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Abstract

Path planning for automated parking remains challenged by the demand to balance gen-
eral parking scenarios and computational efficiency. This paper proposes a two-stage rapid-
exploring random tree (RRT) algorithm to improve the computational efficiency. At first the
proposed algorithm performs space exploration and establishes prior knowledge, represented
as waypoints, using cheap computation. Secondly a waypoint-guided RRT algorithm, with a
sampling scheme biased by the waypoints, constructs a kinematic tree connecting the initial
and goal configurations. Numerical study demonstrates that the two-stage algorithm achieves
at least 2X faster than the baseline one-stage algorithm.
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A two-stage RRT path planner for automated parking

Yebin Wang, Devesh K. Jha, and Yukiyasu Akemi

Abstract— Path planning for automated parking remains This paper proposes a two-stage RRT path planning algo-
challenged by the demand to balance general parking sce- rithm to determine a kinematically admissible and collisio
narios and computational efficiency. This paper proposes a frae path between initial and goal configurations. At first,

two-stage rapid-exploring random tree (RRT) algorithm to . . .
improve the computational efficiency. At first the proposed based on geometries of the environment and the vehicle, and

algorithm performs space exploration and establishes prio  initial/goal configurations, the path planner establispesr
knowledge, represented as waypoints, using cheap compui@t.  knowledge in the form of a plausible region which, with a
Secondly a waypoint-guided RRT algorithm, with a sampling  high probability, contains feasible paths. Here the plaasi
scheme biased by the waypoints, constructs a kinematic tree yaqion js represented by a neighborhood of a geometric
connecting the initial and goal configurations. Numerical tudy . L

demonstrates that the two-stage algorithm achieves at lea&X and POH'S'On'free p"’_‘th' which is fl_”.ther abStraCte.d by a se
faster than the baseline one-stage algorithm. of milestone waypoints between initial/goal configurasion
Second, the path planner, biased by waypoints to draw
samples from the plausible region, constructs a kineribtica

admissible and collision-free path. The entire algorithm

Path planning arises in a variety of applications suchssentially explores the configuration space and detesmine
as autonomous vehicles, robotics, manufacturing, pharmadmissibility to system kinematics (or named after drilsabi
ceutical drug design, and computer animation [1]. Manity) separately. Such a treatment leads to prevailing algo-
planning algorithms have been proposed, including, to nanighms, e.g., decomposition-based approach [19]. Witbrpri
a few, graph-based A* [2] and D* [3]; continuous approacheknowledge unnecessarily in the form of a geometric path, our
involving navigation function and potential fields [4]; neor work can be viewed as a randomized extension of [19]. The
recently, sampling-based algorithms such as probabilistmulti-stage framework is motivated by the following facts

roadmaps (PRM) [5], expansive-space trees [6], [7], ragpidl 1) sampling-based approaches highly depend on the sam-
exploring random trees (RRT) [1], [8], optimal variants RRT pling schemes. The more knowledge or heuristics
and PRM~ [9], [10], and anytime RRT [11], [12]. exploited, the more efficient sampling is.

Path planning for automated parking, characterized by a2) The prior knowledge or space exploration can be ob-

tight free space, attracts interests from both academia and  tained by much cheaper operation than the construction
automotive industry due to its tremendous social impacts  of kinematically admissible paths. As an example,

results. For instance, [13], [14] consider specific parking longer of time to construct a Reed-Shepp (RS) path
scenarios, where the vehicle starts from a fixed location  petween two configurations than a geometric one.

and assumes a fixed geometry of its environment. Such

specialized methods achieve fast path generation, but '[sthe contrast, one-stage algorithms solely rely on comput
difficult to generalize. In [15], [16], path planning is tack tionally intensive operations to accomplish space exfilmma

led by solving general numerical optimization problems‘?‘nd ensure kinematical admissibility. Overall, the praubs

which however have no guarantee of completeness. Woﬁpo_rithm provides better tradeoff between computational
[17] exploits RRT to deal with general parking tasks, pugfficiency and completen_ess_. However, one could_expect that
exhibits unsatisfactory computational efficiency. Worlg]1 the Proposed algorithm, inclined to search paths in the-plau
proposes a space exploration guided heuristic search thettRi!€ région, may be stuck in local optimum compared with
which relies on a circle-path connecting the initial andIgog?n€-Stage algorithms. With the plausible region represent

