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Abstract
Path planning for automated parking remains challenged by the demand to balance gen-
eral parking scenarios and computational efficiency. This paper proposes a two-stage rapid-
exploring random tree (RRT) algorithm to improve the computational efficiency. At first the
proposed algorithm performs space exploration and establishes prior knowledge, represented
as waypoints, using cheap computation. Secondly a waypoint-guided RRT algorithm, with a
sampling scheme biased by the waypoints, constructs a kinematic tree connecting the initial
and goal configurations. Numerical study demonstrates that the two-stage algorithm achieves
at least 2X faster than the baseline one-stage algorithm.
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A two-stage RRT path planner for automated parking

Yebin Wang, Devesh K. Jha, and Yukiyasu Akemi

Abstract— Path planning for automated parking remains
challenged by the demand to balance general parking sce-
narios and computational efficiency. This paper proposes a
two-stage rapid-exploring random tree (RRT) algorithm to
improve the computational efficiency. At first the proposed
algorithm performs space exploration and establishes prior
knowledge, represented as waypoints, using cheap computation.
Secondly a waypoint-guided RRT algorithm, with a sampling
scheme biased by the waypoints, constructs a kinematic tree
connecting the initial and goal configurations. Numerical study
demonstrates that the two-stage algorithm achieves at least 2X
faster than the baseline one-stage algorithm.

I. I NTRODUCTION

Path planning arises in a variety of applications such
as autonomous vehicles, robotics, manufacturing, pharma-
ceutical drug design, and computer animation [1]. Many
planning algorithms have been proposed, including, to name
a few, graph-based A* [2] and D* [3]; continuous approaches
involving navigation function and potential fields [4]; more
recently, sampling-based algorithms such as probabilistic
roadmaps (PRM) [5], expansive-space trees [6], [7], rapidly-
exploring random trees (RRT) [1], [8], optimal variants RRT*
and PRM* [9], [10], and anytime RRT [11], [12].

Path planning for automated parking, characterized by a
tight free space, attracts interests from both academia and
automotive industry due to its tremendous social impacts
in the foreseeable future. Such efforts lead to a fruitful of
results. For instance, [13], [14] consider specific parking
scenarios, where the vehicle starts from a fixed location
and assumes a fixed geometry of its environment. Such
specialized methods achieve fast path generation, but is
difficult to generalize. In [15], [16], path planning is tack-
led by solving general numerical optimization problems,
which however have no guarantee of completeness. Work
[17] exploits RRT to deal with general parking tasks, but
exhibits unsatisfactory computational efficiency. Work [18]
proposes a space exploration guided heuristic search method
which relies on a circle-path connecting the initial and goal
configurations. Because the existence of such a circle-pathis
more restrictive, this algorithm is not complete. The status
quo remains challenged by the conflicting requirements on
planning algorithms: computational efficiency and capability
of dealing with generic parking tasks.
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This paper proposes a two-stage RRT path planning algo-
rithm to determine a kinematically admissible and collision-
free path between initial and goal configurations. At first,
based on geometries of the environment and the vehicle, and
initial/goal configurations, the path planner establishesprior
knowledge in the form of a plausible region which, with a
high probability, contains feasible paths. Here the plausible
region is represented by a neighborhood of a geometric
and collision-free path, which is further abstracted by a set
of milestone waypoints between initial/goal configurations.
Second, the path planner, biased by waypoints to draw
samples from the plausible region, constructs a kinematically
admissible and collision-free path. The entire algorithm
essentially explores the configuration space and determines
admissibility to system kinematics (or named after drivabil-
ity) separately. Such a treatment leads to prevailing algo-
rithms, e.g., decomposition-based approach [19]. With prior
knowledge unnecessarily in the form of a geometric path, our
work can be viewed as a randomized extension of [19]. The
multi-stage framework is motivated by the following facts

1) Sampling-based approaches highly depend on the sam-
pling schemes. The more knowledge or heuristics
exploited, the more efficient sampling is.

2) The prior knowledge or space exploration can be ob-
tained by much cheaper operation than the construction
of kinematically admissible paths. As an example,
given an obstacle-free environment, it takes about 10X
longer of time to construct a Reed-Shepp (RS) path
between two configurations than a geometric one.

