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Abstract
T-spline has been recently developed to represent objects of arbitrary shapes using a smaller
number of control points than the conventional NURBS or B-spline representations in com-
puter aided design, computer graphics, and reverse engineering. However, existing methods
for fitting a T-spline over a point cloud are slow. By shifting away from the conventional iter-
ative fitand-refine paradigm, we present a novel split-connect-fit algorithm to more efficiently
perform the T-spline fitting. Through adaptively dividing a point cloud into a set of B-spline
patches, we first discover a proper topology of T-spline control points, i.e., the T-mesh. We
then connect these B-spline patches into a single T-spline surface with different continuity
options between neighboring patches according to the data. The T-spline control points are
initialized from their correspondences in the B-spline patches, which are refined by using a
conjugate gradient method. In experiments using several types of large-sized point clouds, we
demonstrate that our algorithm is at least an order of magnitude faster than state-of-the-art
algorithms while provides comparable or better results in terms of quality and conciseness.
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Abstract

T-spline has been recently developed to represent objects of arbitrary
shapes using a smaller number of control points than the conventional NURBS
or B-spline representations in computer aided design, computer graphics, and
reverse engineering. However, existing methods for fitting a T-spline over a
point cloud are slow. By shifting away from the conventional iterative fit-
and-refine paradigm, we present a novel split-connect-fit algorithm to more
efficiently perform the T-spline fitting. Through adaptively dividing a point
cloud into a set of B-spline patches, we first discover a proper topology of
T-spline control points, i.e., the T-mesh. We then connect these B-spline
patches into a single T-spline surface with different continuity options be-
tween neighboring patches according to the data. The T-spline control points
are initialized from their correspondences in the B-spline patches, which are
refined by using a conjugate gradient method. In experiments using sev-
eral types of large-sized point clouds, we demonstrate that our algorithm is
at least an order of magnitude faster than state-of-the-art algorithms while
provides comparable or better results in terms of quality and conciseness.
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1. Introduction

In recent years 3D point clouds of objects or environments can be readily
acquired by various sensors such as consumer-grade depth cameras (most no-
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Figure 1: We present an algorithm for efficiently fitting a T-spline surface to a 2D-
parameterized point cloud. From left to right: an input raw point cloud obtained with
a Kinect sensor; a result obtained with KinFu by fusing multiple point clouds; our result
obtained by fitting a T-spline surface to the single input point cloud; and a 3D visualiza-
tion of our surface fitting result where the knot lines of the T-spline are superimposed on
the mesh model. Our algorithm enhances the quality of point clouds similar to KinFu but
by using only a single point cloud.

tably Kinect), stereo cameras, and LIDARs. However these large amount of
point cloud data are rarely directly useful for many downstream applications,5

including reverse engineering, 3D modeling, and 3D printing. Usually they
need to be further processed and compactly represented to be CAD-compliant
parametric models. Only after this conversion can they be systematically
edited and improved in those applications more easily, compared to direct
operations on meshes from raw point clouds. Besides, having parametric10

models often enables better and smoother normal estimation on those point
clouds, which in many cases is necessary for better rendering in visualization.

B-spline or NURBS surfaces have been the industry-standard CAD-compliant
models [1]. By refining knot vectors and adjusting control points, they can
be used to represent arbitrarily complex scenes. However since such a ten-15

sor product surface representation requires each row of the control mesh to
have the same number of control points, it only allows the so-called global
refinement of knot vectors. This often results in many redundant control
points when representing a complex scene, which can decrease both the fit-
ting speed and the efficiency of many subsequent operations on the model.20

T-spline [2, 3] and its variations [4, 5, 6] have been proposed to address
such shortcoming. By allowing T-junctions in the control mesh, this type
of models enables local knot refinement to avoid superfluous control points.
Due to this significant improvement and its backward compatibility with the
industry-standard NURBS, it has been widely accepted in the design com-25

munities and applied to different research areas from isogeometric analysis [7]
to multi-view stereo [8].

2



Using T-spline models to fit 3D data points is non-trivial, even after data
parameterization, which is itself an ongoing research topic and is out of the
scope of this paper. Two problems need to be addressed essentially: (1) How30

to find a proper T-mesh, i.e., the topology of control points in the parametric
domain of a T-spline; (2) How to find the optimal 3D positions of all control
points in that T-mesh efficiently. Existing T-spline fitting methods [9, 10, 11],
which will be discussed later, follow the same strategy as in the classical
NURBS fitting: iteratively alternate between (1) topology refinement and (2)35

control point fitting. However, unlike a NURBS control mesh which is fully
connected and thus allows efficient separable fitting from the two parametric
direction sequentially [1], a T-spline loses such benefit due to the T-junctions
in its T-mesh, and its control points have to be fitted with all data points
at once. This makes the control point fitting step computationally expensive40

when we have large data size and large number of control points.
In this paper, we focus on how to rapidly and accurately fit a T-spline

to a 2D-parameterized point cloud. During the fitting, we assume a fixed
data parameterization, i.e., each data point has a fixed 2D parameter. For
an organized point cloud obtained from sensors such as Kinect and stereo45

camera, this parameterization can be identical to its image index, and thus
the T-mesh lives on its image domain. For an unorganized point cloud gen-
erated, e.g., by registering multiple measurements, this parameterization can
be given by mapping 3D points onto a plane or sphere.