configurations. Because the existence of such a circleisathby a coIIisiQn—free and g.eometric path, the feasibility loé t
more restrictive, this algorithm is not complete. The statuP&th planning problem is resolved, and thus the proposed
quo remains challenged by the conflicting requirements gH9°rithm bears certain anytime property [11]. Our work

planning algorithms: computational efficiency and capgbil IS different from anytime RRT [11] in that feasibility and
of dealing with generic parking tasks. optlmallty are exp_hmtly a_ddressed in two separate stages
with cheap operation dedicated to feasibility.

Y. Wang and D. K. Jha are with Mitsubishi Electic Re- 1NiS paper is organized as follows. Section Il introduces
search Laboratories, Cambridge, MA 02139, USA (email: yebi system dynamics and the path planning problem. In Sec-
wang@ieee.org jha@merl.com). ____ tion Il we analyze an one-stage RRT algorithm and present

Y. Akemi is with the Advanced Technology R&D Center, Mitssiti h RRT al ithm. Si lati | edid
Electric Corporation, 8-1-1, Tsukaguchi-honmachi, Ansaga City, 661— the two-stage algorithm. Simulation results are preai

8661, Japan (email: Akemi.Yukiyasu@bc.MitsubishiEleato.jp). in Section IV to verify the proposed algorithm. Section V
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completes this paper with conclusion and future work.  the velocity and the steering angle. This is however non-
Notation: A tree T is a union of a node sét C Cy,.. trivial, and thus most of literature performs path planning
and an edge sef, i.e., T = (V,E). An edge in E based on a continuous curvature car model [24]-[26] or the
represents a collision-free path between two nodes. A tré&eed-Shepp’s car model.
T is termed a geometric tree, if its edges are geometric
paths; with kinematically admissible edgé&sjs a kinematic
tree. A bidirectional RRT tree is a union Gt (V;, E,) and
T,(Vy, E,). Specifically, a start tre@; (V, E;) has the initial
configurationX, as its root, and a goal treg, (V,, E,) has
the goal configuration as its root. For a finite 3ét |V|
denotes the number of its elements.

I1. PRELIMINARY
. . ) . Fig. 1. The vehicle schematics
For completeness, this section reviews key concepts in

path planning. Details can be found in [20]-{23]. With the (v, ¢)-dynamics omitted, system (2) is reduced

A. System Models to the RS car model

Consider a control-affine dynamical system & = cos(6)us

i ¥ = sin(0)uq 3)
X = f(X) +9(X)u, (1) P
— w2,
where X € X C R" is state,u € U C R™ the control, f : : ; ;
! ! whereu; = cos is the velocity along the car orientation,
a smooth vector field or the drift, angd= [¢], -+ , ¢, ] = coslg)y Y ¥

. . ! . andus =uqt [ is the steering control.
with g; a smooth vector field. System (1) is symmetric if uz =z tan(g)/ g

U is symmetric with respect to the origiX = 0. An B. Path Planning Problem

admissibletrajectory X; is a solution of system (1) with o, system (3), its kinematic state spate= (z,y,0)T
given initial and final conditions and € U. A configuration  .qincides with the configuration space, i.6.= X. Given

of system (1) is a complete specification of the position ofeometries of obstacles and the vehicle, the configuration
every points of that system. Thenfiguration spac€ c R" spacesC,;, and Cype. are well-defined. Path planning for

is a compact set representing all possible configurations gf ;o mated parking corresponds to the following problem.
the system. A collision-free configuration spatg.. is the Problem 2.1:Given an initial configurationXy € Cjye

set of configurations at which the vehicle has no intersactio, . 5 goal configurationX; € Cjy., and the system

with obstacles in the environment. Denote the COIIiSiorP(inematics (3), find a collision-free and admissible p&th
configuration spac€,,s = C\Ctree- An admissiblepath is ; ’

the image of an admissible trajectory on the configuration
spaceC.

