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Abstract

For applications such as virtual reality and mobile mapping, point clouds are an effective
means for representing 3-D environments. The need for compressing such data is rapidly
increasing, given the widespread use and precision of these systems. This paper presents a
method for compressing organized point clouds. 3-D point cloud data is mapped to a 2-D
organizational grid, where each element on the grid is associated with a point in 3-D space
and its corresponding attributes. The data on the 2-D grid is hierarchically partitioned, and a
Bezier patch is fit to the 3-D coordinates associated with each ’ partition. Residual values are
quantized and signaled along with data necessary to reconstruct the patch hierarchy in the
decoder. We show how this method can be used to process point clouds captured by a mobile-
mapping system, in which laser-scanned point locations are organized and compressed. The
performance of the patch-fitting codec exceeds or is comparable to that of an octree-based
codec.
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ABSTRACT

For applications such as virtual reality and mobile mapping, point
clouds are an effective means for representing 3-D environments.
The need for compressing such data is rapidly increasing, given the
widespread use and precision of these systems. This paper presents
a method for compressing organized point clouds. 3-D point cloud
data is mapped to a 2-D organizational grid, where each element on
the grid is associated with a point in 3-D space and its corresponding
attributes. The data on the 2-D grid is hierarchically partitioned,
and a Bézier patch is fit to the 3-D coordinates associated with each
partition. Residual values are quantized and signaled along with data
necessary to reconstruct the patch hierarchy in the decoder. We show
how this method can be used to process point clouds captured by
a mobile-mapping system, in which laser-scanned point locations
are organized and compressed. The performance of the patch-fitting
codec exceeds or is comparable to that of an octree-based codec.

Index Terms— point cloud compression, patch fitting, mobile
mapping systems

1. INTRODUCTION

With the widespread use of camera and laser-based scanners for cap-
turing 3-D environments, compression has become a critical element
in systems that store and transmit data generated by these scanners.
Representing these data as point clouds is well suited for applica-
tions such as virtual reality, mobile mapping systems (MMS), archi-
tecture, and geographic information systems. For these applications,
a point cloud comprises a set of coordinates in 3-D space. Each point
can be assigned a set of attributes, such as color, reflectance, normal
vectors, and more. These points and associated attributes can be
stored, transmitted, and rendered in a variety of ways, to allow users
to interact with the data in meaningful ways.

If a point cloud contains connectivity information among points,
it can be compressed using methods that have been developed to
compress polygonal meshes, such as those surveyed in [1]. Point
clouds captured using cameras or scanners, however, typically do
not contain mesh information, unless it is added as part of a post-
processing step. For complex point clouds, adding meshes can
be a time-consuming process. For compressing point clouds that
do not contain mesh information, several methods have been de-
veloped. In [2] and [3], octrees were used to partition 3-D point
clouds into blocks of points that can be efficiently compressed. The
method of [3] was implemented using the open-source Point Cloud
Library [4]. This work was extended in [5], where JPEG was used
to compress color attributes. Octrees were also used in [6], where
graph transforms were used to compress voxelized point clouds that
were created using the method described in [7]. Graph transforms
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were also used in [8] to compress compacted blocks of points. The
octree-based methods were extended in [9], in which residuals from
plane projections were signaled as an enhancement layer to a coarse
octree coding.

Cameras and LiDAR sensors have long been used to capture
large-scale outdoor environments such as roads and city infras-
tructures. Some commonly used representation formats for these
kind of LiDAR and related data include the ASTM ES57 [10] and
LAS [11] file formats. For lossless compression, sequentially cap-
tured LiDAR points stored in the LAS format can be compressed
using LASzip [12]. Near-lossless and lossy compression are also
useful for compressing large-scale data. For example, a progressive
or scalable coding system can be used to facilitate the streaming of
point clouds to remote terminals, in which the quality or precision
of the rendered point cloud can increase as a user zooms in, or when
a region of the point cloud is dynamically updated. A discussion
of some of the requirements related to compressing point clouds
for 3-D dynamic maps is presented in [13]. For compressing static,
dynamic, and dynamically acquired point clouds, standardization ef-
forts are currently underway in MPEG. The associated use cases and
requirements are described in [14] and [15], and a call for proposals
for point cloud compression was issued in January 2017 [16].

