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Abstract
We consider the problem of fusing multiple cloud-contaminated aerial images of a 3D scene
to generate a cloud-free image, where the images are captured from multiple unknown view
angles. In order to fuse these images, we propose an end-to-end framework incorporating
epipolar geometry and low-rank matrix completion. In particular, we first warp the multi-
angular images to single-angle ones based on the estimated fundamental matrices that relate
the multi-angular images according to their projective relations to the 3D scene. Then we
formulate the fusion process of the warpped images as a low-rank matrix completion problem
where each column of the matrix corresponds to a vectorized image with missing entries
corresponding to cloud or occluded areas. Results using DigitalGlobe high spatial resolution
images demonstrate that our algorithm outperforms existing approaches.
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ABSTRACT

We consider the problem of fusing multiple cloud-contaminated
aerial images of a 3D scene to generate a cloud-free image, where
the images are captured from multiple unknown view angles. In
order to fuse these images, we propose an end-to-end framework
incorporating epipolar geometry and low-rank matrix completion.
In particular, we first warp the multi-angular images to single-angle
ones based on the estimated fundamental matrices that relate the
multi-angular images according to their projective relations to the
3D scene. Then we formulate the fusion process of the warpped
images as a low-rank matrix completion problem where each col-
umn of the matrix corresponds to a vectorized image with missing
entries corresponding to cloud or occluded areas. Results using
DigitalGlobe high spatial resolution images demonstrate that our
algorithm outperforms existing approaches.

Index Terms— image fusion, multi-angular, epipolar geometry,
matrix completion.

1. INTRODUCTION

A common problem in aerial photography is that acquired optical
aerial images are contaminated by clouds obscuring the view. This
hinders the usability of the images in applications such as urban
planning and environmental monitoring. Due to the high cost of
aerial image acquisition, it is desirable to generate cloud-free images
by fusing multiple cloud-contaminated images captured at different
time or even from different view angles.

Various image fusion methods have been proposed in the liter-
ature to tackle the cloud removal problem as well as general im-
age fusion problems [1–4]. For instance, Agarwala et al. [4] pro-
posed a graph-cut based digital photomontage method, which uses
graph cut to select the best image for each pixel while making the
seams as invisible as possible. With the development of compres-
sive sensing (CS) techniques, image fusion has recently been mod-
eled as CS reconstruction [5], a matrix completion [6], or a robust
principal component analysis (PCA) [7, 8] problem. Wang et al. [6]
assumed that the scene has simple structure and that pixels at the
same spatial location represent the same material along the temporal
dimension. Under these assumptions, the matrix formed by concate-
nating the vectorized images has low rank, and robust matrix com-
pletion was utilized to recover the missing pixels. Aravkin et al. [8]
developed a variational approach based on robust PCA, where cloud-
contaminated images, as an example, are decomposed into two parts:
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the sparse part which corresponds to clouds and the low-rank part
which corresponds to cloud-free images. To improve the computa-
tional efficiency, Zhang et al. [9] developed an online robust tensor
PCA method to process sequentially collected images for the cloud
removal application.

The aforementioned fusion methods are generally valid for pro-
cessing well-aligned images such as multi-temporal images viewed
from the same angle or slightly different view angles but with low
spatial resolution. However, they perform poorly on multi-angular
high spatial resolution images mainly for the following two reasons.
First, these methods ignore the parallax effect of 3D scenes. Images
captured from different view angles are typically not well aligned
due to the parallax effect, especially images of urban areas where
buildings exhibit different elevations. For CS-based reconstruction
methods that require critical alignment to use a low-rank prior, a
slight mis-alignment of the images may lead to significantly blurred
fusion results and therefore decrease the spatial resolution. Second,
these methods are incapable of recovering occluded area since all
images are assumed to be captured from the same view angle. To
meet the requirement of modern high spatial resolution image appli-
cations, it is imperative to develop effective algorithms suitable for
fusing multi-angular images of 3D scenes.

To address these problems, we propose an end-to-end image fu-
sion framework for multi-angular aerial images incorporating epipo-
lar geometry and matrix completion techniques. In particular, we
warp all images of different view angles to a target view angle based
on our estimated epipolar geometry. Then we formulate the image
fusion process as a low-rank matrix completion problem, where each
column of the matrix corresponds to a vectorized warped image and
missing entries correspond to cloud or occluded areas to be recov-
ered. We examine our method on a collection of multi-angular high
spatial resolution images without any prior knowledge of view an-
gles or elevation information of the scene. Our main contribution of
this paper is to combine 3D epipolar geometry and low-rank matrix
completion such that images of a 3D scene captured from different
view angles can be fused even for misaligned images. Besides the
cloud removal application of aerial images, our method can also be
extended to other image enhancement applications of fusing non-
aerial multi-angular images.

