the output resolution
the same as the input resolution, we changed (1) the original
input resolution of 227 × 227 pixels (for 3 color channels)
to H ×W , and (2) for “conv1,” changed the original stride
of 4 to 1 and used zero-padding of size 5, while maintaining
the kernel size of 11. Note that these modifications do not
affect the learned convolution kernel weights.

2.2. Camera pose tracking

In the baseline single-channel algorithm [10, 8], the pose
of the current image I with respect to a reference image
Iref is estimated by assuming the intensity constancy and
minimizing a photometric error between the two images.
Specifically, given Iref and its inverse depth map estimate
Dref , the photometric error for V (≤ HW ) points is

E(ξ) =

V∑
i=1

(
Iref(pi)− I(ω(pi, Dref(pi), ξ))︸ ︷︷ ︸

=:ri(ξ)

)2
, (1)

where ξ is a 6-vector representing the pose of the current
image I with respect to the reference image Iref in Lie al-
gebra se(3), and ω is the 3D projective warp function that
maps the pixel location pi in the reference image accord-
ing to its inverse depth Dref(pi) and the pose ξ to the pixel
location in the current image. Starting from an initial pose
estimate ξ(0), the pose ξ is iteratively updated via the pose
concatenation operator ◦ such that

ξ(n+1) = δξ(n) ◦ ξ(n), (2)

where the incremental update δξ(n) at the nth iteration is
estimated using the Levenberg-Marquardt (LM) method

δξ(n) = −A−1JTr, A = JTJ, J =
∂r(ε ◦ ξ(n))

∂ε

∣∣∣∣∣
ε=0

.

(3)
Here, J is the Jacobian matrix computed for the stacked
residual vector r = (r1, . . . , rV )

T of pixels in V using the
current pose estimate ξ(n). The diagonal components of A
are multiplicatively adjusted by a 1 + λLM factor.

In our algorithm, we assume feature constancy, instead
of intensity constancy, and replace the photometric error (1)
with the feature-based error

E(ξ) =

V∑
i=1

∥∥F ref(pi)− F (ω(pi, Dref(pi), ξ))︸ ︷︷ ︸
=:ri(ξ)

∥∥2
, (4)

where F and F ref are the N -dimensional feature maps for
the current and reference images, respectively. Note that
each residual ri is now anN -dimensional vector (instead of
a single value ri), and thus we use the squared L2 norm to
compute a per-pixel error. The feature-based error (4) can
be minimized iteratively over the same equation (3) with the
new stacked residual vector r = (r1

T, . . . , rV
T)

T, which is
N times larger than the original one. J can be constructed
by stacking N Jacobian matrices of size V × 6 computed
independently for each of the N channels. Note that the
entire (NV ) × 6 matrix J is never stored, but rather each
row of the linear system is accumulated in the 6 × 6 ma-
trix JTJ and the 6-vector JTr(ξ(n)) on the fly. Thus this
multichannel extension does not increase the memory size
requirement; the computational cost still increasesN times,
but the computation can be easily parallelized.

In practice, the baseline algorithm [10, 8] evaluates the
photometric error (1) only on a semi-dense set of V points
whose pixel projections lie within the image bounds and
whose gradient magnitudes are larger than certain threshold



gth. For each of the valid pixels, the gradient magnitude
and the inverse depth variance estimate [17, 10] are used
as weight criteria, and the Huber norm is used as a robust
metric under the presence of noise and outliers [8]. In our
multichannel algorithm, we compute a single gradient mag-
nitude by averaging over the N channels. Except for this
extension and the use of the feature-based error (4), our al-
gorithm is implemented upon the same techniques as for the
baseline single-channel case.

