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quality in unstable wireless channels. However, existing analog schemes need to transmit a
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causing large overhead and quality degradation due to rate and power losses. To reduce the
overhead while keeping the video quality high, we propose a new analog transmission scheme.
Our scheme exploits a Gaussian Markov random field (GMRF) for modeling video sequences
to significantly reduce the required amount of metadata, which are obtained by fitting into the
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test video sequences demonstrate that the proposed scheme reduces overhead by 99.7 % with
1.2 dB improvement of video quality (in terms of peak signal-to-noise ratio) compared to
the existing analog video transmission scheme. We also investigate the impact of bandwidth
limitation, showing a significant gain up to 2.7 dB for narrow-band systems.
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Abstract—Soft video delivery, i.e., analog video transmission,
has been proposed to provide high video quality in unstable
wireless channels. However, existing analog schemes need to
transmit a significant amount of metadata to a receiver for power
allocation and decoding operations causing large overhead and
quality degradation due to rate and power losses. To reduce
the overhead while keeping the video quality high, we propose a
new analog transmission scheme. Our scheme exploits a Gaussian
Markov random field (GMRF) for modeling video sequences to
significantly reduce the required amount of metadata, which are
obtained by fitting into the Lorentzian function. Our scheme
achieves not only reduced overhead but also improved video qual-
ity, by using the fitting function and parameters for metadata.
Evaluations using several test video sequences demonstrate that
the proposed scheme reduces overhead by 99.7 % with 1.2 dB
improvement of video quality (in terms of peak signal-to-noise
ratio) compared to the existing analog video transmission scheme.
We also investigate the impact of bandwidth limitation, showing
a significant gain up to 2.7 dB for narrow-band systems.

Index Terms—Soft Video Delivery, Gaussian Markov Random
Field, Overhead Reduction

I. INTRODUCTION

Video delivery is one of the major applications in the
wireless environment – according to Cisco visual network-
ing index studies, three-fourths of the world’s mobile data
traffic will be video contents by 2020 [1]. In conventional
video streaming, the digital video compression and digital
wireless transmission are carried out in sequence [2]–[4]. For
example, the video compression part uses H.264/Advanced
Video Coding (AVC) [5] or H.265/High-Efficiency Video
Coding (HEVC) [6] standards to generate a compressed bit
stream using quantization and entropy coding. The wireless
transmission part uses channel coding and a digital modulation
scheme to reliably transmit the encoded bit stream.

However, the conventional scheme has the following prob-
lems due to the unreliable wireless channel. First, the encoded
bit stream is highly vulnerable to bit errors. When the chan-
nel’s signal-to-noise ratio (SNR) falls under a certain thresh-
old, the video quality drops significantly. This phenomenon
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is referred to as the cliff effect. Second, the video quality
does not gracefully improve even when the wireless channel
quality is improved. Finally, quantization is a lossy process,
whose distortion cannot be recovered at the receiver. Some
studies [7], [8] have been proposed to mitigate the cliff effect
in the digital video transmission by introducing layered source
coding and layered channel coding. However, in these studies,
the cliff effect is converted into the so-called staircase effect
[9]. In the staircase effect, the video quality discontinuously
improves as the wireless channel quality improves.

To overcome the above-mentioned problems, analog trans-
mission schemes [10]–[19] have been proposed. For example,
SoftCast [10] directly transmits linearly-transformed video
signals over a lossy channel and allocates power to the
signals to maximize video quality, instead of using digital
video compression and digital modulation. In contrast to the
conventional digital scheme, the video quality of SoftCast
can be gracefully improved according to the wireless channel
quality.

However, the performance of SoftCast depends strongly on
the chunk size. In SoftCast, a sender allocates transmission
power to the video signals such that the receiver noise can be
minimized. The power allocation is based on the power of each
linearly-transformed video signal. Hence, the sender needs to
transmit the power information of all the video signals without
errors to decode the signals at the receiver. The transmission
of this metadata causes large overhead, resulting in video
quality degradation due to power and rate loss. To reduce
metadata overhead, SoftCast therefore divides the signals into
multiple chunks and transmits a smaller number of metadata
corresponding to each chunk. In turn, the chunk division may
degrade performance due to improper power allocation, in
particular when a large chunk size is used for lower overhead.

To improve performance, some analog schemes adopted
coset coding [11]–[13], motion-compensated temporal filter-
ing [14], compressive sensing [15], [16], and subcarrier as-
signment [17]. However, all these methods do not consider the
effect of chunk size. Although the trade-off between chunk
size and video quality were discussed in [20], proposals to
reduce the overhead were beyond the scope of the paper.

In this paper, we propose a new analog scheme with-
out chunk division to overcome the issues of conventional
analog schemes. To obtain the power values of linear-
transformed video signals without transmitting large-overhead
metadata, our scheme uses a Gaussian Markov random field
(GMRF) [21], [22] to model video signals and exploits a
Lorentzian-based fitting function at the sender and the receiver.
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Specifically, the sender finds a few parameters for the fitting
function from video sequences and sends the parameters as
metadata to the receiver. The receiver obtains the power
values from the fitting function. Evaluations using test video
sequences show that the proposed scheme improves video
quality by 1.2 dB with 99.7 % reduction in the overhead.