In this paper, we present a method that uses hierarchical patch
fitting to compress organized point clouds. For point clouds that are
captured using LiDAR sensors, the scan-order information can be
used to associate each point in 3-D space with a location index on
a 2-D grid. By organizing the data in this way, locations that are
next to each other on the 2-D grid are likely to be part of the same
surface scanned in 3-D space. This organization eliminates the need
in the subsequent patch-fitting process to perform nearest-neighbor
searches or to generate spatial connectivity structures. A hierarchi-
cal partitioning of the 2-D grid is used to select points in 3-D space
to which patch models are fit. Compression is achieved by coding
residuals between each patch model and its corresponding set of in-
put points. In Section 2, we describe how the point cloud is orga-
nized and how hierarchical patch models are generated. Section 3
describes how the data is compressed, and Section 4 presents exper-
imental results. Conclusions are given in Section 5.

2. HIERARCHICAL PATCH FITTING OF ORGANIZED
POINT CLOUDS

3-D point clouds generated from LiDAR-captured data streams can
be organized onto a 2-D grid. This section describes how the point
cloud is organized and how the hierarchical patch models are gener-
ated.

2.1. Constructing organized point clouds

In a dynamic-acquisition MMS system, a LiDAR sensor is mounted
to the top of a vehicle. The sensor contains a laser which rotates at



Fig. 2: Organized grid of attributes for road junction point

a frequency of f, rev/s. Light reflected from objects is sampled uni-
formly at a rate of fs Hz. The sensor is angled toward the ground in
order to detect the road in front of the vehicle and objects or struc-
tures to the side of the road. Additional sensors can be mounted
to capture other directions. The angular field of view of the scan-
ner is A degrees. Each rotation of the sensor can therefore detect
(fs/fr) - (A/360) samples. For a typical LIDAR scanner having a
field of view A = 190°, fs = 54 kHz and f,, = 100 Hz, the maxi-
mum number of samples per scan is 285. For the MMS [17] used in
this paper, up to 286 samples were captured per scan. By combining
the LiDAR sensor data with the position and orientation of the ve-
hicle obtained through a GPS system and inertial measurement unit,
the (z, y, z) position of each captured point in a common coordinate
system can be computed. Each scan thus generates 286 (x,y, z)
points of the point cloud. Each point is associated with attributes
such as the intensity of the reflected light, or color data fused from
cameras that are also mounted to the vehicle. A point cloud with
intensity attributes captured from a vehicle driving several hundred
meters along different roads is shown in Fig. 1. The inset shows a
magnified portion of a junction.

To organize the point cloud, we associate each scan of 286 sam-
ples to a column in a 2-D grid. The columns are added in the same
order as they were scanned. In this way, each element in the orga-
nized grid serves as an index to an (z,y, z) point position in 3-D
space. The grid also serves a second purpose: Each element in the
grid is associated with the attributes of the corresponding point in
the point cloud. If, for example, the attribute is intensity, then the
attribute grid is an image, representing in effect a flattened image of
the scanned environment. Because the position of the sensor is fixed
relative to the vehicle, the entire set of scanned points is mapped to a
long straight image, as shown in Fig. 2. For any sample in which no
reflected light is picked up by the sensor, an empty placeholder value
is assigned to the position in the 2-D grid or image, as indicated by
the red elements in the figure.

Algorithm 1 Generate Bézier Patches Adaptively

1: function FITBEZIERPATCHADAPTIVE(F)

2 B+ o

3 R < INITSPLIT(Domain(F))

4 for each r = [Umin, Umaz] X [Vmin, Vmaz] € R do
5: R+ R\r

6: b < FITBEZIERPATCH(r, F, d)

7 if b is @ then continue

8 if NEEDSPLIT(b) and CANSPLIT(7) then

9: {ro,r1} + SPLIT(r")
10: R+ RU{ro,m}
11: else
12 B+ BU{b}

13: return B

2.2. Generating hierarchical patch models

Consider an organized point cloud F, where 7 = {p; ; € R%;i =
1,---,M,5 = 1,--- N}, and the 2-D indices (i,7) and (¢ £
1,7 £ 1) reflect the 3-D proximity relationship between correspond-
ing points unless there are depth discontinuities. Our goal is to ap-
proximate F with a function defined on its index domain, to facilitate
the subsequent compression.

There are many function models for such approximations. We
adapt a spline surface model, which is a popular choice in geome-
try processing and CAD due to its flexibility to represent surfaces
having different levels of details using different numbers of control
points [18]. Conventional spline fitting algorithms always start the
approximation from a coarse B-spline or Bézier surface. Then it is
refined at places with large fitting errors by inserting more control
points into its control mesh. After this, all input data points are used
again to refine the new set of control points. This process is then
iteratively performed until a satisfactory approximation is achieved.