2.3. Inverse depth map estimation

The baseline algorithm uses the latest keyframe selected
in the SLAM framework [8] as the reference image and
maintains the inverse depth map estimate on the reference
image. Given the pose estimate of the current image with re-
spect to the reference image, the inverse depth map estimate
is updated as follows. For each of the valid pixels (exis-
tent or newly-observed) in the reference image, the epipolar
line is computed on the current image and then a correspon-
dence search is performed along the epipolar line, whose
search interval is limited by the current variance estimate of
the inverse depth of the reference pixel. In the single chan-
nel case, the sum-of-squared-differences (SSD) error over
five equidistant neighboring points along the epipolar line
is deemed as the matching cost. Then, the inverse depth is
updated according to the best matching pixel location with
sub-pixel interpolation. In our algorithm, we replace the
SSD error between the intensities with the squared L2 norm
error between the N -dimensional features. Again, except
for this extension, we use the same set of techniques em-
ployed in the baseline single-channel implementation.

2.4. Feature scaling

Generally the values of the N -dimensional feature vec-
tors can be distributed in any range (they might be nor-
malized to [0, 1], or they might take arbitrary real values),
which is implementation dependent. Theoretically this is
not a problem, because only relative values are important
for computing the feature distances and gradients in the
camera pose tracking and inverse depth estimation. How-
ever, in practice, several parameters are set by assuming a
predetermined range of values (e.g., [0, 255] for the single
intensity channel of the baseline algorithm). In particular,
we found that the gradient magnitude threshold, gth, used
to determine the set of V valid pixels and the density of the
inverse depth map as a consequence, is an influential pa-
rameter, which depends on the range of the values.

Instead of tuning such parameters for each feature, we
normalized each feature with a scale factor obtained as fol-
lows. Our goal was to use all the default parameters set by
the authors of the baseline algorithm [10, 8] for the single
intensity channel ranging between [0, 255]. Simply normal-
izing the maximum feature value to become 255 did not per-

form well, because the distributions of the intensity values
and feature values were different and such a normalization
made the feature gradients of too many pixels close to zero.
We instead used an approach that matches the average num-
ber of the semi-dense pixels having gradient magnitudes
larger than the threshold gth between the single-channel
intensity and the N -channel features. In order to achieve
fair quantitative comparisons during our experiments, we
obtained a single global scale factor for each multichannel
feature (SIFT, Siamese, and AlexNet) by computing the av-
erage number of valid pixels across several images sampled
throughout the datasets as a preprocessing step. We refer
to the scale factor obtained this way as the “default feature
scale” since it maintains the original parameters established
by the authors of the baseline algorithm [10, 8] regardless
of the feature employed in the experiment.

3. Experiments
We performed experiments on five publicly available

datasets of monocular image sequences summarized in Ta-
ble 1. We evaluated the pose estimation accuracy for our
algorithm using different multichannel features, including
SIFT, Siamese, and AlexNet, for comparison against the
baseline algorithm that only uses the grayscale intensity.
For completeness, we also evaluated (1) the “Affine Light-
ing Model” for grayscale (denoted as Gray-A here) that was
described in [9] but used as implemented in the source code
accompanying [8], and (2) the Bit-Planes feature [1, 2], both
of which were designed to be robust to illumination varia-
tions. With the KITTI, ICL-NUIM, and Tsukuba datasets,
we also tested tracking under RGB and Lab color spaces,
acting as trivial multichannel features.

To obtain consistent results, we removed randomness
from the original LSD-SLAM implementation by (1) dis-
abling the threading mechanisms and (2) using the same set
of random values for different methods to initialize the in-
verse depth map D at t = 0. As described in Section 2.4,
we determined the default feature scales globally during a
preprocessing step, and we used the same set of parame-
ters from the original LSD-SLAM implementation [8]. Fea-
ture scales for Bit-Planes, SIFT, Siamese, and AlexNet were
9.77, 0.68, 347.50, and 1.23, respectively.