Our contribution is two-fold: 1) we verify that the power
of the linear-transformed video signals are well fit by a
Lorentzian-based function when the video signals can be
modeled using GMRFs and 2) we propose fitting-based power
allocation and signal reconstruction to achieve improved video
quality and reduced overhead simultaneously.

In [23], we have reported a preliminary analysis of the
GMRF-based analog scheme for overhead reduction and high
video quality. In this paper, we first extend the method reported
in [23] to further reduced overhead for metadata transmissions.
We demonstrate the overhead of our scheme can be further
reduced by 52 % compared to that of the proposed scheme
in [23]. In addition, we enhance the performance evaluations
to demonstrate the advantage of the proposed scheme in the
presence of bandwidth limitation. We use Huffman coding
for metadata compression to evaluate how much metadata is
required to send in a realistic analog system. We then consider
a bandwidth constraint for the proposed and conventional
analog schemes to evaluate the impact of overhead reduction
on video quality. We also consider structural similarity (SSIM)
[24] besides conventional peak signal-to-noise ratio (PSNR)
to evaluate video quality. From the evaluations, it is verified
that our scheme outperforms conventional analog schemes
with arbitrary chunk size in both broad- and narrow-band
environments.

II. SOFT VIDEO DELIVERY

The purposes of our proposed scheme are 1) to achieve
video quality that gracefully improves according to the wire-
less channel quality and 2) to reduce the amount of metadata.
Fig. 1 shows the schematic of our proposed scheme. The
encoder first performs a three dimensional (3D) discrete cosine
transform (DCT) operation on the original video frames.
According to the power of the DCT coefficients, we find the
best parameters of a fitting function based on GMRF model.
The DCT coefficients are then scaled and analog-modulated
according to these fitting parameters. Finally, the encoder
sends the analog-modulated symbols and the fitting parameters
to the receiver over a wireless channel with additive white
Gaussian noise (AWGN). At the receiver side, the decoder
uses minimum mean-square error (MMSE) filter based on the
received fitting parameters. The DCT coefficients are obtained
from the received analog-modulated symbols through the use
of MMSE filtering.

A. Encoder

The encoder first preforms 3D-DCT operation on the origi-
nal sequence to obtain the DCT coefficients. 3D-DCT is used
for whole frames in one group of pictures (GoP), which is
a sequence of successive video frames. The DCT coefficients

are mapped to I (in-phase) and Q (quadrature) components
after the following power allocation.

Let xi denote the ith analog-modulated symbol. Each
analog-modulated symbol is scaled by gi for noise reduction:

xi = gi · si. (1)

Here, si is the ith DCT coefficient and gi is the scale
factor which determines the coefficient’s power allocation. The
transmitter performs optimal power control by selecting gi to
achieve the highest video quality. Specifically, the best gi is
obtained by minimizing the mean-square error (MSE) under
the power constraint with total power budget P as follows:

min MSE = E
[
(xi − x̂i)2

]
=

N∑
i

σ2λi
g2i λi + σ2

, (2)

s.t.
1

N

N∑
i

g2i λi = P, (3)

where E[·] denotes expectation, x̂i is an estimate of the
transmitted symbol, λi is the power of ith DCT coefficient, N
is the number of DCT coefficients, and σ2 is a receiver noise
variance. The near-optimal solution is expressed as

gi = λ
−1/4
i

√
P∑
j

√
λj
. (4)

B. Decoder

After transmission over the wireless channel, each symbol
at the receiver can be modeled as follows:

yi = xi + ni, (5)

where yi is the ith received symbol and ni is an effective noise
having a variance of σ2. The receiver extracts DCT coefficients
from I and Q components, and reconstructs the coefficients
using MMSE filter [25] as follows:

ŝi =
giλi

g2i λi + σ2
· yi. (6)

We note that the loss-free channel model can be readily
extended to the lossy wireless channel model, where the
receiver can fail the detection of DCT coefficients due to
intereference. For such a case, the lost coefficients are regarded
as zeros, as in [26]. Detail analysis for lossy channels will
be left as future works, and we focus on loss-free AWGN
channels in this paper. The decoder then obtains corresponding
video sequence by taking the inverse 3D-DCT for the filter
output ŝi.

C. Overhead Reduction

In order for the receiver to carry out MMSE filtering in
(6), the sender needs to transmit λi of all coefficients without
errors as metadata, which may constitute a large overhead.
For example, when the sender transmits eight video frames
with the resolution of 352× 288, the sender needs to transmit
metadata for all DCT coefficients, i.e., 352×288×8 = 811,008
variables in total, to the receiver – a total of 5.8 bits/pixel
after Huffman coding. This overhead induces performance
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Fig. 2. First-order GMRF model for video signals.

degradation due to rate and power losses in transmission
of analog-modulated symbols. To reduce the overhead, con-
ventional methods divide the DCT coefficients into chunks
and carry out power allocation and MMSE filter for each
chunk. However, overhead is still high and the chunk division
causes performance degradation due to a loss of optimality
for power allocation with respect to (6). When the chunk
size is 44 × 36 pixels, 512 variables of metadata are still
required every eight frames. Although the amount of metadata
is reduced to approximately 4.7 · 10−3 bits/pixel in this large
chunk size, the video quality can be significantly degraded.