Our core contribution is a novel fast T-spline fitting strategy using a50

bottom-up approach to avoid conventional iterative fit-and-refine paradigm:
Instead of finding a global T-mesh using all the data points in a top-down
iterative manner as in the existing methods, we first divide a point cloud into
a set of local regions and fit a simpler B-spline patch for each local region. The
local B-spline patches are then connected with different continuity options55

according to the data and used to define the global T-mesh. The local B-
spline patches are also used to initialize the control points of the T-spline
surface, which are finally refined by using a conjugate gradient method. With
this strategy, our algorithm, FasTFit, achieves near real-time performance on
VGA-sized Kinect point clouds, which is an order of magnitude faster than60

existing state-of-the-art methods that we are aware of.

3



2. Related Work

In this section, we briefly review algorithms for fitting B-spline, NURBS,
and T-spline surfaces. For all of those parametric models, an important pre-
processing step has to be done for assigning 2D parameters to each data65

point, referred to as the data parameterization step. Traditionally, uniform,
chord-length, and centripetal parameterizations have been widely applied
due to their simplicity and effectiveness [1]. There exist more sophisticated
parameterization methods to further improve final fitting results, such as
mean value coordinates [12], a neural network based method [13], and a cur-70

vature based method [14]. There is also a method avoiding parameterization
by introducing active contour model for evaluating fitting error [15].

As mentioned in the introduction, we assume that our input point clouds
have been parameterized, as is assumed in the prior work [1, 9, 16]. Our strat-
egy is not limited to specific parameterization methods, but we use simpler75

approaches for faster computation. Since most sophisticated parameteriza-
tions are time consuming, we believe it is reasonable to bear with slightly
more control points in trade of faster computations.

2.1. B-spline and NURBS Fitting

There are mainly two strategies for fitting B-spline or NURBS surface.80

The first one, as mentioned above, always starts from a simple control mesh,
performs global knot refinement at the area with large fitting error, solves
the optimal positions of all control points, updates data parameterization if
necessary, and then repeats this process until the fitting error becomes small
enough [17]. The second one, which is less popular, reverses that procedure85

by starting from an over-complicated mesh and iteratively simplify it by knot
removal [1].

Besides the two traditional strategies, there are a few other methods
trying to avoid the iterative control mesh refinement. For example, the multi-
level B-spline [18, 19, 20] adaptively partitions the point cloud into a quad-90

tree structure and fits a B-spline on the fitting residual of each quad-tree level;
instead of spending time in the iterative mesh refinement, these methods can
directly fit B-splines from coarse to fine levels. Another interesting method
has been recently developed which applies level set to capture data topology
and then sequentially fits the data into quadrilateral meshes, Catmull-Clark95

subdivision surfaces, and finally B-spline surfaces [21]. These B-spline fitting
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methods are similar to our method in a way that the time consuming mesh
refinement and re-fitting are avoided for faster computation.

2.2. T-spline Fitting

As a brief review, a degree d T-spline equation is similar to the NURBS
formulation, which represents each T-spline surface point Q(u, v) ∈ R3 with
associated parameters u and v as a combination of all control points Ck ∈
R3, k = 1, · · · , K, as follows

Q(u, v) =

∑
k wkT (u, v;Uk, Vk)Ck∑
k wkT (u, v;Uk, Vk)

, (1)

where Uk and Vk are the local knot vectors in R2d−1 associated with the k-th100

control points, T : R×R→ R is the T-spline blending function taking u, v as
input variables and Uk, Vk as function parameters, and wk is the weight for
each control point. We enforce wk = 1,∀k in this work to focus on standard
T-splines which are polynomial instead of rational. Details of this function
can be found in [2, 3]. Details of an efficient implementation of T-spline data105

structure can be found in [22].
Since T-spline was developed based on B-spline and NURBS, the existing

T-spline fitting algorithms follow the conventional iterative B-spline fitting
strategy described above. Fitting a z-map to T-spline [11] was probably the
first T-spline fitting work. It followed the same strategy as in B-spline fitting110

except for changing the global knot refinement to T-spline enabled local knot
refinement. However as its authors mentioned, this algorithm is too time-
consuming, thus not suitable for large-sized point clouds (e.g., VGA-sized
Kinect point clouds). Several methods have been proposed with the similar
strategy to convert a scanned triangular [23] or quadrilateral mesh [24] into a115

T-spline. The computation time reported in these works ranges from 1 to 15
minutes for point cloud sizes close to VGA. Recently periodic T-spline has
been proposed as a variation of the original T-spline for fitting tubular sur-
faces [25], unfortunately no computation time reported. The above strategy
also showed in a T-spline based surface skinning method [26], which firstly120

fits B-splines on each row of scanned data and then iteratively refine knot
lines between each row. Unfortunately no computation time was reported in
the paper as well. Even if this method may be efficient, due to their similar-
ity to the separable B-spline fitting that goes over data points row by row, it
would be most suitable for data that are sparse in one direction and dense in125
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the other direction. Thus it is not suitable for Kinect-like dense point clouds,
as too many redundant control points will be produced. Another recent T-
spline fitting method with the conventional strategy takes data curvature
into consideration when refining the T-mesh, so as to allocate more control
points at feature rich areas [10]. Although again no computation time was130

reported for this work, it is reasonable to assume a slow speed when data
size grows, since that same iterative strategy was employed.