3.1. Evaluation criteria

The relative pose error (RPE) [30, 13] and the absolute
trajectory error (ATE) [30, 16] have been common evalu-
ation metrics for visual odometry algorithms using stereo
or RGB-D cameras, where the pose can be computed with-
out the scale ambiguity. However, due to the inherent scale
ambiguity of monocular visual odometry, these metrics can-
not be directly used and require some modifications. ATE,
which is based on the global registration between the en-
tire ground truth and estimated trajectories, is hard to assess



Dataset Name # Seqs Color Res. FPS Type (Ground Truth) Environment Other characteristics
TUM DSO [11] 50 Gray SXGA 50 Real (VICON) In/Out-doors Hand-held motion, scene and illumination variety.
KITTI Odometry [13] 11 RGB ∼WXGA 10 Real (GPS+IMU) Outdoors (roads) Fast motion, low frame rate, long paths
ICL-NUIM [16] 8 RGB VGA 30 Synthetic (Yes) Indoors Photorealistic, short paths
Tsukuba (New) [28] 4 RGB VGA 30 Synthetic (Yes) Indoors Photorealistic, single path, quick turns, various illumination modes
LSD-SLAM [8] 4 Gray VGA 50 Real (None) In/Out-doors Hand-held motion, short and long trajectories
Table 1. Datasets. The first 4 were used for quantitative evaluation. LSD-SLAM was only used for 3D reconstruction comparison.

with because of the scale ambiguity; even if we estimate the
scale with a similarity transformation between the trajecto-
ries, there is the scale drift problem [29, 8] that is difficult to
solve in pure visual odometry algorithms without a SLAM
framework. In fact, ATE has a bias toward shorter tracking,
as it tends to be low if the number of tracked frames (one of
our evaluation criteria) is small. RPE does not have the bias
and can also measure the drift.

We thus used slightly modified versions of RPE for
the quantitative evaluation. Given a sequence of poses
as the transformation matrices from the estimated trajec-
tory P1, . . . ,PT and that from the ground truth trajectory
Q1, . . . ,QT , the relative poses between a pair of images
(i, j) can be obtained as Pij = P−1

i Pj and Qij = Q−1
i Qj

for the estimated and ground truth trajectories, respectively.
We compute two types of error metrics between the pair of
images (i, j) as follows:

RPE rotation error: For the error in the rotation com-
ponent, we first obtain the difference between the rotation
matrices as ∆Rij = R(Qij)

T
R(Pij), where R(·) takes

the rotation matrix of the transformation matrix. We then
compute the rotation error as the angle of ∆Rij :

θ∆Rij
= arccos

(
(Tr (∆Rij)− 1)

2

)
. (5)

RPE translation angle error: For the error in the trans-
lation component, we compute the angle between the trans-
lation vectors taken by t(·) as follows:

θ∆tij = arccos

(
t(Qij)

T
t(Pij)

‖t(Qij)‖‖t(Pij)‖

)
, (6)

which is independent of the scale ambiguity.
For each sequence, we computed these error metrics for a

set of 8 uniformly-divided path lengths as in [13]. Since we
used different datasets, the longest path length was consid-
ered an arbitrary ratio rl of the entire path length. We used
rl = 1

3 for TUM DSO and ICL-NUIM, whereas rl = 1
20

for KITTI and Tsukuba. We then computed the average of
the rotation and translation angle errors normalized by their
respective path lengths as the overall errors, each of which
was used to rank the feature’s pose estimation accuracy ac-
cording to the standard competition ranking (“1224”). We
also ranked the features according to the number of frames
successfully tracked because different features diverge at
different frames and because some frames may not be reg-
istered with ground truth information.

Feature
Tracked Frames Rotation Error Trans. Ang. Error
Wins
Count

Average
Ranking

Wins
Count

Average
Ranking

Wins
Count

Average
Ranking

Gray 21 2.76 3 3.58 7 3.24
Gray-A 21 2.60 3 3.62 4 3.40

Bit-Planes 15 3.18 3 4.40 5 4.14
SIFT 20 2.82 12 3.18 6 3.72

Siamese 0 5.54 10 3.72 4 4.06
AlexNet 37 1.74 19 2.50 24 2.44

Table 2. Experimental rankings for the TUM DSO dataset.