In order to reduce overhead while keeping video quality
high, we use a fitting function to approximate the power values
λi for a variety of video sequences. To this end, we use a
GMRF to model video signals. Based on the model, we verify
λi, except direct current (DC) component, can be fit by a
Lorentzian function with four parameters. The details of the
derivation are described in Sec. II-D. Our scheme uses λ̂i,
an estimate of the power of DCT coefficients, obtained from
the fitting function, for the power allocation and MMSE filter.
To share the same λ̂i at both the sender and the receiver, our
scheme just needs to transmit five metadata variables (i.e., four
fitting parameters and DC component of DCT coefficients),
which can be also compressed by Huffman coding. Here, the
amount of metadata is approximately 1.5 ·10−5 bits/pixel. We
assume that the encoder uses 1/2-rate convolutional coding
and binary phase-shift keying (BPSK) for the compressed
metadata transmissions.

D. GMRF-Based Fitting Function
We use a simple first-order GMRF to model video signals as

shown in Fig. 2. In the video signals, each pixel is connected
to three neighboring pixels, in each of the horizontal, vertical,
and time directions. Each direction has different correlations,
which are defined as pH, pV, and pT, respectively. Note that
the correlation between any two pixels can be described as
pdHH · p

dV
V · p

dT
T , where dH, dV, and dT are horizontal, vertical,

and time distances between the pixels, respectively.
The DCT can be regarded as a discrete-time real-valued ver-

sion of the Fourier transform. For our case, the Fourier trans-
form of the video signal’s auto-correlation function represents
the power spectral density by the Wiener–Khintchine theorem,
assuming that the video source is wide-sense stationary. For
3D video signals following the GMRF, the power spectrum
density of 3D-DCT coefficients can be asymptotically obtained
by the Lorentzian function as follows:

F (i, j, k) = β′ · 1

1 + f21 (i)
· 1

1 + f22 (j)
· 1

1 + f23 (k)
, (7)

β′ =
β

| log(pH) · log(pV) · log(pT)|
, f1(i) =

α1

| log(pH)|
πi

NH
,

f2(j) =
α2

| log(pV)|
πj

NV
, f3(k) =

α3

| log(pT)|
πk

NT
, (8)

where NH, NV, and NT are the number of coefficients in hor-
izontal, vertical, and time domains, respectively. Here, αk and
β are parameters for fitting. Note that above equations express
the power spectrum density of the DCT coefficients except
the DC component. Our scheme ignores the DC component
from fitting operation because the DC component cannot be
modeled by the Lorentzian function.

In [23], we considered all eight parameters (pH, pV, pT,
α1, α2, α3, β, and DC component) as metadata. In this
paper, to further reduce the overhead without any penalty, the
sender transmits five fitting parameters of α′1 = α1/| log(pH)|,
α′2 = α2/| log(pV)|, α′3 = α3/| log(pT)|, β′, and DC com-
ponent, as the metadata. In addition, we employ Huffman
coding to compress the fitting parameters before transmission.
In consequence, the proposed scheme can reduce overhead
from 2.9·10−5 to 1.5·10−5 bits/pixel. This overhead is enough
small compared to an acceptable overhead in real-life video
streaming services [27], i.e., around 0.1 bits/pixel.

E. Correlation Coefficient
To calculate the fitting function, the encoder estimates

the horizontal, vertical, and time correlations of the video
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Fig. 3. Fitting correlation coefficients of akiyo.

sequence, by fitting an empirical auto-correlation function to
an exponential function of the form f(x) = px with p being
a correlation factor to be estimated by means of least-squares
methods. Fig. 3 shows an example of fitting curves for hori-
zontal, vertical, and time correlation coefficients for the video
sequence akiyo. Here, we obtain the estimated parameters pH,

(a) Empirical

(b) Fitting

Fig. 4. Power values of DCT coefficients for akiyo: (a) empirical, and
(b) fitting. Here, NMSE between empirical and fitting values is lower than
−22 dB.

pV, and pT of 0.98, 0.98, and 0.99, respectively. From this
figure, it is expected that the simple GMRF model depicted
in Fig. 2 can capture some useful statistics of real video
sequences. We note that the prediction error of autocorrelation
between real and fitted values can be reduced by using higher-
order Markov model. Detailed analysis with more complicated
model will be left as future work.

With the estimated correlations, the encoder finds the other
fitting parameters based on the empirical power of the non-
DC components by least-squares fitting. Note that the com-
putational complexity of the fitting function is the same order
as that of calculating mean and variance in each chunk for
conventional SoftCast schemes. The encoder then reproduces
the power of DCT coefficients using the estimated parameters
and fitting function. Fig. 4 shows the empirical and fitting
power of DCT coefficients within one video frame for the
video sequence of akiyo. It was found that the estimation error
is small enough for real video sequences; more specifically, the
normalized mean-square error (NMSE) between empirical and
fitting values is approximately −27.1 dB on average across
test video sequences of akiyo, foreman, mobile, coastguard,
and news [28]. The proposed scheme can significantly reduce
the overhead by transmitting just five values regardless of the
video size.
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Fig. 5. NMSE vs. SNR for synthetic video sequence generated by GMRF: (a) 0.1 correlation, (b) 0.3 correlation, (c) 0.5 correlation, (d) 0.7 correlation, (e)
0.9 correlation, and (e) average across 0.1 to 0.9 correlations.