In the contrast, one-stage algorithms solely rely on computa-
tionally intensive operations to accomplish space exploration
and ensure kinematical admissibility. Overall, the proposed
algorithm provides better tradeoff between computational
efficiency and completeness. However, one could expect that
the proposed algorithm, inclined to search paths in the plau-
sible region, may be stuck in local optimum compared with
one-stage algorithms. With the plausible region represented
by a collision-free and geometric path, the feasibility of the
path planning problem is resolved, and thus the proposed
algorithm bears certain anytime property [11]. Our work
is different from anytime RRT [11] in that feasibility and
optimality are explicitly addressed in two separate stages,
with cheap operation dedicated to feasibility.

This paper is organized as follows. Section II introduces
system dynamics and the path planning problem. In Sec-
tion III we analyze an one-stage RRT algorithm and present
the two-stage RRT algorithm. Simulation results are provided
in Section IV to verify the proposed algorithm. Section V



completes this paper with conclusion and future work.
Notation: A treeT is a union of a node setV ⊂ Cfree

and an edge setE, i.e., T = (V,E). An edge in E
represents a collision-free path between two nodes. A tree
T is termed a geometric tree, if its edges are geometric
paths; with kinematically admissible edges,T is a kinematic
tree. A bidirectional RRT tree is a union ofTs(Vs, Es) and
Tg(Vg, Eg). Specifically, a start treeTs(Vs, Es) has the initial
configurationX0 as its root, and a goal treeTg(Vg, Eg) has
the goal configuration as its root. For a finite setV , |V |
denotes the number of its elements.

II. PRELIMINARY

For completeness, this section reviews key concepts in
path planning. Details can be found in [20]–[23].

A. System Models

Consider a control-affine dynamical system

Ẋ = f(X) + g(X)u, (1)

whereX ∈ X ⊂ R
n is state,u ∈ U ⊂ R

m the control,f
a smooth vector field or the drift, andg = [g⊤1 , · · · , g

⊤
m]⊤

with gi a smooth vector field. System (1) is symmetric if
U is symmetric with respect to the originX = 0. An
admissibletrajectory Xt is a solution of system (1) with
given initial and final conditions andu ∈ U . A configuration
of system (1) is a complete specification of the position of
every points of that system. Theconfiguration spaceC ⊂ R

n

is a compact set representing all possible configurations of
the system. A collision-free configuration spaceCfree is the
set of configurations at which the vehicle has no intersection
with obstacles in the environment. Denote the collision
configuration spaceCobs = C\Cfree. An admissiblepath is
the image of an admissible trajectory on the configuration
spaceC.

Without loss of generality, this paper considers a front
wheel drive vehicle, which is illustrated by Fig. 1. Its
dynamics are given by the following fifth order model [21]

ẋ = cos(θ) cos(φ)v

ẏ = sin(θ) cos(φ)v

θ̇ = sin(φ)
v

l
v̇ = a1

φ̇ = a2,

(2)

where (x, y) is the coordinates of the midpointA of the
rear wheels,θ the vehicle orientation,v the velocity of the
front wheels,φ the angle between the front wheels and the
vehicle orientation,a1 the translational acceleration,a2 the
steering angular velocity, andl the distance between(x, y)
and the midpointB of the front wheels. Botha1 anda2, as
control inputs, are subject to constraints:|ai| ≤ aimax for
i = 1, 2. Also, a mechanical constraint|φ| ≤ φmax limits
the minimum turning radius and the curvature of a path. It
is desirable to perform path planning based on system (2)
because it implicitly enforces continuous differentiability of

the velocity and the steering angle. This is however non-
trivial, and thus most of literature performs path planning
based on a continuous curvature car model [24]–[26] or the
Reed-Shepp’s car model.

θ

φ

x

y

l

A

B

Fig. 1. The vehicle schematics

With the (v, φ)-dynamics omitted, system (2) is reduced
to the RS car model

ẋ = cos(θ)u1

ẏ = sin(θ)u1

θ̇ = u2,

(3)

whereu1 = cos(φ)v is the velocity along the car orientation,
andu2 = u1 tan(φ)/l is the steering control.

B. Path Planning Problem

For system (3), its kinematic state spaceX = (x, y, θ)⊤

coincides with the configuration space, i.e.,C = X . Given
geometries of obstacles and the vehicle, the configuration
spacesCobs and Cfree are well-defined. Path planning for
automated parking corresponds to the following problem.