Feature
Tracked Frames Rotation Error Trans. Ang. Error
Wins
Count

Average
Ranking

Wins
Count

Average
Ranking

Wins
Count

Average
Ranking

Gray 2 4.64 1 3.09 2 3.27
Gray-A 2 4.64 2 3.09 2 2.36

Bit-Planes 6 1.91 0 6.36 0 6.82
SIFT 11 1.00 0 6.73 0 7.36

Siamese 0 7.27 1 5.36 0 5.27
AlexNet 0 7.00 1 5.73 1 5.09

RGB 2 3.73 2 2.73 3 2.45
Lab 8 1.45 4 2.91 3 3.36

Table 3. Experimental rankings for the KITTI dataset.

Feature
Tracked Frames Rotation Error Trans. Ang. Error
Wins
Count

Average
Ranking

Wins
Count

Average
Ranking

Wins
Count

Average
Ranking

Gray 4 3.25 1 4.75 2 4.25
Gray-A 3 2.88 0 4.38 0 4.62

Bit-Planes 5 2.62 1 3.50 2 3.00
SIFT 4 4.38 3 2.62 3 3.12

Siamese 3 4.12 0 5.62 0 4.75
AlexNet 2 2.75 0 5.88 0 5.75

RGB 3 2.62 2 3.62 1 4.38
Lab 0 7.50 1 5.62 0 6.12

Table 4. Experimental rankings for the ICL-NUIM dataset.

Feature
Tracked Frames Rotation Error Trans. Ang. Error
Wins
Count

Average
Ranking

Wins
Count

Average
Ranking

Wins
Count

Average
Ranking

Gray 0 4.00 1 3.75 0 4.00
Gray-A 0 4.25 0 6.25 0 4.25

Bit-Planes 0 3.00 3 2.00 1 4.25
SIFT 3 2.00 0 5.00 0 6.00

Siamese 0 6.75 0 5.25 0 6.75
AlexNet 0 5.75 0 6.50 2 3.25

RGB 1 4.00 0 3.50 1 3.00
Lab 1 5.75 0 3.75 0 4.50

Table 5. Experimental rankings for the Tsukuba dataset.

3.2. Quantitative results

Due to space limitations, we only present a handful
of experimental results that convey the claim of improved
tracking accuracy by means of direct multichannel tracking.
Figure 1 shows the average rotation error plots for the first
6 sequences of the TUM DSO dataset. The brackets in the
legends specify the number of frames that were successfully
tracked. All missing plots are given in the supplementary
materials, including translation angle evaluations.

Tables 2, 3, 4, and 5 summarize the collected global met-



Figure 1. RPE rotation evaluation for the first 6 sequences of the TUM DSO dataset. In general, tracking of the single channel (“Gray”) is
less accurate than the proposed multichannel features.

Average Metric
Feature

Gray Gray-A Bit-Planes SIFT Siamese AlexNet

Number of Tracked Frames 2336 2604 2095 2361 636 3131
RPE Rotation Error

[
degree
meter

]
7.44 7.31 13.73 8.17 8.10 6.14

RPE Trans. Ang. Error
[
degree
meter

]
18.05 16.06 38.02 21.86 20.90 12.93

ATE [meters] 0.38 0.46 0.45 0.37 0.07 0.65

Table 6. Overall averages among the 50 sequences from the TUM DSO dataset.

rics for each dataset in terms of ranking. We counted the
number of winning instances (first place rankings), and we
also computed the ranking averages for every ranking cri-
teria (number of tracked frames and pose estimation error
metrics) of each participating feature across all sequences
in that given dataset. All sequence-wise average errors as-
sociated with these rankings are included in the supplemen-
tary materials. Since TUM DSO is the largest dataset we
evaluated upon, Table 6 contains its overall averages due
to number of tracked frames and RPE’s normalized compo-
nents, where the accuracy trend of the proposed multichan-
nel features can be verified. From these plots and tables, it is
clear that the dense SIFT feature can succesfully track long
trajectories. On the other hand, AlexNet and Siamese fea-
tures are capable of improving the pose estimation accuracy
over the baseline method. In particular, the AlexNet feature
was a clear winner for the TUM DSO dataset, achieving
smaller errors and tracking larger numbers of frames (fewer
tracking failures) on average when compared against the
others. Nevertheless, the compared Bit-Planes have a ten-
dency toward accurate tracking under challenging illumina-