III. PERFORMANCE EVALUATION

A. Simulation Settings

Metric: We evaluate the performance of reference schemes in
terms of the NMSE, PSNR, and SSIM [24]. NMSE and PSNR
are defined as follows:

NMSE = 10 log10
εMSE∑N
i s

2
i

, (9)

PSNR = 10 log10
(2L − 1)2

εMSE
, (10)

where L is the number of bits used to encode pixel luminance
(typically eight bits), and εMSE is the MSE between all pixels
of the decoded and the original video. SSIM can predict
the perceived quality of video streaming. Larger values of
SSIM close to 1 indicates higher perceptual similarity between
original and decoded images. We obtain the average NMSE,
PSNR, and SSIM across the entire video sequence.
Test Video: We use standard reference video, namely, fore-
man, akiyo, mobile, coastguard, news, crew, football, bus, con-
tainer, flower, stefan, silent, tempete, waterfall, bridge-close,
bridge-far, paris, and highway in the CIF format (352× 288
pixels, 30 frames per second) from the Xiph collection [28]. In
addition, we also use high resolution videos, namely, Johnny
and KristenAndSara, in the HD format (1280×720 pixels, 60
frames per second) to discuss an effect of the proposed fitting
function in high resolution videos. Here, we set the size of
each GoP to eight frames.
Amount of Metadata: As we mentioned in Sec. II-C, the
proposed scheme sends five metadata variables for one GoP se-
quence. Conventional schemes of soft video delivery transmit
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Fig. 6. Average NMSE (across correlations between 0.1 and 0.9) vs. amount
of metadata (bits/pixel) at a channel SNR of 10 dB.

mean and variance as metadata variables for each chunk. Both
methods use Huffman coding to obtain the size of compressed
metadata in one GoP, and then divides the size of compressed
metadata by the number of pixels in one GoP.

B. Synthetic Video Signals from GMRF

Before analyzing real video sequences, we first evaluate
our proposed scheme for virtual/synthetic video sequences
generated from GMRF model. We assume that the resolution
of the signals is 256 × 256 × 8 and the correlations of
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three domains (horizontal, vertical, and time) are identical.
We set the mean and variance of the signals are 128 and
1, respectively. For the comparison, we measure NMSE of
the proposed and three SoftCast schemes with different chunk
sizes: 1×1, 2×2, and 4×4 pixels. The corresponding amount
of metadata in SoftCast becomes 2.2 · 100, 5.1 · 10−1, and
1.3 · 10−1 bits/pixel on average, respectively. On the other
hand, the amount of metadata in the proposed scheme is
2.3·10−5 bits/pixel. Fig. 5 shows the NMSE with the different
correlations: (a) 0.1, (b) 0.3, (c) 0.5, (d) 0.7, (e) 0.9, and (f)
average across 0.1 to 0.9. From these figures, we observe the
following two points:
• NMSE of the proposed scheme is lower than SoftCast

with a chunk size of 4× 4 pixels irrespective of correla-
tions. It is verified that the proposed scheme can reduce
the amount of metadata by 99.98% while keeping video
quality higher compared to SoftCast.

• At a correlation of 0.9, NMSE of the proposed scheme
approaches that of SoftCast with a chunk size of 2 ×
2 pixels. Thus, it will bring high performance in video
delivery since video signals have a high correlation in
horizontal, vertical, and time domains.

• SoftCast with a smallest chunk size of 1×1 pixels, which
is an idealistic case, achieves the lowest NMSE. However,
the amount of metadata is 9.2 · 104 times larger than
the proposed scheme. A large overhead will cause power
and rate losses on transmissions of analog-modulated
symbols.

Fig. 6 shows the average NMSE across correlations of 0.1
to 0.9 with the different chunk sizes at an SNR of 10 dB.
Here, we evaluate NMSE of SoftCast with nine chunk sizes:
1 × 1, 2 × 2, 4 × 4, 8 × 8, 16 × 16, 32 × 32, 64 × 64,
128× 128, and 256× 256 pixels. The corresponding amount
of metadata is 2.2 · 100, 5.1 · 10−1, 1.3 · 10−1, 3.2 · 10−2,
8.0 · 10−3, 2.0 · 10−3, 5.0 · 10−4, 1.3 · 10−4, and 3.4 · 10−5
bits/pixel. This figure demonstrates that the proposed scheme
significantly outperforms the SoftCast in both video quality
and overhead. For example, the proposed scheme improves
NMSE approximately by 40.9 dB compared to SoftCast with
a chunk size of 256× 256 pixels for a comparable overhead.
In addition, we can see that the proposed scheme can still
yield better performance over SoftCast with a large overhead
of 10−1 bits/pixel since the power values of DCT coefficients
can be estimated by fitting the Lorentzian function with high
accuracy.