Note that none of these discussed T-spline fitting methods are designed to
enable fast computation on large-sized point clouds. On one hand this is be-
cause of the iterative nature of the adopted conventional fitting strategy. On135

the other hand, the fact that T-spline is not a tensor product surface further
slows down the computation, since solving the least squares fitting equation
now has to be done with all data and control points together. A detailed
study investigated both direct Cholesky and Gauss-Seidel methods for solv-
ing such fitting equations [17]. Later a progressive method was proposed and140

compared with Gauss-Seidel, Conjugate Gradient (CG), and Preconditioned
CG (PCG) methods, showing its speed advantages for solving such fitting
equations [9]. Although this new solver is shown to be fast regardless of the
number of control points, due to the use of that conventional strategy, the
total fitting time reported in that paper was still very long, e.g., 3 minutes145

for fitting a T-spline in the RGB space over a 512 × 512 Lena image.
Since existing methods are either slow for certain downstream applica-

tions, or not suitable for large-sized dense point clouds, fast T-spline fitting
on a Kinect-like VGA sized point cloud is indeed a non-trivial and challenging
task, not to mention that the raw data we are dealing with could have much150

poorer quality (e.g., raw Kinect scanning point clouds) than high-quality
point cloud data used in the above works.

3. FasTFit Algorithm

Algorithm 1 shows an overview of our FasTFit algorithm, consisting of
the following steps:155

FitBezierPatchAdaptive First, the input point cloud is adaptively di-
vided into a set of B-spline/Bézier patches, according to a prescribed
fitting error threshold. Each of these patches corresponds to a rectan-
gular sub-domain in the input data parameter domain.
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Algorithm 1 Fast T-spline Fitting

1: function FasTFit(F)
2: B ← FitBezierPatchAdaptive(F)
3: (U,V, Tmesh)← InferLocalKnotVector(B,F)
4: C← SolveControlPoint(B, Tmesh,U,V,F)
5: return (C,U,V)

InferLocalKnotVector Second, these sub-domains are composed into a160

T-mesh with different connection options, depending on both a pre-
scribed final model continuity and data continuities at shared edges
of neighboring patches. This determines the number of control points
and allows the inference of their corresponding local knot vectors to
generate a T-mesh.165

SolveControlPoint After finding this fixed T-mesh, we finally solve a large
sparse linear system for obtaining the optimal control points using PCG
initialized with the Bézier patch fitting results.

Before explaining the details of each step, we note again that in this paper
we focus on point clouds with fixed parameterization. In our implementation,170

for an organized point cloud (either depth images or z-map data), we use a
simple uniform parameterization, since many 3D sensors’ raw output can be
easily organized into a set of 2D indexed 3D points F = {pi,j ∈ R3; i =
1, · · · ,M, j = 1, · · · , N}, where the 2D indices (i, j) and (i± 1, j ± 1) reflect
the 3D proximity relationship between corresponding points unless there are175

depth discontinuities. Thus our parameterization of each data point directly
becomes its 2D index (i, j), i.e., Q(i, j) on the fitted T-spline surface from
Eq. (1) corresponds to the data point pi,j [27]. For an unorganized point
cloud F , we use PCA-based parameterization, i.e., F = {(pi;ui, vi), pi ∈
R3, ui ∈ R, vi ∈ R; i = 1, · · · ,M} where the (ui, vi) parameters as the input180

variables to Eq. (1) for each 3D point pi are obtained by projecting pi onto
the plane spanned by the two eigenvectors corresponding to the two largest
eigenvalues [16].

Note that this formulation is also applicable to partial regions in a pa-
rameterized point cloud; we can optionally use pre-segmentation of an input185

point cloud and apply our algorithm to each segment.
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3.1. Adaptive Patch Generation

Conventional T-spline fitting algorithms always approximate the input
point cloud starting from a simple B-spline or Bézier surface. Then the
control mesh is locally refined at places with large fitting errors by inserting190

more control points into the mesh. After this mesh refinement, all input data
points are used again to refine the new set of control points. This means that
at each mesh refinement iteration, every single data point will be accessed
for a new least squares fitting. For large-sized point clouds with many fine
details, such mesh refinement and least squares fitting have to be performed195

many times so as to achieve a reasonable balance between a high fitting
accuracy and a small number of control points. Thus it is difficult for such
conventional T-spline fitting strategy to achieve fast computation.

It is interesting to note that any T-spline surface can be always converted
to a set of independent B-spline or more simply Bézier surfaces, by using200

repeated knot insertion at each knot line until its multiplicity equals to the
order of the underlying B-spline basis functions, i.e., d + 1. This inspires
us to think in the reverse procedure: why not adaptively divide the input
points into smaller patches until each of them can be well represented by a
simple B-spline with fixed knot vectors, or even by a Bézier patch? Once205

that is done, we only need to compose all such patches together into a single
T-spline with proper continuity at the shared knot lines, i.e., boundary of
each patch in the parameter domain.

This leads to our adaptive patch generation described in Algorithm 2.
Based on our notation, for unorganized point clouds, Domain(F), [min{ui},210

max{ui}] × [min{vi},max{vi}]; for organized point clouds, Domain(F),
[1,M ] × [1, N ]. Similar to [9], we uniformly split the entire input domain
into several regions by the InitSplit function, to avoid unnecessary initial
patch fitting. In our implementation, we always start with 4× 4 blocks.