Without loss of generality, this paper considers a front
wheel drive vehicle, which is illustrated by Fig. 1. Its

dynamics are given by the following fifth order model [21] Let J be a C(_)st function that a}ssigns to each _non_-trivial_ path
a non-negative cost. The optimal path planning is to find a

1) starts atX, and ends afX;
2) lies in the collision-free configuration spa€e;..;
3) satisfies the system kinematics.

& = cos(0) cos(¢)v collision-free and admissible pat; : [0,1] — Cj.. that

y = sin(@) cos(p)v minimizes the cost functiod.

§— Sm(@g @ For brevity, a path satisfying system kinematics is admis-
l sible; if additionally the path is collision-free, we catla

U =ay collision-free and admissible path. Computation of a ssirt

admissible path between two configurations for system (3),
also known the RS path, has been disclosed in [27].
where (z,y) is the coordinates of the midpoimt of the A path planner solving Problem 2.1 é@mplete meaning
rear wheelsf the vehicle orientationy the velocity of the that within finite time, it always finds a solution when one
front wheels,¢ the angle between the front wheels and thexists, or indicates failure otherwise. Particularly, gting-
vehicle orientationg; the translational acceleration; the based planners involve iprobabilistic completenessvhich
steering angular velocity, andthe distance betweefx,y) means that the probability of finding a solution converges to
and the midpointB of the front wheels. Botlu; andas, as 1 as time goes to infinity.

control inputs, are subject to constraints;| < a; max for

i = 1,2. Also, a mechanical constraifip| < Guyay limits C. One-Stage RRT Planner

the minimum turning radius and the curvature of a path. It The one-stage RRT planner for Problem 2.1 is a com-
is desirable to perform path planning based on system (B)nation of the bidirectional RRT (bi-RRT) algorithm [23]
because it implicitly enforces continuous differentigpibf  and the RS steering [27]. It consists of two parts: cons$ruct

= a2,



a kinematic tree connecting, with X; and determines a [ Algorithm 3: Connect(Xyearest; Xrana) IN Algorithm 2
collision-free and admissible path according to the kinna |1 ¢ < 0, imax;
tree. The tree construction algorithm is presented below f@ P < ReedShepp(Xnearest, Xrand);

. . . 3 for P, € P and i < imax do
comparison with the proposed algorithm. flag + CollisionFree(P;);

if flag then
|_ break;

o o b

Algorithm 1: One-Stage RRT Planner

1 Vo Xo, Es + 0; Vg Xy, Eg < 0

2 k<1, flag < false;

3 Ts + (Vs, Es); Tg + (Vy, Eg);

4 while £ < K and not flag do

Xrana < Sample(C);

flagS < false;

(Ts, flagS) < Extend(7s, Xrand, flagS);
(T4, flagG) < Extend(Ty, Xrand, flag$S);
flag + flagS and flagG,

10 return (7s, 7q, flag);

7 return flag

output of the algorithm is a graph. For the sake of notation
brevity, this work does not distinguish these two cases, and
assumes the algorithm outputs a tree. O

We first expose limitations of the one-stage algorithm, and
then present a two-stage RRT planner.

© 00 N o g

M AIN RESULTS

A kinematic bi-RRT tree] = 7,J 7, is constructed by

Algorithms 1-3, where two kinematic RRT tre¢g and
T, grow toward each other until connected. Themple
procedure generates a collision-free samflgnqg € Ctree

A. Analysis of the One-Stage Algorithm

As pointed out in many literature, e.g. [22], computational
efficiency of sampling-based algorithms heavily depend on

according to a uniform sampling scheme. Hxgend grows the sampling scheme. An ideal scheme avoids sampling
the tree7” toward zanq. The configurationX;a,q is added configurations which are unlikely to be part of the collision
to 7 only if it can be connected to the nearest configuratioftee and admissible path. This is impossible due to lack of
Xnearest € V' through a collision-free and admissible edgeyrior knowledge. A sampling scheme failing to incorporate
(path). Given a configuratiodk; and a node seV’, the or peing lack of prior knowledge necessarily leads to low
Nearest returns the configuratiodXycarest € V' that is  efficiency of path planning. The one-stage algorithm takes
closest toX;, and stays inside its-neighborhood defined the uniform sampling scheme due to lack of prior knowledge
asV(Xy) :{Y|Y e V,d(X1,Y) <r}, ie, aboutCy,... This is illustrated in Fig. 2, where the one-
stage algorithm samples and rejects a configurafiQg,q