C. Real Video Sequences

The previous section demonstrated that the proposed scheme
approaches the performance of SoftCast with large overhead
and small chunk sizes when video signals are generated from
GMRF. However, real video sequences may not follow the
model and this model mismatch induces estimation errors.
To evaluate the effect on real video sequences, this section
uses the 18 test sequences listed in Table I. These video
sequences are also used to discuss the performance of the
proposed scheme in various different conditions having high
and low motion videos. In particular, the videos of bus and

TABLE I
PARAMETERS FOR FITTING FUNCTION

Video Sequence pH pV pT α1 α2 α3 β
Akiyo 0.98 0.98 0.99 0.06 1.75 0.06 86.60

Foreman 0.98 0.97 0.96 0.08 1.69 0.07 194.56
Mobile 0.97 0.94 0.93 0.10 0.15 0.04 4.98

Coastguard 0.99 0.98 0.96 0.02 1.28 0.04 18.21
News 0.97 0.97 0.99 0.17 1.71 0.07 1756.81
Crew 0.95 0.99 0.96 0.13 0.08 0.15 2.34

Football 0.95 0.93 0.86 0.23 0.12 0.16 27.30
Bus 0.98 0.89 0.85 0.36 0.08 0.06 7.39

Container 0.99 0.95 0.99 0.10 1.80 0.01 142.16
Flower 0.98 0.98 0.93 0.01 0.05 0.03 0.12
Stefan 0.98 0.93 0.85 0.17 0.05 0.07 3.45
Silent 0.99 0.98 0.99 0.03 1.78 0.02 36.00

Tempete 0.97 0.92 0.96 0.17 1.52 0.05 498.09
Waterfall 0.99 0.98 0.99 0.03 1.30 0.02 31.59

Bridge-close 0.99 0.97 0.99 0.01 1.60 0.01 20.31
Bridge-far 0.99 0.98 0.99 0.01 137.39 0.01 32274.80

Paris 0.97 0.94 0.98 0.16 1.11 0.03 395.62
Highway 0.99 0.99 0.99 0.01 2.35 0.03 35.26

football contain high-motion objects. Table I lists the values
of fitting parameters of each video sequence in the first GoP.
It is interesting to note that the correlation factors pH, pV,
and pT are nearly identical. If we exploit this observation by
using an averaged common value for α1, α2, and α3, we can
further reduce the metadata from five values to three values
with a slight performance penalty (approximately 1 dB loss).
We note that SoftCast schemes in our evaluations do not use

the Hadamard transform, which was originally used in [10]
to protect chunks against packet loss. In our evaluations, we
consider the case when the wireless channel is loss-free but
noisy, and thus the SoftCast with and without the Hadamard
transform perform almost identically.

1) Overhead Reduction: We first evaluate overhead in the
proposed and existing schemes in terms of bits/pixel. Table II
shows the amount of metadata in each chunk size with
different video sequences. The results show that irrespective of
the test video sequence the proposed scheme requires the least
amount of metadata. This reduction saves transmission power
and leads to additional quality improvement by allocating the
saved power to the transmission of analog-modulated symbols.
For example, the proposed scheme reduces the metadata by
approximately 99.7 % compared to SoftCast with a default
chunk size of 44×36 pixels and 72.4 % compared to SoftCast
with a largest chunk size of 352×288 pixels on average across
18 test video sequences.

2) Video Quality: The discussion above revealed that the
proposed scheme achieves the smallest overhead compared to
SoftCast with arbitrary chunk sizes. This section compares
video quality of the proposed and conventional schemes with
the different chunk sizes to demonstrate the benefit of the
proposed scheme. Fig. 7 shows the average PSNR performance
across 18 test video sequences as a function of channel SNR.
Here, we select four sizes of chunks for SoftCast: 1×1, 2×2,
44×36, and 352×288 pixels. SoftCast with chunk size of 1×1
represents the ideal case in terms of quality, 2×2 achieves the
second highest performance, 44× 36 is a default chunk size,
and 352× 288 has almost the same overhead as the proposed
scheme. The key results from this figure are summarized as
follows:
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TABLE II
AMOUNT OF METADATA IN THE PROPOSED AND CONVENTIONAL SOFTCAST SCHEMES

Video Amount of metadata (bits/pixel) at different chunk sizes
Sequence 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 11 × 9 22 × 18 44 × 36 88 × 72 176 × 144 352 × 288 Proposed

Akiyo 3.0 1.3 0.29 7.0 · 10−2 1.7 · 10−2 4.5 · 10−2 1.1 · 10−2 2.5 · 10−3 6.2 · 10−4 1.5 · 10−4 5.5 · 10−5 1.5 · 10−5

Foreman 6.0 2.6 0.65 1.6 · 10−1 3.7 · 10−2 1.0 · 10−1 2.4 · 10−2 5.5 · 10−3 1.2 · 10−3 2.6 · 10−4 5.5 · 10−5 1.5 · 10−5

Mobile 8.8 3.8 0.93 2.2 · 10−1 5.0 · 10−2 1.4 · 10−1 3.1 · 10−2 6.5 · 10−3 1.4 · 10−3 2.8 · 10−4 5.5 · 10−5 1.5 · 10−5

Coastguard 6.2 2.8 0.67 1.5 · 10−1 3.5 · 10−2 9.6 · 10−2 2.2 · 10−2 5.2 · 10−3 1.2 · 10−3 2.7 · 10−4 4.9 · 10−5 1.5 · 10−5

News 4.9 2.2 0.48 1.1 · 10−1 2.6 · 10−2 7.0 · 10−2 1.7 · 10−2 4.0 · 10−3 9.4 · 10−4 2.3 · 10−4 5.5 · 10−5 1.5 · 10−5

Crew 6.3 2.3 0.56 1.3 · 10−1 3.1 · 10−2 8.4 · 10−2 2.0 · 10−2 4.7 · 10−3 1.1 · 10−3 2.6 · 10−4 5.5 · 10−5 1.5 · 10−5