Problem 2.1:Given an initial configurationX0 ∈ Cfree
and a goal configurationXf ∈ Cfree, and the system
kinematics (3), find a collision-free and admissible pathPt

which

1) starts atX0 and ends atXf ;
2) lies in the collision-free configuration spaceCfree;
3) satisfies the system kinematics.

Let J be a cost function that assigns to each non-trivial path
a non-negative cost. The optimal path planning is to find a
collision-free and admissible pathP∗

t : [0, 1] → Cfree that
minimizes the cost functionJ .

For brevity, a path satisfying system kinematics is admis-
sible; if additionally the path is collision-free, we call it a
collision-free and admissible path. Computation of a shortest
admissible path between two configurations for system (3),
also known the RS path, has been disclosed in [27].

A path planner solving Problem 2.1 iscomplete, meaning
that within finite time, it always finds a solution when one
exists, or indicates failure otherwise. Particularly, sampling-
based planners involve inprobabilistic completeness, which
means that the probability of finding a solution converges to
1 as time goes to infinity.

C. One-Stage RRT Planner

The one-stage RRT planner for Problem 2.1 is a com-
bination of the bidirectional RRT (bi-RRT) algorithm [23]
and the RS steering [27]. It consists of two parts: constructs



a kinematic tree connectingX0 with Xf ; and determines a
collision-free and admissible path according to the kinematic
tree. The tree construction algorithm is presented below for
comparison with the proposed algorithm.

Algorithm 1: One-Stage RRT Planner
1 Vs ← X0, Es ← ∅; Vg ← Xf , Eg ← ∅;
2 k ← 1, flag ← false;
3 Ts ← (Vs, Es); Tg ← (Vg, Eg);
4 while k < K and not flag do
5 Xrand ← Sample(C);
6 flagS ← false;
7 (Ts, flagS)← Extend(Ts, Xrand, flagS);
8 (Tg, flagG)← Extend(Tg, Xrand, flagS);
9 flag ← flagS and flagG;

10 return (Ts, Tg, flag);

A kinematic bi-RRT treeT = Ts
⋃
Tg is constructed by

Algorithms 1-3, where two kinematic RRT treesTs and
Tg grow toward each other until connected. TheSample
procedure generates a collision-free sampleXrand ∈ Cfree
according to a uniform sampling scheme. TheExtend grows
the treeT towardxrand. The configurationXrand is added
to T only if it can be connected to the nearest configuration
Xnearest ∈ V through a collision-free and admissible edge
(path). Given a configurationX1 and a node setV , the
Nearest returns the configurationXnearest ∈ V that is
closest toX1, and stays inside itsr-neighborhood defined
asV (X1) : {Y |Y ∈ V, d(X1, Y ) ≤ r}, i.e.,

Nearest(V,X1) , argminY ∈V (X1)d(X1, Y ),

whered(·, ·) is a distance function. Given two configurations
Xi, Xj ∈ Cfree, theConnect procedure determines if there
exists a collision-free RS path betweenXi andXj . For Xi

andXj, theReedShepp returns a set of admissible pathsP ,
where each elementPi ∈ P represents an RS path between
Xi and Xj . The CollisionFree(Pi) determines whether
Pi is collision-free. In theConnect, Pi is picked fromP
in the order of descending lengths, andimax controls how
many RS paths will be tested for collision.

Algorithm 2: Extend(T , Xrand, f lagS) in Algorithm 1
1 flag ← false; (V,E)← T ;
2 Xnearest ← Nearest(V,Xrand);
3 if Connect(Xnearest, Xrand) then
4 flag ← true;
5 if not flagS then
6 V ← V ∪ {Xnew};

7 E ← E ∪ {(Xnearest, Xnew)};

8 T ← (V,E);
9 return (T , flag)

Remark 2.2:In Algorithm 1, the one-stage algorithm ter-
minates the tree construction once two treesTs and Tg
connected. This can be replaced by other criterion to improve
quality of paths, for instance, imposing a threshold on the
number of nodes added to both trees. In such a case, the

Algorithm 3: Connect(Xnearest, Xrand) in Algorithm 2
1 i← 0, imax;
2 P ← ReedShepp(Xnearest, Xrand);
3 for Pi ∈ P and i ≤ imax do
4 flag ← CollisionFree(Pi);
5 if flag then
6 break;

7 return flag

output of the algorithm is a graph. For the sake of notation
brevity, this work does not distinguish these two cases, and
assumes the algorithm outputs a tree. �

III. M AIN RESULTS

We first expose limitations of the one-stage algorithm, and
then present a two-stage RRT planner.