The FitBezierPatch function takes all data points within the domain r to
fit a Bézier patch b defined on that r. This is done by solving the following
equation using either standard QR or Cholesky factorization [1]:

P? = arg min
P
‖ BP−Q ‖2F +λ ‖ SP ‖2F . (2)

Here each row of P represent a Bézier control point. Input data points within215

region r are stored in each row of Q, and the (i,j) entry of the B matrix stores
the j-th control point’s Bézier basis function value evaluated at the parameter
of the i-th data point in r. Note that unlike fitting B-spline, there is no need
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Algorithm 2 Generate Bézier Patches Adaptively

1: function FitBezierPatchAdaptive(F)
2: B ← ∅
3: R← InitSplit(Domain(F))
4: for each r , [umin, umax]× [vmin, vmax] ∈ R do
5: R← R \ r
6: b← FitBezierPatch(r,F , d)
7: if b is ∅ then continue

8: if NeedSplit(b) and CanSplit(r) then
9: {r0, r1} ← Split(r)

10: R← R ∪ {r0, r1}
11: else
12: B ← B ∪ {b}
13: return B

to determine knot vectors for Bézier patches. Thus B only depends on the
size of the region r. Sometimes the FitBezierPatch function cannot perform220

the least squares fitting due to rank deficiency of B. This usually occurs at
small regions with large detail variations, or regions with too many missing
data. We either return an empty fit b and ignore the corresponding r, or
add linear constraints S between control points with trade-off parameter λ
to make the above system rank sufficient. Example constraints can be either225

simply forcing neighboring control points to be close to each other, or more
sophisticated ones to suppress wiggling fit as explained in [17].

The NeedSplit function can use different criteria to determine whether
or not b is a bad fit and thus needs to be further split into smaller parts.
If the input data is known to have the same isotropic error everywhere,230

then this function can check the L∞ fitting error with a prescribed thresh-
old. Otherwise, for example, for Kinect data which is known to have depth-
dependent errors, this function can check the fitting error with a dynamic
depth-dependent threshold [28, 29].

The CanSplit function tests whether a given domain r can be further split.235

In our implementation, for unorganized point clouds, it always returns true.
For organized point clouds, if the split domains r0, r1 could not have enough
data inside for a valid Bézier fit, i.e., both umax−umin+1 and vmax−vmin+1
are smaller than 2d + 1, then this r cannot be split. This is because after
splitting, the resulting blocks will have less data points than control points,240
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Algorithm 3 Infer Local Knot Vectors

1: function InferLocalKnotVector(B,F)
2: Tmesh ← BuildMesh(B)
3: FindKnotMultiplicity(Tmesh,F)
4: U← ∅,V← ∅
5: for each vertex n in Tmesh do
6: (Utmp,Vtmp)← GenLocalKnotVector(n, Tmesh)
7: U← U ∪Utmp,V← V ∪Vtmp

8: return (U,V, Tmesh)

leading to a rank deficient system unless we perform the constrained fitting in
Eq. (2). There is a case where a patch needs to be split but can not be split.
This usually happens at small blocks with too significant details that cannot
be represented as a simple Bézier surface. There are two options to handle
this case: either performing B-spline refinement on that Bézier surface until245

the fitting error is small enough, or simply discarding this small part of data.
In our implementation we select the latter one because those tiny details are
usually caused by sensor noise and ignoring them often would not hurt the
final fitting result significantly.

The Split function can have different behaviors: split at the patch center,250

or adaptively split according to fitting errors. In our implementation, we
always split at the middle of the longer side of the domain to avoid thin
domains which do not tend to give good fitting results.

3.2. Local Knot Vector Inference

The output B of Algorithm 2, a set of Bézier patches, is essentially a255

valid T-spline already, with every knot line’s multiplicity equals to the chosen
order, d+1, of all the Bézier patches. However it is more desirable to prescribe
a surface parametric continuity to ensure smoothness across boundaries of
patches. As previously mentioned, the boundaries of all returned patches
in the parameter domain are treated as the recovered T-mesh for our T-260

spline fitting, which will remain fixed in the following steps. For example in
Figure 2(a), a simple T-mesh is generated from the three patches b1, b2, and
b3. However the pre-image of the T-mesh, i.e., the T-mesh in the so-called
index/parametric space [30], remains to be determined for inferring local
knot vectors. This is because we can assign different multiplicity to each265

edge of the T-mesh, respecting both the prescribed parametric continuity
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Figure 2: Local knot vector inference example for d = 3. In this example, 3 Bézier patches
(b1, b2, b3) are connected to generate a single T-mesh with prescribed surface continuity
of C1. Each patch boundary is classified into continuous (black solid) or discontinuous
(red dashed) according to the data, which is used to determine the knot multiplicities (the
number of duplicated knot lines) in the index/parametric space. The 6 junctions inside
the blue dashed circle in (b) correspond to the vertex n (blue cross) in (a). The control
points computed for the Bézier patches (black dots) are used to initialize those for the
final T-spline.

of a desired surface model and the data continuity obtained from the input
point cloud.

Thus, as described in Algorithm 3, the first step is to build a face-edge-
vertex represented mesh [31] Tmesh from boundaries of all the Bézier patches,270

using the function BuildMesh. The vertices of this Tmesh correspond to the
corners of all the patches. The edges of this Tmesh correspond to the sides of
all the patches that do not contain any other in-between vertices. The faces
of this Tmesh correspond to all the patches. This Tmesh should also allow for
the operation of shooting rays from a vertex (u2, v2) to its up, down, left, and275

right directions to determine its local knot neighbors as [· · · , u1, u2, u3, · · · ]
in the u-direction and [· · · , v1, v2, v3, · · · ] in the v-direction, as depicted in
Figure 2(a), using the same rule as described in [2].