Football 8.8 3.3 0.78 1.8 · 10−1 3.9 · 10−2 1.1 · 10−1 2.5 · 10−2 5.5 · 10−3 1.2 · 10−3 2.7 · 10−4 5.5 · 10−5 1.5 · 10−5

Bus 9.1 3.4 0.82 1.9 · 10−1 4.2 · 10−2 1.2 · 10−1 2.6 · 10−2 5.9 · 10−3 1.3 · 10−3 2.8 · 10−4 4.9 · 10−5 1.5 · 10−5

Container 5.7 2.1 0.50 1.1 · 10−1 2.6 · 10−2 7.0 · 10−2 1.6 · 10−2 3.8 · 10−3 9.0 · 10−4 2.2 · 10−4 4.6 · 10−5 1.5 · 10−5

Flower 11.0 3.8 0.92 2.2 · 10−1 4.9 · 10−2 1.4 · 10−1 3.1 · 10−2 6.8 · 10−3 1.5 · 10−3 2.8 · 10−4 5.5 · 10−5 1.5 · 10−5

Stefan 8.7 3.3 0.82 1.9 · 10−1 4.4 · 10−2 1.2 · 10−1 2.8 · 10−2 6.1 · 10−3 1.2 · 10−3 2.7 · 10−4 5.5 · 10−5 1.5 · 10−5

Silent 5.3 1.9 0.44 1.0 · 10−1 2.4 · 10−2 6.6 · 10−2 1.5 · 10−2 3.7 · 10−3 8.8 · 10−4 2.1 · 10−4 4.7 · 10−5 1.5 · 10−5

Tempete 9.1 3.3 0.80 1.8 · 10−1 4.2 · 10−2 1.2 · 10−1 2.6 · 10−2 6.0 · 10−3 1.3 · 10−3 2.8 · 10−4 5.5 · 10−5 1.5 · 10−5

Waterfall 6.3 2.4 0.56 1.3 · 10−1 3.0 · 10−2 8.2 · 10−2 1.9 · 10−2 4.5 · 10−3 1.0 · 10−3 2.5 · 10−4 5.5 · 10−5 1.5 · 10−5

Bridge-close 7.5 2.7 0.63 1.4 · 10−1 3.3 · 10−2 9.1 · 10−2 2.1 · 10−2 5.0 · 10−3 1.1 · 10−3 2.6 · 10−4 5.3 · 10−5 1.5 · 10−5

Bridge-far 6.0 2.1 0.50 1.1 · 10−1 2.7 · 10−2 7.1 · 10−2 1.7 · 10−2 4.1 · 10−3 9.8 · 10−4 2.3 · 10−4 5.1 · 10−5 1.5 · 10−5

Paris 9.0 3.3 0.80 1.8 · 10−1 4.1 · 10−2 1.1 · 10−1 2.6 · 10−2 6.0 · 10−3 1.3 · 10−3 2.7 · 10−4 5.5 · 10−5 1.5 · 10−5

Highway 7.1 2.5 0.61 1.4 · 10−1 3.2 · 10−2 8.7 · 10−2 2.1 · 10−2 5.0 · 10−3 1.2 · 10−3 2.7 · 10−4 5.5 · 10−5 1.5 · 10−5

Average 6.7 2.7 0.64 1.5 · 10−1 3.4 · 10−2 9.4 · 10−2 2.2 · 10−2 4.9 · 10−3 1.1 · 10−3 2.5 · 10−4 5.4 · 10−5 1.5 · 10−5
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Fig. 7. Average PSNR across 18 test video sequences vs. channel SNR with
different chunk size. The corresponding amount of metadata in SoftCast and
proposed schemes is 6.7·100, 2.7·100, 4.9·10−3, 5.4·10−5, and 1.5·10−5

bits/pixel, respectively.

• The proposed scheme achieves higher video quality com-
pared to SoftCast with the default chunk size of 44× 36.

• Video quality of SoftCast with the largest chunk size is
significantly lower than the proposed scheme even with
small overhead.

For example, the proposed scheme improves PSNR perfor-
mance approximately by 0.1 dB compared to SoftCast with
the chunk size of 44 × 36 pixels and 11.4 dB compared to
SoftCast with the chunk size of 352× 288 pixels on average
across channel SNRs of 0 to 25 dB. In addition, the quality
differences between the proposed scheme and SoftCast with
chunk size of 2 × 2 and 1 × 1 pixels are 5.8 dB and 6.3 dB
on average, respectively. Note that the PSNR performance
degradation does not much affect visual quality in the proposed
scheme as shown in Figs. 9 and 10.

In addition to PSNR performance, we also evaluate video
quality of the proposed and conventional SoftCast in terms of
SSIM. Fig. 8 shows the average SSIM performance across 18
test video sequences as a function of channel SNR. It is shown
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Fig. 8. Average SSIM across 18 test video sequences vs. channel SNR with
different chunk size.

in this figure that the proposed scheme outperforms SoftCast
with a chunk size of 44×36 pixels in a low channel SNR. For
example, the proposed scheme achieves SSIM improvement up
to 0.03 and 0.50 over SoftCast with the chunk sizes of 44×36
and 352× 288 pixels at a channel SNR of 0 dB, respectively.
In addition, the average SSIM of the proposed scheme is only
0.01 worse than idealistic SoftCast with a smallest chunk size
of 1×1 pixels at SNRs of 15–25 dB. It means that the proposed
scheme can yield almost the same perceptual video quality
compared to SoftCast having much larger overhead.