A. Analysis of the One-Stage Algorithm

As pointed out in many literature, e.g. [22], computational
efficiency of sampling-based algorithms heavily depend on
the sampling scheme. An ideal scheme avoids sampling
configurations which are unlikely to be part of the collision-
free and admissible path. This is impossible due to lack of
prior knowledge. A sampling scheme failing to incorporate
or being lack of prior knowledge necessarily leads to low
efficiency of path planning. The one-stage algorithm takes
the uniform sampling scheme due to lack of prior knowledge
about Cfree. This is illustrated in Fig. 2, where the one-
stage algorithm samples and rejects a configurationXrand

if it is far from T . Let Ω0, the region inside the gray dash
line, denote a neighborhood ofTs; Ωf , bounded by the gray
solid line, be the neighborhood ofTg. Any sample outside
of Ω0 or Ωf will be rejected. DenoteΩ the plausible region
bounded by the solid blue line. It is clear that the distance
function d(·, ·), employed to reject potentially useless sam-
ples, could not incorporate knowledge about the plausible
regionΩ. Consequently, configurations which belongs toΩ0

but notΩ be tested and added to the tree. This unnecessarily
increases the size of the tree, and ultimately slows down its
construction. The one-stage algorithm tends to construct a
tree spanning the entire spaceCfree.

X0
Xf

Xrand

Ω0

Ωf

Cobs

Ω

Fig. 2. One-stage algorithm: tree construction

In the one-stage algorithm, space exploration and insur-
ance of drivability (or kinematic admissibility) are conducted
simultaneously. This results in two remarkable drawbacks.



The first is low computational efficiency. The space explo-
ration produces a treeT as an approximation ofCfree. In the
course of the tree construction, the space exploration incre-
mentally and iteratively tests whether a sample configuration
Xrand can be reached from the existing explored space,
represented by the treeT . Reachability fromT to Xrand

is determined by the steering method. The one-stage algo-
rithm, due to its one-stage nature, uses RS steering, which
corresponds to lines 1-6 in Algorithm 3. As shown later, it is
more effective to use Line steering in the space exploration,
because it is much more computationally efficient than the
RS steering. The second drawback is lack of flexibility
allowing buildup of knowledge during the space exploration
phase, and exploitation of the knowledge in the next phase.
In fact, because the drivability phase is more computationally
expensive, one would like to fulfill this task using as much
as information possible to reduce waste of computation
resources. The one-stage algorithm however does not offer
such possibility because, with simultaneous execution of both
phase, no extra information can be exploited in the drivability
phase, compared with the exploration phase.

B. Main Algorithm

The two-stage RRT planning algorithm addresses limita-
tions of the one-stage algorithm by

• Utilize a two-stage framework which allows space ex-
ploration and determination of drivability to progress at
different speeds or sequentially. Thus a faster space ex-
ploration stage can establish knowledge to be employed
in the slower stage for computational efficiency.

• Propose the use of cheap computation to accomplish
fast space exploration, which typically involves a large
number of low probability events (successful connection
between two configurations). With a waypoint-guided
sampling scheme, the determination of drivability in-
volves computationally expensive but high probability
events (successful kinematic connection between two
configurations).

The two-stage RRT planner is given by Algorithm 4. The
first stage, space exploration, is realized in the procedure
Waypoint, while the rest account for the second stage.

Algorithm 4: Waypoint-Guided bi-RRT Planning
1 W ← ∅;
2 W ← Waypoint(X0, Xf );
3 (Vs, Es, flag)← WGRRT(W );
4 if flag then
5 ValueIteration(Vs, Es);
6 P ← Compute(Vs, Es);
7 P ← Smooth(P );

8 return P ;

1) Comparison of RS and Line Steering:We compare
computational efficiency of two steering methods, without
considering obstacles: RS and Line, which construct an RS
path and a straight line, respectively. Performing 100,000

randomly generated steering tasks, and normalizing the com-
putation time for Line steering to 1, we learn that the RS
steering is 11 times slower.