After building such Tmesh, the FindKnotMultiplicity function needs to go
through each edge in the Tmesh to classify it into continuous or discontinu-280
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ous by examining the input data continuity between the two faces/patches
lying on both sides of that edge. In our implementation, we detect the
discontinuity between two patches by thresholding the largest distance be-
tween their boundary points. This threshold is depth dependent for Kinect
data [28, 29]. Without properly handling such discontinuities in a T-mesh, a285

resulting T-spline will have less representation power for fitting disconnected
input points. Note that even if we use the pre-segmentation of the input
point cloud, data discontinuities might remain in each segment; thus we still
need to perform such detection to add knot multiplicity when inferring local
knot vectors.290

Finally, this algorithm goes through each vertex in the Tmesh, generates
and stores a set of local knot vectors for control points associated with that
vertex, using the GenLocalKnotVector function. This is done with the help of
the above mentioned Tmesh operation of finding a vertex’s local knot neigh-
bors. For example, in Figure 2(a), the red dashed edge is marked as dis-295

continuous since the input points are disconnected at this edge. Thus, if a
C1 continuity is prescribed for the surface model to be fitted, the GenLocal-
KnotVector function will generate a T-mesh in the index/parametric space
as Figure 2(b), from its source T-mesh in the parameter space as Figure
2(a). The same operation can be used to output 6 pairs of knot vectors for300

the vertex n, corresponding to the 6 junctions, or the so-called anchors [30],
inside the blue dashed circle.

3.3. Control Point Initialization and Refinement

As previously mentioned, in general, merely enforcing shared boundary
control points in Bézier patch fitting does not result in an optimal T-spline
surface in terms of either surface smoothness or fitting errors. Once a T-mesh
is discovered with the set of local knot vectors (U,V) output from Algorithm
3, one has to build a sparse linear system for solving the best control point
positions as

C? = arg min
C
‖ TC−Q ‖2F , (3)

where T is a MN×K matrix holding T-spline blending function values from
Eq. (1) for each data point per row, Q is a MN×3 matrix holding each input305

data point per row of the same row order as T, and C is a K × 3 matrix
holding each unknown control points per row of the same column order as T
(N = 1 for unorganized point clouds).
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If both the number of control points and the input data size are small, this
sparse linear system can be solved using direct solvers such as Cholesky or310

QR decomposition. However when the problem size is large, it is intractable
to use direct solvers, and an iterative solver such as PCG or progressive fitting
as in [9] can be used. Thus, a good initialization is necessary to reduce the
number of iterations for fast computation.

We adopt a heuristic, denoted as the function AssignRelevantControl-315

Point in Algorithm 4, to set each initial T-spline control point as its corre-
sponding one in its associated Bézier patches B. Figure 2(b) illustrates one
such example, where the four dots show the anchors of those T-spline control
points, and they are associated with the patch b3. After this heuristic initial-
ization, the RefineControlPoints function uses an iterative solver to refine320

that initial guess. In our implementation, we chose PCG with the Jacobi
preconditioner for such refinement.

Note that solving Eq. (3) requires the non-singularity of the basis matrix
T; i.e. the T-spline blending functions in Eq. (3) should be linearly indepen-
dent. According to [30], not every T-mesh ensures the linear independence,325

except for a few classes such as the analysis-suitable T-mesh [32]. Similar
to [9], we assume this holds for our T-mesh. Although in our extensive
experiments, we never encountered singularity issues for solving the above
equation, in-depth theoretical analysis will be beneficial in the future.

Also, we would like to clarify the difference between FasTFit and any330

control point removal process that might be used for fitting T-spline sur-
faces. Indeed, after all the local B-spline patches are obtained in the func-
tion FitBezierPatchAdaptive, those patches already form a valid, although
discontinuous, T-spline surface. Yet how to properly remove control points
in such a T-spline surface to enforce the prescribed surface continuity is still335

unclear. Moreover, applying control point removal will quickly lead us back
to an iterative removal and refinement process, which we try to avoid for
faster computation. Thus, we choose to firstly construct the topology of T-
mesh directly without setting the corresponding geometric positions of the
control points. With a valid T-mesh in the index/parametric domain, we340

can build the T-spline basis/blending functions for each control point, and
then directly fit their optimal positions or refine from their initial positions
obtained heuristically as explained above.
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Algorithm 4 Solve Control Points

1: function SolveControlPoint(B, Tmesh,U,V,F)
2: C0 ← 0
3: for each b ∈ B do
4: AssignRelevantControlPoint(b,C0, Tmesh)

5: C← RefineControlPoints(C0,U,V,F)
6: return C

4. Results

We evaluate our FasTFit algorithm’s speed and accuracy over several345

simulated and real-world datasets. We consider three kinds of 3D point
clouds, organized point clouds obtained with Kinect, those obtained as a
z-map, as well as unorganized point clouds. For Kinect point clouds, we
use simple pre-segmentation based on Euclidean distance and applied our
algorithm to each segment. We found this segment-based approach leads350

to a smaller number of control points, thus faster computation, than fitting
a single T-spline for the entire point cloud. For the other data, we fit a
single T-spline for the entire data. We implement the algorithm in C++
with OpenMP parallelization and conduct all experiments on a standard
desktop PC with Intel Core i7 CPU of 3.4 GHz. A video comparing the355

fitted T-spline surfaces in the following experiments can be found as the
supplementary material of this paper.