During each iteration, every single data point will be accessed
for a least squares fitting. For large-sized point clouds with many
fine details, such methods might not be efficient for fast processing.
However, unlike CAD modeling, we are not constrained by a sin-
gle piece of approximation for compression. Thus we propose to
increase such methods’ efficiency by adaptively dividing F into a
set of B-spline/Bézier patches, according to a prescribed fitting er-
ror threshold. Each of these patches corresponds to a rectangular
sub-domain in the input data’s parameter domain, i.e., the index do-
main for an organized point cloud. This adaptive patch generation is
summarized in Algorithm 1 and detailed below.

Based on our notation, Domain(F)2 [1, M] x [1, N]. Similar
to [19], we uniformly split the entire input domain into several re-
gions by the INITSPLIT function, to avoid unnecessary initial patch
fitting.

The FITBEZIERPATCH function takes all data points within the
domain 7 to fit a Bézier patch b defined on that r. This is done by
solving the following equation using either standard QR or Cholesky
factorization [18]:

P =argmin | BP - Q3 +A[SP 3. ()

Here each row of P represents a Bézier control point. Input data
points within region r are stored in each row of Q, and the (k, £)
entry of the B matrix stores the ¢-th control point’s Bézier basis
function value evaluated at the parameter of the k-th data point in 7.
Note that B only depends on the size of the region r. Sometimes the
FITBEZIERPATCH function cannot perform the least squares fitting
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Fig. 3: Examples of point clouds and corresponding patches. The
tower point cloud was generated using the dataset from [23].

due to rank deficiency of B. This usually occurs at small regions
with large detail variations, or regions with too many missing data.
We either return an empty fit b and ignore the corresponding r, or add
linear constraints S between control points with trade-off parameter
A to make the above system rank sufficient. Example constraints
can be either simply forcing neighboring control points to be close
to each other, or more sophisticated ones to suppress wiggling fit as
explained in [20].

The NEEDSPLIT function can use different criteria to determine
whether or not b is a bad fit and thus needs to be further split into
smaller parts. If the input data is known to have the same isotropic
error everywhere, then this function can check the L°° fitting er-
ror with a prescribed threshold. Otherwise, for example, for Kinect
data which is known to have depth-dependent errors, this function
can check the fitting error with a dynamic depth-dependent thresh-
old [21, 22].

The CANSPLIT function tests whether a given domain 7 can be
further split. In our implementation, if the split domains 7,71 do
not contain enough data for a valid Bézier fit, i.e., both Umaz —
Umin + 1 and Vmaez — Umin + 1 are smaller than 2d + 1 (d is the
prescribed degree of the spline function), then this 7 cannot be split.
This is because after splitting, the resulting blocks will have less data
points than control points, leading to a rank deficient system unless
we perform the constrained fitting in Eq. (1). There is a case where
a patch needs to be split but cannot be split. This usually happens at
small blocks with too significant details that cannot be represented
as a simple Bézier surface. There are two options to handle this
case: either performing B-spline refinement on that Bézier surface
until the fitting error is small enough, or directly signaling the input
points. In our implementation we select the latter one because those
tiny details are usually caused by sensor noise and signaling a full
model to represent a few points is typically less efficient than sending
the points directly.

The SPLIT function can have different behaviors: split at the
patch center, or adaptively split according to fitting errors. In our
implementation, we always split at the middle of the longer side of
the domain to avoid thin domains which do not tend to give good
fitting results. Some examples of simple patch models are shown in
Fig. 3, where each patch is indicated by color.

3. COMPRESSION FRAMEWORK

Using the methods described in the previous section, the point loca-
tions or geometry of the 3-D point cloud are now represented as a
set of control points for generating Bézier patches, the locations of
empty positions on the organizational grid, a splitting tree to indicate
the partitioning of the grid, and ancillary data such as the organiza-
tional grid size. The attributes such as intensity are similarly orga-
nized into an image. Compressing the image is straightforward using
any image compression scheme. For empty positions, the pixel in the
image can be assigned any value, as it is not associated with a point
in 3-D space. The performance of the attribute compression scheme
in this case would be that of whatever image compression scheme is
used, e.g. 8-bit grayscale attributes could be compressed to below
1.0 bits per point by using JPEG, or lower using newer compression
schemes. The remainder of this paper focuses on compressing the
point cloud geometry.

For each patch model, we compute residual values, which are
the difference in 3-D space between the input point cloud and the
corresponding points in the patch. Note that there is a simple one-to-
one correspondence between the points generated for the patch and
the input points, as the input points are arranged according to the
organized grid. Thus, no nearest-neighbor computations are needed
for computing the residuals.