Table I shows computational efficiency of RS and Line
steering methods with collision detection taken into account.
The computation time of Line steering has been normalized
to 1. The second column in Table I shows the computation
time of the RS steering for different values ofimax.1 The
RS steering could take up to 18 times longer than the
Line steering to compute a collision-free path, depending
on the value ofimax. The third and forth columns in Table
I list normalized probability of which the RS steering can
successfully return a collision-free and admissible path for
two configurations, where the probability of which the Line
steering can construct a collision-free and geometric pathis
normalized to 1.2 Specifically, the third column corresponds
to the case whenr = 1 is used in the procedureNearest,
whereas the forth column corresponds to the caser =
5. Table I shows that with a largerr, the probability of
constructing a collision-free path is lower. Also, the Line
steering more likely results in a collision-free path than the
RS steering except the caseimax = 48. Note that Table I
is obtained by conducting 100,000 simulations for a given
environment map and initial configuration. Although the data
could vary according to distinct environment maps and initial
configurations, no significant difference is expected.

TABLE I

COMPUTATIONAL EFFICIENCY: WITH OBSTACLES

imax Computation Probability (r=1) Probability (r=5)
1 2.02 0.82 0.83
2 2.88 0.89 0.90
3 4.01 0.93 0.93
48 17.6 1.08 1.09

2) Space Exploration:The Waypoint procedure gener-
ates a plausible region which is represented by a set of
waypointsW = {Wi, 1 ≤ i ≤ L}, based on the initial
and goal configurationsX0, Xf and the environment map.
Without loss of generality,W1 = X0 and WL = Xf .
Each waypointWi represents a collision-free configuration
in Cfree. More importantly, every two adjacent waypoints
are connected through a collision-free path, which might not
be admissible to the system kinematics (3).

Waypoint generation is supposed to be achieved through
computationally efficient operations. A simple choice is to
use a geometric path planner, deterministic or randmized.

1The parameterimax ∈ N in Algorithm 3 specifies the number of
admissible RS paths for collision detection. It is well-understood that an
RS path between any two configurations possibly admits 48 driving patterns
[27], and thus1 ≤ imax ≤ 48. With imax = 1, we only perform collision
detection for the shortest admissible path. On the other hand, imax = 48

implies that we enumerate all admissible RS paths for collision detection.
It is noteworthy that the number of driving patterns can be further reduced
to 46 [28], in which case1 ≤ imax ≤ 46.

2The probability of the Line steering forr = 1 and r = 5 is 0.1973

and 0.1939, respectively. Probability in general is less than 1. In Table I,
normalized probabilities for casesimax = 48 are greater than 1. This means
the RS steering withimax = 48 is more likely to construct a collision-free
and admissible path than the Line steering.



As an example, a standard RRT geometric planner can be
used, ignoring the vehicle kinematics (3). Different from
the one-stage algorithm, the geometric RRT planner uses
Line steering in Algorithm 3 instead of the RS steering.
Unsurprisingly, the geometric RRT planner is much more
computationally efficient to sweep through the configuration
space, and determinine whether a collision-free configuration
Xrand is reachable or not.

3) Waypoint-Guided RRT:Given the waypoint setW ,
the WGRRT procedure constructs a kinematic tree connecting
X0 and Xf in the plausible region. It can have different
implementations. For example, theWGRRT procedure can
enumerate all adjacent pairs of waypoints(Wi,Wi+1), 1 ≤
i ≤ L − 1, and constructs a bidirectional RRT tree between
each pair of(Wi,Wi+1). In the end, theWGRRT procedure
returns a kinematic treeT connectingW1 all the way toWL

by unioning all bidirectional RRT trees.
Algorithm 5 illustrates another implementation of the

WGRRT procedure used in simulation. At thekth iteration,
the BiRRT procedure constructs a kinematic tree connecting
Wi, 1 ≤ i ≤ k + 1 sequentially. After theL− 1th iteration,
the WGRRT procedure finishes the tree construction with all
waypoints connected. This procedure is further illustrated by
Fig. 3, which corresponds to the iterationk = 2. In Fig. 3,
waypoints are represented by red nodes and a kinematic tree
T1 betweenX0 andW2 has been constructed. Next, in the
2nd iteration, theWGRRT procedure constructs a kinematic
tree connecting the treeT1 with the waypointW3.