tion conditions as confirmed by the experiments under the
Tsukuba dataset (Table 5) although we see that AlexNet and
RGB seem better according to the translation angle RPE
metric. Interestingly, the Siamese feature (trained specifi-
cally for low-level patch matching) did not perform better
than the AlexNet feature (trained for a high-level classifica-
tion task). A possible explanation is that the receptive field
of the Siamese network (64 × 64 pixels) was too large for
the tracking task due to occlusions and non-fronto-parallel
planes compared to that of AlexNet (11 × 11 pixels). The
need for small neighborhood descriptors was also noticed in
[1]. For the ICL-NUIM dataset (Table 4), the SIFT feature
performed the best in terms of accuracy, but the Bit-Planes
and baseline methods performed equally well. This is be-
cause the ICL-NUIM dataset is synthetic and the intensity
constancy holds throughout the sequences. Although the
evaluation rankings for the KITTI dataset (Table 3) seem in-
conclusive, we must notice that these sequences do not sat-
isfy the motion continuity required for direct tracking due
to the low camera rate and high vehicle speeds. Our ex-
periments agreed that although the basic color spaces (RGB



(a) Intensity image at t = 150 (b) Point cloud using Gray (baseline case) (c) Point cloud using AlexNet

Figure 2. 3D point cloud comparison for the Room sequence from the LSD-SLAM dataset. Observe the higher accuracy achieved via the
AlexNet features for reconstructing furniture, books, computer monitor, among other objects.

(a) Color image at t = 0 (b) Point cloud using Gray (baseline case) (c) Point cloud using AlexNet

Figure 3. 3D point cloud comparison for the Office Seq. No 00 from the ICL-NUIM dataset. AlexNet features produced a denser and
more accurate reconstruction. For example, the computer desks, file cabinets, and ceiling regions are better aligned for the most part.

and Lab) could be more discriminative than the grayscale
channel, they do not contribute much to tracking accuracy,
because their support is still a single pixel, not a local image
patch as it is the case for our multichannel features.

Despite the disadvantages of ATE as described above, we
measured ATE as the average frame distance after aligning
trajectories with the best 7-degree-of-freedom transforma-
tion (scale, rotation, and translation) obtained with [31]. For
example, the overall ATE averages for TUM DSO are given
in Table 6, and the complete results are given in the supple-
mentary materials, where we also observe a trend for our
multichannel methods outperforming grayscale. Although
the Siamese feature appears to win, it registered much fewer
frames, showing the aforementioned bias inherent in ATE.

3.3. Qualitative results

A qualitative advantage of employing high-dimensional
features while tracking is the increased density of the re-
constructed depth maps (Section 2.3). Figures 2 and 3 ex-
emplify the improved 3D reconstruction accuracy due to
tracking on AlexNet features in comparison to the base-
line case. Observe how the multichannel features produced
denser and more precise 3D point clouds in this couple of
examples. In the supplementary materials, we include more

results obtained from the ICL-NUIM dataset as well as for
the Room, Machine, and ECCV sequences from the LSD-
SLAM dataset. Even though the LSD-SLAM dataset did
not provide positional ground truth data, we considered it
for qualitative comparisons due to real-life long paths that
appeared in the original LSD-SLAM manuscript [8]. Figure
4 compares the depth map activation D625 among feature
cases (reference keyframes may not be the same) from the
Machine sequence. We observe the number of negative
depth points (white) is reduced for the multichannel cases.

3.4. Toward real-time implementation

A limitation of our approach is the reduced processing
speed: Compared to the baseline single-channel case, multi-
channel feature generation followed by multichannel track-
ing requires an additional processing time. Table 7 (top)
shows average processing times of the feature generation
and tracking stages for different methods, measured on a
standard PC with an Intel R© CoreTM i7-4790K CPU @ 4
GHz and an NVIDIA R© GeForce R© GTX 1080 GPU. Note
that the feature generation stage also accounts for file I/O,
undistortion, and cropping times. Out of our proposed fea-
tures, AlexNet provides the fastest speed of ∼ 2 fps, yet
slower than the baseline single-channel case at ∼ 33 fps.