4.1. Kinect Point Clouds

We first evaluate FasTFit over each single frame of Kinect point cloud.
We performed both quantitative and qualitative comparisons between our360

method with two relevant state-of-the-art methods.

4.1.1. Quantitative Comparison with Conventional Strategy

Subregional knot insertion (SKI) proposed in [9] is the most recent T-
spline fitting method for organized input data that follows the conventional
strategy. In each mesh refinement iteration, it uniformly divides the whole365

input data into a number of subregions. This number increases quadratically
with the iterations. Then a fixed percentage, termed insertion ratio α%,
of the subregions with largest fitting root-mean-squared-error (RMSE) are
selected. Subsequently for each selected subregion, a knot is inserted at the
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Table 1: Comparisons between SKI and FasTFit for VGA-sized Kinect point cloud fitting.

Mean±Std Time (ms) RMSE (mm) #ctrl
Without FindKnotMultiplicity

C31 561±98 12.0±5.0 1936±692
SKI-C31CTRL 8883±4280 10.4±4.1 1972±706
SKI-C31RMSE 8179±3723 11.1±4.7 1954±671

With FindKnotMultiplicity
C31 732±574 9.1±4.1 3254±1223

SKI-C31CTRL 20845±12325 8.1±3.3 3280±1232
SKI-C31RMSE 24721±19923 8.5±3.9 3514±1518

C32 710±410 6.8±3.0 6896±2629
SKI-C32CTRL 90855±68624 6.1±2.8 6897±2626
SKI-C32RMS 62709±45291 6.6±2.9 6039±2248

center of the T-mesh face that contains the data point with the largest fitting370

error inside that selected subregion. Finally, a progressive fitting algorithm,
instead of PCG, is proposed in [9] to optimize control points of this new
T-spline.

We implemented the SKI strategy, with α% = 0.1 as used in their original
paper, for comparing it with our FasTFit strategy. Note that we compare the375

conventional vs. FasTFit fitting strategies, instead of specific sparse linear
system solving algorithms. In this experiment the linear system in Eq. (3)
was solved by PCG for both SKI and FasTFit.

There are three critical statistics for this comparison: fitting time, RMSE,
and the number of control points. They respectively represent the speed,380

quality, and model conciseness of a fitting strategy. We designed six fitting
configurations: C31, SKI-C31CTRL, SKI-C31RMSE, C32, SKI-C32CTRL,
SKI-C32RMSE. The C31 (3-degree spline with prescribed knot multiplicity
of 1) and C32 (3-degree with knot multiplicity of 2) configurations use FasT-
Fit with prescribed surface continuity of C2 and C1 respectively. All other385

configurations apply SKI to fit C2 surfaces using different stopping conditions
for SKI’s mesh refinement iteration. SKI-C31CTRL stops its mesh refine-
ment once the number of control points equals or exceeds that of our C31 fit,
while SKI-C31RMSE stops once the current fitting RMSE becomes equal to
or smaller than that of our C31 fit. SKI-C32CTRL and SKI-C32RMSE are390

defined similarly with C32 fit’s number of control points and RMSE.
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Table 2: Processing time for each step of VGA-sized Kinect point cloud fitting.

Mean±Std Time (ms)
EuclideanSegmentation 16.20±0.9

FasTFit
FitBezierPatchAdaptive 79.10±24.7
InferLocalKnotVector 11.75±6.7

SolveControlPoint 470.44±87.3

We collected more than 1200 frames of VGA-sized Kinect point clouds
over typical indoor scenes, and performed the six fitting experiments over
these point clouds. The results are summarized in Table 1, from which one
can observe the following advantages of FasTFit:395

Speed As expected, FasTFit runs at least 10 to 15 times faster than SKI.
The processing time for each step of FasTFit is shown in Table 2. Notice
that segmentation time is not included in Table 1.

Quality When SKI is stopped at the same level of control point numbers,
FasTFit results in comparable fitting RMSE (less than 0.2% difference400

in the RMSE of SKI-C31CTRL against C31 in Table 1). Due to knot
insertion, SKI cannot stop at exactly the same number of control points
in FasTFit, so SKI-C31CTRL’s average number of control points is
slightly larger than that of C31. Even under such condition, there are
about 29% cases where C31 have smaller RMSE than SKI-C31CTRL.405

Conciseness When SKI is stopped at the same level of RMSE, FasTFit
almost always results in smaller number of control points, (comparing
the number of control points of SKI-C31RMSE against C31 in Table
1). Similarly, SKI cannot stop at exactly the same RMSE in FasTFit,
so SKI-C31RMSE ’s average RMSE is slightly smaller than that of C31.410

Also notice the performance differences in Table 1 between cases where Find-
KnotMultiplicity is performed or not during local knot vector inference. As
explained above, by respecting data discontinuities through FindKnotMulti-
plicity, FasTFit can efficiently increase fitting quality with only 30% longer
time (using a same threshold for FitBezierPatchAdaptive) while conventional415

strategies like SKI need 200% to 300% longer time.
In summary, FasTFit more efficiently provides surface representations

with quality and conciseness that are either comparable to or better than
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SKI. The advantage of FasTFit is that it can efficiently discover a suitable
T-mesh without time-consuming iterative mesh refinement, and the resulting420

T-spline is a satisfactory surface fit, as can be seen in the following qualitative
comparisons.