Algorithm 5: The WGRRT Procedure
1 k ← 1, L← Length(W ), flag ← true, P ← ∅ ;
2 Vs ← X0; Es ← ∅;
3 while k < L and flag do
4 Vg ←Wk+1; Eg ← ∅;
5 if BiRRT(Vs, Es, Vg, Eg) then
6 Vs ← Vs ∪ Vg;
7 Es ← Es ∪Eg;

8 else
9 flag ← false;

10 break;

11 k ← k + 1;

12 return (Vs, Es, flag);

Fig. 3 also illustrates how the two-stage algorithm im-
proves computational efficiency. Assume that the region in-
side the red dash lineΩs characterizes the prior knowledge or
the plausible region. The regionΩs defines where collision-
free and admissible paths stay and the sampling scheme
should focus on. The gray dash line defines the region close
to the kinematic treeT1. Compared with sampling fromΩ0,
samplingXrand fromΩs

⋂
Ω0 is more likely to connect with

W3 within a certain time.
A key component of theWGRRT is how to utilize waypoints

in the sampling scheme inBiRRT. We illustrate the sampling
scheme in Algorithm 5 by exemplifying the scenario given
in Fig. 3. In the course of growing the treeT1 towardW3,
we sample a new collision-free configuration according to

X0

Xf
Xrand

Ωs

Cobs

W2

W3

WL−1

Ω

Ω0

Fig. 3. Two-stage algorithm: tree construction

the following Gaussian distribution

p(Xrand = X) ∼ N (µ, σ),

whereµ = λ2W2 + λ3W3 with 0 < λ2, λ3 < 1 andλ2 +
λ3 = 1, and σ = diag(αx, αy, αθ) ‖W3 − µ‖ . Constants
αx, αy, αθ are positive.

4) Value Iteration:Given the kinematic treeT , a number
of graph-based search algorithms such A∗ and D∗ can be
applied to find a collision-free and admissible path from
X0 to Xf . These algorithms are computationally efficient,
but the path optimality depends on how good the heuristic
cost-to-go function approximates the optimal value (cost-
to-go) function. One remedy of sub-optimality is to apply
approximate dynamic programming to the treeT and obtain
the value functionv : V → R

+. This is done in the procedure
ValueIteration, which performs value iteration overV to
estimate the value function from every configuration ofV to
the goal configuration. The value iteration is guaranteed to
converge, as the number of iterations goes to infinity [29].

Algorithm 6: The ValueIteration Procedure
1 for Xi ∈ V do
2 Va(Xi)← Adjacent(V,Xi);
3 if Card(Va(Xi)) > 1 then
4 v(Xi)← minY ∈Va(Xi) (cost(Xi, Y ) + v(Y ));

It is noteworthy that the number of iterations taken to
ensure the convergence increases at least proportionally to
|V |, and the number of arithmetic operations increases at
least quadratically. In other words, value iteration couldbe
expensive. We propose to first trim the tree by removing
all leaf-nodes, and then perform value iteration over the
trimmed tree. A leaf-node is connected to only one node. It is
noteworthy that throughout extensive simulations, the two-
stage RRT algorithm typically ends up with a tree, which
contains a higher percentage of leave nodes than that by the
one-stage RRT algorithm. Hence, this further facilitates value
iteration based path generation over A∗ and D∗.

Given a kinematic treeT , the initial configurationX0

and the value functionv over V , the Compute procedure
implements policy update and returns a kinematic pathPt

connectingX0 and Xf . Given the fact that RRT planners
result in fragmental paths, theSmooth procedure smooths
the pathPt. The policy update for a known value function



is standard and can be found in [29]. A number of literature
also talked about smoothing of a given path [5]. Details about
these two procedures are therefore omitted here.