For compression, we quantize the residuals and optionally the
control points. We apply a simple uniform quantizer for these re-
sults; future experiments will use a quantizer better matched to the
distribution of residuals. For signaling into a bit-stream, we first send
the width and height of the organizational grid, followed by a hier-
archical binary splitting tree to indicate how the grid is partitioned.
For every leaf node on the tree, we signal the control point values
and then we signal either the organized grid of residual values or the
input values themselves if no model was used for that patch. Typi-
cally, an entropy coder would be used to code these values. For this
paper, we report entropies as an upper bound on performance and
leave the tuning of a context-adaptive entropy coder for future work.

4. EXPERIMENTAL RESULTS

We first present point cloud geometry coding results for the simple
100 100 hemisphere point cloud shown in the left side of Fig. 3. We
use the symmetric point-to-point geometric PSNR described by [24]
as the performance metric. The input (x,y, z) positions are repre-
sented as 32-bit floating point values for each component. The un-
compressed input point cloud positions, as well as the control points,
therefore use 96 bits per point. Each patch uses a 4 x 4 set of control
points. We compare our codec to the octree-based codec of [3]. The
performance obtained when representing the point cloud only using
patches is shown in Fig. 4(a). Here, we can achieve almost up to
40 dB with compression ratios of over 1000:1 by signaling only the
control points. Performance including quantized residuals is shown
in Fig. 4(b). Here, 40 to 100 dB is achieved as the quantization of
the residuals becomes finer. The performance improvement of the
patch-fitting codec over the octree-based codec ranges from 5 to 20
dB, and the octree codec is not capable of achieving the extremely
low rates below a few bits per input point.

For the next set of experiments, we code the subset of the MMS
point cloud shown in the inset of Fig. 1. This point cloud contains
approximately 290,000 points organized to a 286 x 1072 grid. The
resulting model contains approximately 300 patches when a squared
fitting error threshold of 5 x 10° is used. The coordinates are in
the range of +10000, so for the octree codec we specify an input
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Fig. 4: Patch-fitting codec geometric coding performance for hemi-
sphere point cloud

resolution of 1.0, and we vary the octree resolution from 100 to
1200. As shown in Fig. 5(a), we achieve up to 55 dB using the
patch-fitting codec with control points alone. Fig. 5(b) shows the
performance when using near-lossless control points and quantized
residuals. Here, the patch-fitting codec outperforms the octree codec
by 2 to 5 dB, except at higher rates where the octree codec performs
better. We believe that the octree performs better at higher rates
because when there are fewer points per octree leaf node, coding
leaf node positions via the octree splitting tree uses fewer bits than
coding differential values among many points within an octree leaf
node. However, both the patch-fitting and octree codecs would ben-
efit from further tuning, taking into consideration the precision and
resolution of the input point cloud, and in this case, the fact that the
point cloud spans the x and y directions broadly, but the range of z
values are limited due to the orientation of the MMS scan.

Fig. 6 shows the patch models for a portion of the input point
cloud shown on the left side of the figure. One patch is capable of
capturing the essence of the point cloud, in that it does a good job
of following the curve in the road. The final patch model used for
this experiment has 302 patches, as shown on the right side of the
figure. The smaller more complex patches are grouped around com-
plex objects such as the vehicles near the top of the figure. For the
model having 302 patches, the organized grid of Fig. 2 is partitioned
as shown in Fig. 7. Larger patches tend to be used to represent large
flat surfaces such as the road, as expected.

(b) Reconstruction uses near-
lossless control points and
quantized residuals

(a) Reconstruction uses only
quantized control points, with-
out residuals

Fig. 5: Patch-fitting codec geometric coding performance for MMS
point cloud
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Fig. 7: Partitioning map containing 302 patches

5. SUMMARY AND CONCLUSIONS

In this paper we presented a method for compressing point clouds by
organizing the 3-D points onto a 2-D grid and adaptively fitting them
with hierarchical patches. For simple point clouds to which patches
are easy to fit, the patch-fitting codec outperformed an octree-based
codec by up to 20 dB for geometry compression. For complex point
clouds such as those obtained from a mobile-mapping system, the
performance of the patch-fitting codec was a few dB better than the
octree codec, but at higher rates the octree codec performed better.
Since we typically code the control points with high fidelity, there
is a tradeoff between the coding performance and the number of
patches, in that for very small patches, the number of bits needed to
represent the control points can exceed the amount needed to directly
code the input points. Future work will include determining optimal
parameters for both codecs, improving the quantizer and related cod-
ing systems within the patch-fitting codec, and experimenting with
other types and sizes of patches.
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