if it is far from 7. Let Qq, the region inside the gray dash
whered(-, -) is a distance function. Given two configurationdine, denote a neighborhood @f; €2y, bounded by the gray
X, X € Cfree, the Connect procedure determines if there solid line, be the neighborhood df,. Any sample outside
exists a collision-free RS path betwedfn and X;. For X;  of Qg or Q will be rejected. Denoté€ the plausible region
and X;, theReedShepp returns a set of admissible pats  bounded by the solid blue line. It is clear that the distance
where each elemer®; ¢ P represents an RS path betweerfunction d(-,-), employed to reject potentially useless sam-
X, and X;. The CollisionFree(P;) determines whether ples, could not incorporate knowledge about the plausible
P; is collision-free. In theConnect, P; is picked from?P  region{). Consequently, configurations which belong€Xp

in the order of descending lengths, angh. controls how but not(2 be tested and added to the tree. This unnecessarily
many RS paths will be tested for collision. increases the size of the tree, and ultimately slows down its
construction. The one-stage algorithm tends to construct a
tree spanning the entire spacCe...

Nearest(V, X;) = argminy ¢y (x,)d(X1,Y),

Algorithm 2: Extend(7, Xrand, flagS) in Algorithm 1
1 flag < false; (V,E) + T;

2 Xnearest ¢ NeaIGSt(K Xrand);

3 if Connect(Xnearest, Xrand) then

4 flag < true;

5 if not flagS then

6 |_ V +— VU{Xnew}:

7 E«+ FEU {(charcst7chW)};

8 T+ (V,E);
o return (7, flag)

Remark 2.2:In Algorithm 1, the one-stage algorithm ter-
minates the tree construction once two tregsand 7,
connected. This can be replaced by other criterion to improv In the one-stage algorithm, space exploration and insur-
quality of paths, for instance, imposing a threshold on thance of drivability (or kinematic admissibility) are coraded
number of nodes added to both trees. In such a case, tieultaneously. This results in two remarkable drawbacks.

Fig. 2. One-stage algorithm: tree construction



The first is low computational efficiency. The space explorandomly generated steering tasks, and normalizing the com
ration produces a treg as an approximation @y,... Inthe putation time for Line steering to 1, we learn that the RS
course of the tree construction, the space exploratioreincrsteering is 11 times slower.

mentally and iteratively tests whether a sample configomati  Table | shows computational efficiency of RS and Line
X.ana Can be reached from the existing explored spacsteering methods with collision detection taken into actou
represented by the treg. Reachability from7 to X,.,q The computation time of Line steering has been normalized
is determined by the steering method. The one-stage algo-1. The second column in Table | shows the computation
rithm, due to its one-stage nature, uses RS steering, whitime of the RS steering for different values §f...> The
corresponds to lines 1-6 in Algorithm 3. As shown later, it iSRS steering could take up to 18 times longer than the
more effective to use Line steering in the space exploratiohine steering to compute a collision-free path, depending
because it is much more computationally efficient than then the value ofi,,... The third and forth columns in Table
RS steering. The second drawback is lack of flexibility list normalized probability of which the RS steering can
allowing buildup of knowledge during the space exploratiosuccessfully return a collision-free and admissible path f
phase, and exploitation of the knowledge in the next phasevo configurations, where the probability of which the Line
In fact, because the drivability phase is more computalipna steering can construct a collision-free and geometric Eath
expensive, one would like to fulfill this task using as mucmormalized to . Specifically, the third column corresponds
as information possible to reduce waste of computatiot the case whem = 1 is used in the procedun@earest,
resources. The one-stage algorithm however does not offghereas the forth column corresponds to the case-
such possibility because, with simultaneous executiorodfb 5. Table | shows that with a larger, the probability of
phase, no extra information can be exploited in the driitgbil constructing a collision-free path is lower. Also, the Line

phase, compared with the exploration phase. steering more likely results in a collision-free path thhe t
RS steering except the casg., = 48. Note that Table |
B. Main Algorithm is obtained by conducting 100,000 simulations for a given