Finally, Figs. 9 and 10 compare the visual quality of the
proposed and existing schemes for the video sequences of
foreman and mobile. The video frame is transmitted at the
channel SNR of 10 dB. For foreman, the PSNRs achieved
by SoftCast with chunk size of 1 × 1, 2 × 2, 44 × 36, and
352×288 pixels are 41.9 dB, 41.7 dB, 34.5 dB, and 21.3 dB,
respectively, whereas 36.2 dB is achieved by the proposed
scheme. The SSIMs achieved by SoftCast with chunk size
of 1 × 1, 2 × 2, 44 × 36, and 352 × 288 pixels are 0.97,
0.97, 0.91, and 0.31, respectively, while the proposed scheme
shows 0.92 SSIM index. From the snapshots, we can clearly
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(a) Original (b) SoftCast with 1 × 1
chunk size
PSNR: 41.9 dB
SSIM: 0.97

(c) SoftCast with 2 × 2
chunk size
PSNR: 41.7 dB
SSIM: 0.97

(d) SoftCast with 44×36
chunk size
PSNR: 34.5 dB
SSIM: 0.91

(e) SoftCast with 352 ×
288 chunk size
PSNR: 21.3 dB
SSIM: 0.31

(f) Proposed
PSNR: 36.2 dB
SSIM: 0.92

Fig. 9. Snapshot of foreman (frame #1) in each scheme at an SNR of 10 dB.

(a) Original (b) SoftCast with 1 × 1
chunk size
PSNR: 33.5 dB
SSIM: 0.92

(c) SoftCast with 2 × 2
chunk size
PSNR: 33.3 dB
SSIM: 0.92

(d) SoftCast with 44×36
chunk size
PSNR: 29.4 dB
SSIM: 0.86

(e) SoftCast with 352 ×
288 chunk size
PSNR: 20.7 dB
SSIM: 0.59

(f) Proposed
PSNR: 28.7 dB
SSIM: 0.85

Fig. 10. Snapshot of mobile (frame #1) in each scheme at an SNR of 10 dB.

see that SoftCast schemes with large chunk sizes provide low-
quality images. In contrast, the proposed scheme achieves a
clean image with details and almost the same visual compared
to SoftCast schemes with a small chunk size.

D. Discussion on Bandwidth Limitation

Above evaluations assumed that all schemes can transmit
all DCT coefficients and metadata to the receiver without any
constraints. However, conventional SoftCast schemes need to
send more metadata than our scheme to achieve high video
quality. To evaluate an impact of overhead reduction of the
proposed scheme on video quality, this section considers the
identical bandwidth constraint over the proposed and existing
schemes for fair comparisons.
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Fig. 12. Average SSIM performance across 18 test video sequences vs.
channel SNRs at a channel symbol rate of 1.5 Msymbols/sec.

For the comparison, we set the same channel symbol
rate over the proposed and existing schemes. Each scheme
sends both analog-modulated symbols and BPSK-modulated
metadata symbols with 1/2-rate convolutional coding at a
certain channel symbol rate. When the total number of mod-
ulated symbols exceeds the maximum number of transferable
symbols at the channel symbol rate, a sender discards analog-
modulated symbols from the ones having smaller power to
constrain the total number of transmission symbols. In this
case, the receiver regards the discarded coefficients as ze-
ros. We first use the channel symbol rate of approximately
1.5 Msymbols/sec, within which the proposed scheme can
send all the analog-modulated and BPSK-modulated symbols,
and later compare the video quality for lower channel symbol
rates.

Figs. 11 and 12 show the average PSNR and SSIM per-
formance across 18 test video sequences as a function of
channel SNR at a channel symbol rate of 1.5 Msymbols/sec,
respectively. We compare SoftCast with chunk size of 8 × 8,
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Fig. 13. Average PSNR performance across 18 test video sequences vs.
channel symbol rate at a channel SNR of 10 dB.

11 × 9, 44 × 36, and 352 × 288 pixels. Note that we do not
present the results of SoftCast schemes with smaller chunk size
such as 4× 4 pixels in those figures because the performance
results were extremely poor due to the large overhead.

These results show that the proposed scheme achieves
higher video quality compared to SoftCast schemes with a
small chunk size in high channel SNRs at the same bandwidth
constraint. For example, the proposed scheme achieves PSNR
improvement by 1.7, 0.4, 0.1, and 11.2 dB over SoftCast with
the chunk size of 8×8, 11×9, 44×36, and 352×288 pixels, re-
spectively, across channel SNRs of 0 dB to 25 dB.In addition,
PSNR of SoftCast with a small chunk size is saturated at high
channel SNRs. Since DCT coefficients with small power are
discarded to satisfy the bandwidth constraint, the improvement
of video quality is limited in high channel SNR regimes. We
also confirmed that the impact of metadata transmission failure
was marginal for both SoftCast and our method in channel
SNRs greater than 0 dB when using 1/2-rate convolutional en-
coding for metadata. Although higher code rates for metadata
transmission can degrade the performance more significantly,
the impact can be negligible in high SNR regimes.