(a) Gray (baseline case) (b) SIFT (c) AlexNet

Figure 4. Depth maps for the Machine sequence at t = 625 (negative depth shown in white).

Figure 5. Performance analysis for the AlexNet features after di-
mensionality reduction. The total time is significantly reduced
while the higher accuracy is maintained (for most instances) when
compared against the grayscale baseline tracking algorithm.

Feature Generation Tracking Total
(ms) (ms) (ms) (fps)

Gray (1D) 1.0 × 101 2.0 × 101 30 33
Gray-A (1D) 1.0 × 101 2.1 × 101 31 32

Bit-Planes (8D) 2.0 × 101 1.2 × 102 140 7
SIFT (128D) 5.3 × 102 7.4 × 102 1270 1

Siamese (256D) 8.0 × 103 1.0 × 103 9000 1
9

AlexNet (96D) 7.9 × 101 4.3 × 102 509 2

R
e
d
u
c
e
d

AlexNet-64D 6.1 × 101 2.7 × 102 331 3
AlexNet-32D 4.0 × 101 1.5 × 102 190 5
AlexNet-16D 2.9 × 101 7.6 × 101 105 10
AlexNet-8D 2.4 × 101 3.6 × 101 60 17
AlexNet-4D 2.2 × 101 2.3 × 101 45 22
AlexNet-2D 2.1 × 101 2.1 × 101 42 24
AlexNet-1D 2.0 × 101 2.0 × 101 40 25

Table 7. Average times sampled from the TUM DSO dataset.

Toward real-time direct multichannel tracking, we im-
plemented a simple solution by reducing the original 96-
dimensional AlexNet feature to K dimensions using prin-
cipal component analysis (PCA). Similar to the computa-
tion of the default feature scale (Section 2.4), we computed
the AlexNet features on several images sampled through-
out the dataset and obtained PCA basis vectors as a prepro-
cessing step. For online processing, we implemented the
linear transformation using the basis vectors as a 3D convo-
lution with a 1× 1 kernel at the end of the AlexNet feature

extraction on the GPU. Table 7 (bottom) shows the results
using different number of dimensions K. Note that the fea-
ture generation time decreases as K decreases, despite the
fact that the feature reduction step is an additional process
to the original AlexNet feature generation. This indicates
that the majority (about 3/4) of the original AlexNet fea-
ture generation time was spent on data transfer from GPU
to CPU, which is now alleviated by reducing the feature di-
mensions on the GPU. As expected, the tracking time also
decreases as K decreases. Figure 5 shows the total average
errors (normalized by path length) against the average to-
tal processing times for different K, demonstrating that our
current approach provides a tradeoff between the process-
ing speed and the accuracy. Instead of using a pre-trained
network and a separate PCA step, we believe that training
the network with the reduced feature dimension end-to-end
will produce a better tradeoff curve in our future work.

4. Conclusion
We presented an algorithm for direct multichannel track-

ing by using high-dimensional features in a direct image
alignment framework for monocular visual odometry. We
used the conventional SIFT feature and the more recent
CNN features. We employed publicly available datasets
to demonstrate that our algorithm, which uses these mul-
tichannel features, can provide better pose estimation ac-
curacy than the baseline method using only the intensity
(grayscale) channel. Our algorithm is orthogonal to sev-
eral existing works extending the semi-dense visual odom-
etry [10]: It can be used in a SLAM framework [8] or with
a window-based bundle adjustment [7] for better accuracy
and globally-consistent reconstruction, and it can work with
different camera models such as stereo [9] and omnidirec-
tional cameras [3]. We plan to unify our framework so fea-
tures can be generated in a way that is optimal for tracking
time and accuracy under different circumstances instead of
using PCA-based dimensionality reduction heuristics.
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