Remark 3.1:The effectiveness of the proposed algorithm
relies on the quality of waypoints, which is influenced by the
distance function. This issue is similar to A∗ which is limited
by the quality of heuristic costs, and thus can be alleviated
by similar techniques applied to treat A∗. �

C. Analysis

The two-stage algorithm can be viewed as a randomized
extension of decomposition-based path planning algorithms,
e.g. [19], and thus its analysis resorts to similar tools.
This section is included for completeness. We introduce
controllability and small-time controllability, which are es-
sential to ensure the completeness for a certain class of path
planners [21].

Definition 3.2: [21] System (1) is locally controllable
from X if the set of points reachable fromX by an
admissible trajectory contains a neighborhood ofX . It is
small-time controllable fromX if the set of points reachable
from X before a given timeT contains a neighborhood of
X for anyT .

The following Theorem gives necessary and sufficient
conditions to verify whether a driftless system is controllable.

Theorem 3.3:A symmetric system without the drift is
small-time controllable fromX if and only if the rank of
the vector space spanned by the family of vector fieldsgi
together with all their Lie brackets inn at X .

Theorem 3.4: [21, Thm. 3.1] For symmetric small-time
controllable systems, the existence of a collision-free and ad-
missible path between two given configurations is equivalent
to the existence of any collision-free path between these two
configurations.

It has been established that system (3) is symmetric, drift-
less, and small-time controllable [21]. Hence, Theorem 3.4
is applicable to system (3), and thus shows that the existence
of a collision-free and admissible path is equivalent to the
existence of a collision-free geometric path . Since the
waypoint setW implies the existence of a collision-free path
betweenX0 andXf , and the RRT algorithm to generate the
setW is probabilistic complete, so is the proposed algorithm.

IV. CASE STUDIES

We compare the one-stage algorithm with the proposed al-
gorithm by conducting simulation in MatlabR©2016b, and for
multiple environment maps. This section shows simulation
results for the environment depicted in Fig. 4, where the map
boundary is represented by a rectangle of20m×12m, and all
obstacles are rectangles with their boundaries in bold lines.
The initial and goal configurations areX0 = (−3.65, 8, 0)
and Xf = (5.25, 2, π/2), represented by gray and red
dot, respectively. The vehicle has a length of 4.85m, width
1.81m, and minimum turning radius 4.4m. Both algorithms
use the same values of parameters:r = 6, imax = 3;
and top when the number of nodes added to bothTs and
Tg reaches 100. We perform 10000 simulations and have

the average computation time:2.96sec for the one-stage
algorithm, versus1.42sec for the two-stage algorithm.

Detailed results of both algorithms are illustrated in
Figs. 4-7. Specifically, Fig. 4 plots waypoints as a result of
space exploration, where each node comes with an arrow
indicating the orientation of the vehicle. Fig. 5 plots the
kinematic tree constructed by the procedureWGRRT, where
the values next to nodes are obtained by the procedure
ValueIteration, and edges merely indicate the existence
of kinematic paths. Fig. 6 gives vehicle positions along the
collision-free and kinematic path, where green× markers
form the entire path. Fig. 7 visualizes the kinematic tree
constructed by the one-stage algorithm. Comparing with the
two-stage algorithm, one notices that the one-stage algorithm
results in a much larger tree.
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Fig. 4. Two-stage algorithm: waypoint
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Fig. 5. Two-stage algorithm: kinematic RRT tree

V. CONCLUSION AND FUTURE WORK

This paper proposes a two-stage rapid-exploring random
tree (RRT) algorithm to better balances general parking
scenarios and computational efficiency. Baseline one-stage
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Fig. 6. Two-stage algorithm: kinematic path
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Fig. 7. One-stage algorithm: kinematic RRT tree

RRT algorithm suffers low efficiency because: 1) it con-
ducts space exploration and determination of drivable paths
simultaneously, where the former could be achieved more
efficiently; 2) its simultaneous execution framework does
not allow incremental buildup beforehand and explicit ex-
ploitation of prior knowledge in the later computationally
intensive stage. Differently, the proposed algorithm splits the
space exploration and the determination of drivable paths,
where the former establishes prior knowledge by cheap
computation, and the latter exploits the prior knowledge for
computational efficiency. Numerical study demonstrated that
the two-stage algorithm speeds up the one-stage algorithm at
least 2 times. The proposed algorithm trades the optimality
for computational efficiency though. Future work includes
alternative space exploration techniques for efficiency, as
well as methods to incorporate drivability metric into the
space exploration stage for optimality.
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