Figs. 13 and 14 show the average PSNR and SSIM perfor-
mance across 18 test video sequences as a function of channel
symbol rate at a channel SNR of 10 dB, respectively. Note that
results of SoftCast with chunk size of 8× 8 and 11× 9 pixels
at a low channel symbol rate are not shown in those figures
because the same reason as above. We note that the proposed
scheme outperforms SoftCast schemes even in narrow-band
environment. In particular, video quality at the channel symbol
rate between 0.3 and 1.35 Msymbols/sec is slightly better than
the case at a channel symbol rate of 1.5 Msymbols/sec because
DCT coefficients with too small power can waste transmission
power. For example, the proposed scheme improves PSNR
performance by 7.0, 5.0, 2.7, and 11.7 dB in comparison to
SoftCast with a chunk size of 8 × 8, 11 × 9, 44 × 36, and
352× 288 pixels, respectively, across channel symbol rates of
0.15 to 1.5 Msymbols/sec.
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E. Discussion on High-Resolution Videos

Previous sections used low-resolution videos, i.e., CIF for-
mat, to demonstrate an impact of the proposed scheme. Here,
we discuss the effect of our proposed fitting function on high
resolution videos. Fig. 15 shows the SSIM performance of
SoftCast and the proposed schemes using two video sequences,
namely, Johnny and KristenAndSara, in the HD format at a
channel symbol rate of 19.3 Msymbols/sec. In this case, we
use three chunk sizes, i.e., 8× 8, 16× 16, and 320× 180, in
SoftCast.

From this figure, we can see that the proposed scheme can
yield better video quality even in high-resolution videos, and
thus it is confirmed that the proposed fitting function is effec-
tive irrespective of video resolutions. In addition, comparing
with Fig. 8, it was found that our proposed scheme may be
more effective for higher resolutions. This may be because the
amount of metadata in SoftCast schemes increases in higher-
resolution videos, while that in the proposed scheme does
not depend on the video resolution. The increase of metadata
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causes degradation of video quality due to the deletion of more
DCT coefficients for band-fair comparisons.

IV. RELATED RESEARCH

Our study is related to various works on soft video delivery
and model-based video delivery schemes. In this section,
we introduce some related works in order to highlight the
contributions of our paper.

A. Soft Video Delivery

To prevent the cliff effect in wireless video delivery, soft
video delivery schemes have been proposed recently [10]–[12],
[14]–[18]. SoftCast [10] is a pioneering soft video delivery
system. It directly sends linearly-transformed video signals by
using analog modulation to ensure the received video quality is
proportional to the channel quality. On the other hand, it limits
the quality improvement due to large overhead. DCast [11],
[12], [14] aim at the quality improvement of SoftCast by
using coset coding and motion-compensated temporal filtering.
These techniques can reduce the power of the video signals,
and thus a sender assigns large transmission power to whole
video signals. Some studies adopted compressive sensing [29]
for video signals to enhance packet loss resilience [15], [16],
[26]. Other studies [17], [18] extend the concept of analog
scheme to multiple-antenna systems. A sender adaptively
assigns transmission power and analog-modulated symbols to
antennas based on the channel estimates. However, the above
conventional studies are oblivious of an impact of overhead
on video quality. A recent study [20] discusses an impact of
different chunk sizes on video quality in SoftCast. However,
the study does not focus on efficient overhead reduction.

In contract to the conventional analog schemes, we aim at
overhead reduction and video quality improvement. There are
no studies to decrease overheads while keeping high video
quality in analog schemes to the best of our knowledge. To
this end, the proposed scheme uses a GMRF for modeling
video signals. Based on the model, we find a Lorentzian fitting
function to obtain power values of DCT coefficients, i.e.,
metadata, with a few parameters. Since the fitting function
can be estimated with a small error, the proposed scheme
simultaneously achieves high video quality and small overhead
compared to SoftCast. Note that the fitting-based operations
can be applied to most of existing analog schemes to enhance
the quality improvement by reducing overhead.

B. Model-based Video Delivery

Some studies use a model for video signals to improve the
performance of video delivery [30]–[35]. The model is used
to obtain required values for efficient encoding and decoding
operations with small overhead. For encoding operations, a
sender can estimate rate distortion (RD) curves from a model,
e.g., Laplacian distributions [30]–[32] and Cauchy–Lorentz
distributions [33]. By using the estimated RD curves, high
video quality can be achieved in a certain bandwidth with short
encoding time. For decoding operations, a receiver estimates
original pixel values by using GMRF [34], [35]. The estimated

pixel values can be used for error concealment operations to
improve loss-resilience of video delivery.

To date, there is no study, which introduced a GMRF model
for analog transmission schemes in literature. We incorporated
the GMRF model into soft video delivery in order to obtain the
power values of DCT coefficients at a receiver with reduced
overhead. Since the power can be fit by a function with a small
error, the proposed scheme can achieve high video quality with
significant overhead reduction.

V. CONCLUSIONS

We have proposed a new analog transmission scheme based
on a simple GMRF model to maintain high video quality while
achieving a significant reduction in metadata overhead. The
proposed scheme finds parameters for a fitting function to
obtain the power of DCT coefficients with small overhead.
Through performance evaluations, we have observed that the
proposed scheme achieves higher video quality compared
to conventional SoftCast schemes. In addition, the proposed
scheme significantly reduces the required amount of overhead.
The overhead reduction in turn enables more efficient resource
allocation for analog-modulated symbols within a bandwidth,
and results in additional quality improvement compared to
conventional schemes in both broad- and narrow-band envi-
ronments.
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