The two-stage RRT planning algorithm addresses limit£nvironment map and initial configuration. Although theadat
tions of the one-stage algorithm by could vary according to distinct environment maps andabhiti

. . configurations, no significant difference is expected.
« Utilize a two-stage framework which allows space ex-

ploration and determination of drivability to progress at TABLE |
different speeds or sequentially. Thus a faster space ex- COMPUTATIONAL EFFICIENCY: WITH OBSTACLES
ploration stage can establish knowledge to be employed i _ -
in the slower stage for computational efficienc imax_| Computation| Probability (r=1) | Probability (r=5)
In g p _ Y- _ il 2.02 0.82 083

« Propose the use of cheap computation to accomplish 2 2.88 0.89 0.90
fast space exploration, which typically involves a large 3 4.01 0.93 0.93
number of low probability events (successful connection 48 17.6 1.08 1.09

between two configurations). With a waypoint-guided o .
sampling scheme, the determination of drivability in- 2) SPace Exploration:The Waypoint procedure gener-
volves computationally expensive but high probabilityAt€S @ plausible region which is represented by a set of

events (successful kinematic connection between twi§@YPoINtsW = {W;,1 < i < L}, based on the initial
configurations). and goal configurationy, Xy and the environment map.

Without loss of generalityiV; = X, and W = Xj.

The two-stage RRT planner is given by Algorithm 4. TheEach waypointiV; represents a collision-free configuration

first stgge, space exploration, is realized in the procedum Cjree. More importantly, every two adjacent waypoints
Waypoint, while the rest account for the second stage.

are connected through a collision-free path, which might no
be admissible to the system kinematics (3).

Algorithm 4: Waypoint-Guided bi-RRT Planning Waypoint generation is supposed to be achieved through
1 W0 computationally efficient operations. A simple choice is to

2 W < Waypoint(Xo, X¢); . L .
s (Vi, B, flag) < WGRRT(W); use a geometric path planner, deterministic or randmized.

4 if flag then

1The parametefimax € N in Algorithm 3 specifies the number of

5 ValueIteration(Vs, Es); admissible RS paths for collision detection. It is well-arstood that an
6 P < Compute(Vs, Es); RS path between any two configurations possibly admits 48ndrpatterns
7 P + Smooth(P); [27], and thusl < imax < 48. With imax = 1, we only perform collision
8 return P detection for the shortest admissible path. On the othed,hian.x = 48

implies that we enumerate all admissible RS paths for éofiigletection.
It is noteworthy that the number of driving patterns can behter reduced
to 46 [28], in which casd < imax < 46.

1) Comparison of RS and Line Steerin§fle compare  2The probability of the Line steering far = 1 andr = 5 is 0.1973

computational efficiency of two steering methods, withou@nd 0.1939, respectively. Probability in general is less than 1. Inl&db
rmalized probabilities for caseés,.x = 48 are greater than 1. This means

considering ObSt_aCIeS_: RS and Llr_1€, which Con_StrUCt an ége RS steering withimax = 48 is more likely to construct a collision-free
path and a straight line, respectively. Performing 100,00fhd admissible path than the Line steering.




As an example, a standard RRT geometric planner can be
used, ignoring the vehicle kinematics (3). Different from
the one-stage algorithm, the geometric RRT planner uses
Line steering in Algorithm 3 instead of the RS steering
Unsurprisingly, the geometric RRT planner is much more
computationally efficient to sweep through the configuratio
space, and determinine whether a collision-free configamat
X.ana 1S reachable or not.

3) Waypoint-Guided RRTGiven the waypoint selV,
the WGRRT procedure constructs a kinematic tree connecting
Xo and X; in the plausible region. It can have different
implementations. For example, tHé&RRT procedure can
enumerate all adjacent pairs of waypoits;, W;11),1 <
i < L —1, and constructs a bidirectional RRT tree between P(Xrand = X) ~ N(u,0),
each pair of(IWW;, W;;1). In the end, thedGRRT procedure
returns a kinematic treg connectingi?; all the way toW;  wherep = AWs + A3Ws3 with 0 < A, A3 < 1 and A +