4.1.2. Qualitative Comparison

To evaluate the quality of surface fitting, in addition to SKI, we compare
our results with those obtained by KinFu, an open-source implementation425

of KinectFusion [33] that provides the state-of-the-art surface reconstruction
quality by fusing multiple point clouds in a truncated signed distance field
(TSDF). Note that KinFu does not fit a parametric surface. Thus, it does not
have a corresponding concept of fitting error as in FasTFit. Due to the large
noises of Kinect sensors at long depth ranges, KinFu cannot easily fit the wall430

as smooth as FasTFit unless it observes the wall with higher quality point
clouds (such as getting closer to the wall). Therefore, we only use KinFu for
a qualitative comparison to show that our method can achieve comparable
or even better surface quality using a single frame of Kinect point cloud.

Figure 3 shows the comparison, where we visualize all the results using435

the same shading pipeline implemented in KinFu. Our algorithm provides
high-quality surface reconstruction comparable with KinFu yet using only
a single frame. Note also that our representation is compact, as shown in
the T-mesh visualization in Figure 3, compared to the TSDF representation
with a fixed voxel resolution. Please refer to the supplementary video for440

comparisons over the entire sequences.

4.2. Z-map Point Clouds

We next evaluate FasTFit on z-map point clouds using a scaled version
(1025× 1025 pixels with inter-pixel spacing of 100m and pixel unit of 0.5m)
of the well-known Puget Sound Terrain digital elevation map (DEM)1. Com-445

parison with SKI method can be found in in Figure 5. Note that in this case
the conventional strategy runs much slower (4 orders of magnitude) than
FasTFit due to the significantly larger number of control points, thus the
computation cost of finding T-mesh faces containing largest RMSE regions,
shape-preserving control point insertion, and maintaining T-mesh in each450

iteration further slows down SKI, i.e., the conventional strategy.

1http://www.cc.gatech.edu/projects/large_models/ps.html
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Figure 3: Qualitative comparisons between our algorithm and KinFu, an open-source im-
plementation of KinectFusion, for several different scenes. First row: raw input point
clouds. Second row: results obtained with KinFu by fusing multiple point clouds. Note
that this requires accurate registration among the multiple frames, and the quality de-
grades if the registration is not accurate as in the second column. Third row: our results
by fitting C2 T-spline surfaces to different segments of the single input point cloud. Forth
row: fitted T-meshes over point cloud segments shown in different colors. The surface
reconstruction quality is comparable to that of KinFu assuming the accurate registration.
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Table 3: Comparisons between SKI and FasTFit for simulated z-map fitting.

Mean±Std Time (ms) RMSE (mm) #ctrl
Without FindKnotMultiplicity

C31 87±24 8.2±3.2 246±123
SKI-C31CTRL 1163±444 7.2±2.9 248±123
SKI-C31RMSE 1169±450 6.8±2.9 269±128

With FindKnotMultiplicity
C31 158±69 6.9±3.3 301±176

SKI-C31CTRL 1192±548 6.6±2.8 304±175
SKI-C31RMSE 3243±9793 5.8±2.8 592±927

We also simulate a dataset of 41 different z-map point clouds (300× 300
points in a 1×1×1.2m3 region) generated from different random Bézier sur-
faces of degree ranging from 10 to 50. Based on this, we further simulate three
datasets by adding missing data points, discontinuities, and isotropic Gaus-455

sian noise (0.003m standard deviation). The comparison with SKI method
on these simulated datasets (164 point clouds in total) are shown in Table 3.
A typical fitting result is shown in Figure 6, which demonstrates FasTFit’s
fitting efficiency and quality, and especially the benefit of respecting data
discontinuities through FindKnotMultiplicity.460

4.2.1. Split Criteria vs. Fitting Error

One limitation of FasTFit is that we cannot directly control a final T-
spline’s fitting accuracy. To decrease such a final T-spline fitting error, we
need to apply a more strict criteria in the NeedSplit function, e.g., to de-
crease the prescribed threshold of the L∞ Bézier patch fitting error. Thus we465

studied the relationship between the final fitting error and the prescribed er-
ror threshold using both the terrain z-map and our simulated z-map dataset
mentioned above. The results are shown in Figure 4. We can observe the
effectiveness of such an indirect control of the final fitting accuracy. Note
that the RMSEs of Bézier patches are always lower than the final RMSEs,470

since Bézier patches can be seen as a T-spline without enforcing surface con-
tinuities across patch boundaries. Also, as the error threshold decreases, the
RMSEs of Bézier patches approach zero while the final RMSEs saturate to
small values. This is due to the noises in data that cannot be fitted into a
continuous T-spline surface.475
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Figure 4: The relationship between the final T-spline fitting error and the prescribed
Bézier patch fitting error threshold. X-axis shows different L∞ Bézier patch fitting error
thresholds. Y-axis shows the corresponding absolute RMSE. The green dashed lines are
the RMSE of the Bézier patches output by Algorithm 2 before connecting into T-splines.