Fig. 3. Two-stage algorithm: tree construction

the following Gaussian distribution

by unioning all bidirectional RRT trees. A3 = 1, and o = diag o, ay, ag) |Ws — pf] . Constants
Algorithm 5 illustrates another implementation of thea.,ay,ay are positive.
WGRRT procedure used in simulation. At thigh iteration, 4) Value lteration: Given the kinematic tre@, a number

the BiRRT procedure constructs a kinematic tree connectingf graph-based search algorithms such @d D" can be
Wi, 1 <14 < k + 1 sequentially. After thel, — 1th iteration, applied to find a collision-free and admissible path from
the WGRRT procedure finishes the tree construction with allX, to X¢. These algorithms are computationally efficient,
waypoints connected. This procedure is further illusttdtg  but the path optimality depends on how good the heuristic
Fig. 3, which corresponds to the iteratién= 2. In Fig. 3, cost-to-go function approximates the optimal value (cost-
waypoints are represented by red nodes and a kinematic tteego) function. One remedy of sub-optimality is to apply
T, betweenX, and W, has been constructed. Next, in theapproximate dynamic programming to the tfEeand obtain
2nd iteration, theWGRRT procedure constructs a kinematicthe value function : V' — R*. This is done in the procedure

tree connecting the treg with the waypointivs. ValueIteration, wWhich performs value iteration ovéf to
estimate the value function from every configuratiori/ofo

Algorithm 5. The WGRRT Procedure the goal configuration. The value iteration is guaranteed to

1 k<« 1, L + Length(W), flag + true, P« 0 ; converge, as the number of iterations goes to infinity [29].

2 Vs« Xo; Es < 0;

3 while k < L and flag do Algorithm 6; The Valuelteration Procedure

4 Vg < Wip; Eg < 0;

5 | if BiRRT(Vs, Es, V,, E,) then Lfor X;eVdo _

6 V. V.UV, 2 Va(Xi) < Adjacent(V, X;);

S L E. « B, U]%g 3 if Card(Va(Xi)) > 1 then

’ 4 |_ v(X5) < minyey, (x,) (cost(X;,Y) +v(Y));

8 else

9 flag < false;

10 L break;

1 ke k+1: It is noteworthy that the number of iterations taken to

> return (Va, Es, flag); ensure the convergence increases at least proportiomally t
|[V|, and the number of arithmetic operations increases at

least quadratically. In other words, value iteration colél

Fig. 3 also illustrates how the two-stage algorithm im-expensive. We propose to first trim the tree by removing
proves computational efficiency. Assume that the region irall leaf-nodes, and then perform value iteration over the
side the red dash lin@, characterizes the prior knowledge ortrimmed tree. A leaf-node is connected to only one node. It is
the plausible region. The regidn; defines where collision- noteworthy that throughout extensive simulations, the-two
free and admissible paths stay and the sampling schemsiage RRT algorithm typically ends up with a tree, which
should focus on. The gray dash line defines the region closentains a higher percentage of leave nodes than that by the
to the kinematic tre§;. Compared with sampling frof}y, one-stage RRT algorithm. Hence, this further facilitatelsi&
samplingX,ana from Q. () o is more likely to connect with iteration based path generation over and D'.
W3 within a certain time. Given a kinematic treef, the initial configurationX,

A key component of th&@GRRT is how to utilize waypoints and the value function over V, the Compute procedure
in the sampling scheme BiRRT. We illustrate the sampling implements policy update and returns a kinematic gath
scheme in Algorithm 5 by exemplifying the scenario giverconnectingX, and X;. Given the fact that RRT planners
in Fig. 3. In the course of growing the trég toward W5, result in fragmental paths, th&mooth procedure smooths
we sample a new collision-free configuration according tthe path;. The policy update for a known value function



is standard and can be found in [29]. A number of literaturéhe average computation time&.96sec for the one-stage
also talked about smoothing of a given path [5]. Details abowlgorithm, versud .42sec for the two-stage algorithm.
these two procedures are therefore omitted here. Detailed results of both algorithms are illustrated in