4.3. Unorganized Point Clouds

We further evaluate FasTFit on unorganized 3D point clouds captured
by registering multiple down sampled Kinect point clouds using a SLAM
system [34]. Here we manually segmented an object from the scanned scene,
parameterized the object point cloud using a PCA-based method as described480

above, and fit a single T-spline surface. Some typical results are shown in
Figure 7.

4.4. Image Data

In addition to the point cloud data, we fit a T-spline in RGB space
for a color image, which is the main focus of [9]. The fitting result could485

help various image processing algorithms such as zooming and geometric
transformations.

We performed such image fitting on two images used in [9]. The images
reconstructed from the fitting results and corresponding T-mesh are shown
in Figure 8. The differences between original images and fitted images from490

both FasTFit and SKI are hardly visible. Table 4 shows the fitting statistics.
In the Lena case, SKI-C31RMSE has the same result as SKI-C31CTRL since
it reaches the max iterations before reducing the RMSE below SKI-C31CTRL
and C31. In all cases, FasTFit is significantly faster than SKI while producing
similar image reconstruction quality. Note that both our FasTFit and the495
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Raw mesh C31 SKI-C31CTRL SKI-C31RMSE

Time (s) 4 17882 17104
RMSE (m) 96.5 94.3 95.4

#ctrl 75807 75809 74225

Figure 5: Fitting a terrain z-map. Row 1: overview; Row 2 and 3: detailed views; Row
4: color legend and T-mesh. Mesh color indicates fitting error. FasTFit is 4 orders of
magnitude faster and fits comparable surface comparing to the SKI method.
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Raw mesh C31 SKI-C31CTRL SKI-C31RMSE
With FindKnotMultiplicity

Time (ms) 146 1532 1574
RMSE (mm) 8.3 8.4 8.3

#ctrl 389 393 434
Without FindKnotMultiplicity

Time (ms) 81 1268 1255
RMSE (mm) 10.3 9.5 9.5

#ctrl 291 296 302

Figure 6: Comparison on fitting a simulated z-map (generated from a 25-degree Bézier
surface with Guassian noise). Mesh color indicates fitting error. The red lines in T-mesh
indicate data discontinuities detected in FindKnotMultiplicity. FasTFit is 10 times faster
and fits better surface than the SKI method.
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Figure 7: Fitting unorganized point clouds. From top to bottom: raw points, fitted
T-spline, T-mesh.

original SKI implementation in [9] use OpenMP for parallelization. Even
though FasTFit’s PSNR is slightly smaller than that of SKI, and sometimes
FasTFit has much more control points, it is as expected since images tend to
have more data discontinuities than Kinect-like point clouds, and trade-offs
have been made in FasTFit to favor computation speed.500

5. Conclusions and Future Work

We presented a novel T-spline fitting strategy that can efficiently and
accurately model large point clouds such as VGA-sized Kinect data. By
adaptively dividing the input point cloud into smaller parts until each of
them can be faithfully represented by an independent Bézier patch, a proper505

T-mesh is efficiently discovered without iterative knot refinement and control
point adjustments. Then through different patch connection options that
respect the surface continuity across patch boundaries revealed in the input
data, the local knot vectors for all control points are inferred on the T-
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Table 4: Comparisons between SKI and FasTFit for image fitting.

Time (s) PSNR #ctrl
Lena (512× 512)

C31 1.18 32.5276 30533
SKI-C31CTRL 1592.09 32.2693 23895
SKI-C31RMSE 1629.95 32.2693 23895

Landscape (1600× 1200)
C31 6.07 37.2496 43038

SKI-C31CTRL 5388.24 36.9977 43039
SKI-C31RMSE 8799.40 37.6410 54145

Figure 8: Comparison on fitting images. Column 1: input images; Column 2: C31 results;
Column 3: C31 T-mesh (red lines indicates detected data discontinuities); Column 4:
SKI-C31CTRL results; Column 5: SKI-C31CTRL T-mesh.

mesh. Finally through a heuristic initialization of all control points based on510

the fitted Bézier patches, a control point refinement is performed efficiently,
leading to our fitted T-spline model of the input point cloud. Our results show
comparable or sometimes even better surface reconstruction on single frame
Kinect point cloud data, compared with results generated by KinectFusion
after fusing multiple frames.515

To the best of our knowledge, no real-time or near real-time T-spline
fitting has been proposed for VGA-sized point clouds before. Our algorithm
was shown to have near real-time performance on VGA-sized Kinect data
with less than 600 ms processing time per frame on average. For the image
data fitting, our algorithm achieved at least 2 orders of magnitude faster520

processing time than the published state-of-the-art result. We believe such
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fast processing speed could benefit many downstream applications.
While our fitting results shown in the paper and supplementary video are

already visually satisfactory, there are still rooms to improve the FasTFit al-
gorithm in the future. First is about the wiggling artifacts presented in some525

final fitting results under certain situations. Although they are still good fit
and are mainly caused by both the structured noise in input Kinect data and
locally high degree of freedom, we hope such visually less pleasing artifacts
can be reduced by either adding regularization and smoothing terms in the
final fitting equation, similar to [15, 35], or perform some local knot removal530

to reduce the degree of freedom. Second is about improving the fitting error
metric so that we can avoid some redundant patch split, such as using the
squared-distance-minimization (SDM) [36]. This will help further reduce the
number of control points and further accelerate overall computation. Last
but not least, similar to [24], we would like to incorporate sharp feature535

preservation to our algorithm to more faithfully represent scenes with many
corners or other C0 continuity surfaces.
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