Remark 3.1:The effectiveness of the proposed algorithnigs. 4-7. Specifically, Fig. 4 plots waypoints as a result of
relies on the quality of waypoints, which is influenced by thespace exploration, where each node comes with an arrow
distance function. This issue is similar t& Avhich is limited indicating the orientation of the vehicle. Fig. 5 plots the
by the quality of heuristic costs, and thus can be alleviatekinematic tree constructed by the procedW@®RT, where
by similar techniques applied to treat'A 0 the values next to nodes are obtained by the procedure
ValueIteration, and edges merely indicate the existence
of kinematic paths. Fig. 6 gives vehicle positions along the

The two-stage algorithm can be viewed as a randomizesbllision-free and kinematic path, where greenmarkers
extension of decomposition-based path planning algogthmform the entire path. Fig. 7 visualizes the kinematic tree
e.g. [19], and thus its analysis resorts to similar toolsconstructed by the one-stage algorithm. Comparing with the
This section is included for completeness. We introducgvo-stage algorithm, one notices that the one-stage dhgori
controllability and small-time controllability, which ares- results in a much laraer tree.
sential to ensure the completeness for a certain class bof ¢
planners [21].

Definition 3.2: [21] System (1) is locally controllable
from X if the set of points reachable fronX by an
admissible trajectory contains a neighborhoodof It is
small-time controllable fronX if the set of points reachable glo— =
from X before a given timeél’ contains a neighborhood of
X foranyT.

The following Theorem gives necessary and sufficie
conditions to verify whether a driftless system is contiblé. ar

Theorem 3.3:A symmetric system without the drift is
small-time controllable fromX if and only if the rank of 2r
the vector space spanned by the family of vector fields
together with all their Lie brackets in at X.

Theorem 3.4: [21, Thm. 3.1] For symmetric small-time 4 2 o 2 4 & 8 10 1
controllable systems, the existence of a collision-frea aaf+ x(m)
missible path between two given configurations is equivalen
to the existence of any collision-free path between these tw
configurations.

It has been established that system (3) is symmetric, dri
less, and small-time controllable [21]. Hence, Theorem 3
is applicable to system (3), and thus shows that the existel

C. Analysis

y(m)

Fig. 4. Two-stage algorithm: waypoint

12

of a collision-free and admissible path is equivalent to tf ol
existence of a collision-free geometric path . Since tt
waypoint seti? implies the existence of a collision-free patt 8
betweenX, and X, and the RRT algorithm to generate th z
setlV is probabilistic complete, so is the proposed algorithr = °
IV. CASE STUDIES “

We compare the one-stage algorithm with the proposed 2f

gorithm by conducting simulation in Matl&)2016b, and for

multiple environment maps. This section shows simulatic
results for the environment depicted in Fig. 4, where the m
boundary is represented by a rectanglé@h x 12m, and all
obstacles are rectangles with their boundaries in boldline
The initial and goal configurations at¥, = (—3.65,8,0) Fig. 5. Two-stage algorithm: kinematic RRT tree
and X; = (5.25,2,7/2), represented by gray and red
dot, respectively. The vehicle has a length of 4.85m, width
1.81m, and minimum turning radius 4.4m. Both algorithms
use the same values of parametersi= 6,in.x = 3; This paper proposes a two-stage rapid-exploring random
and top when the number of nodes added to bhattand tree (RRT) algorithm to better balances general parking
T, reaches 100. We perform 10000 simulations and haweenarios and computational efficiency. Baseline oneestag
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Fig. 7. One-stage algorithm: kinematic RRT tree
[18]

RRT algorithm suffers low efficiency because: 1) it con-
ducts space exploration and determination of drivable atii9]
simultaneously, where the former could be achieved more
efficiently; 2) its simultaneous execution framework doeg
not allow incremental buildup beforehand and explicit exf21]
ploitation of prior knowledge in the later computationally
intensive stage. Differently, the proposed algorithmtsghe
space exploration and the determination of drivable paths,
where the former establishes prior knowledge by chedf®!
computation, and the latter exploits the prior knowledge fopp4;
computational efficiency. Numerical study demonstrated th
the two-stage algorithm speeds up the one-stage algorithm 5}5]
least 2 times. The proposed algorithm trades the optimali{y
for computational efficiency though. Future work includes
alternative space exploration techniques for efficiensy, a2
well as methods to incorporate drivability metric into the
space exploration stage for optimality. [27]

[22]
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