2. IMAGE FUSION FRAMEWORK

2.1. Image Acquisition

Our dataset consists of a total of N(N ≥ 3) multi-angular aerial
images {In}n=1,...,N of a common urban area. Considering the in-
fluence of clouds and different sun light directions, we model the



acquired image In as

In = MΩn � (Ψ(θn)V) + MΩC
n
�Cn + MΩS

n
� Sn, (1)

where MΩn , MΩC
n

, and MΩS
n

are binary masks of correspond-
ing visible scene area Ωn, cloud area ΩCn , and shadow area ΩSn in
the nth image respectively; � represents element-wised product; V
represents the 3D scene of interest; Ψ accounts for the 6 degree-of-
freedom camera using pin-hole projection model parameterized by
θn; Cn and Sn stand for clouds and shadows respectively. The area
union Ω = Ωn ∪ ΩCn ∪ ΩSn covers the whole image area.

The goal is to recover the cloud- or shadow-contaminated areas
in a pre-defined target image Im with m ∈ {1, 2, ..., N}, using the
observed image set {In}n=1,...,N such that the reconstructed im-
age Îm, which ideally is Ψ(θm)V, can be interpreted for further
applications. In the special case when the camera parameters θn are
constant values for all n = 1, ..., N , meaning that all images are cap-
tured from the same view angle, we have well-aligned images since
Ψ(θn)V are identical, and therefore the fusion problem is much
simpler to solve than our current one. The main challenge of our
problem is that the camera angles vary for different images and their
specific values are unknown a priori. It may significantly degrade
the fusion performance by simply treating them as constant, as to be
shown in Fig. 2 (d). Fortunately, we can make use of epipolar geom-
etry to estimate the correspondence of any pair of the multi-angular
images and align them using point transfer.

Our framework of image fusion contains three main steps, which
are cloud and shadow detection, image warping, and image fusion.
Since the first step can be performed using some straightforward
methods based on the intensity and variance of small patches [10],
we only address the later two steps in the following sections.

2.2. Image Warping using Epipolar Geometry

2.2.1. Basics of Epipolar Geometry

In some applications, an affine camera model, which assumes cam-
era at infinity, is sufficient for processing images with weak perspec-
tive. In this scenario, one can estimate a 2D homography from at
least four correspondence points in the visible areas, and then the
entire image can be warped using the same homography [11]. How-
ever, the affine camera model is unable to capture the parallax ef-
fect of 3D objects. To process images captured from multiple view
angles, it is necessary to consider the epipolar geometry using the
projective camera model [12], where the point transfer involves the
epipolar geometry among at least three images.

Let us consider an example where three images of a 3D scene,
which are the ith, jth, and mth (i, j,m ∈ {1, 2, ..., N}, and i 6=
j 6= m) of the N images respectively, are captured from three dif-
ferent view angles. Let x = (x1, x2, x3)T , x′ = (x′1, x

′
2, x
′
3)T , and

x′′ = (x′′1 , x
′′
2 , x
′′
3 )T be the homogeneous coordinates of the three

images, respectively. According to the epipolar geometry [12], if x
and x′ are correspondence points, denoted by x ↔ x′, there exists
a fundamental matrix of the ith and the jth images Fji ∈ R3×3 of
rank 2 satisfying

x′TFjix = 0, (2)

for correspondence point set {x↔ x′}. Similarly, we have{
x′′TFmix = 0, for {x↔ x′′},

x′′TFmjx
′ = 0, for {x′ ↔ x′′}.

Let l = Fmix and l′ = Fmjx
′ be epipolar lines corresponding

to points x and x′, respectively. Since x′′l = 0 and x′′l′ = 0, or x′′

lies in the both lines l and l′, x′′ can be computed as

x′′ = l× l′ = (Fmix)× (Fmjx
′). (3)

Note that our goal is to recover missing x′′ in the cloud- or
shadow-contaminated areas in a target image Im. Thus the corre-
spondences x ↔ x′′ and x′ ↔ x′′ are not available. Nevertheless,
the point transfer formula (3) enables us to obtain x′′ without re-
quiring the correspondences x ↔ x′′ or x′ ↔ x′′. To this end, we
first estimate the fundamental matrices Fji for all image pairs {i, j}
from the cloud-free areas, and then find dense correspondence points
in the visible areas by applying a modified SIFT-flow.

2.2.2. Fundamental Matrix Estimation

To estimate the fundamental matrices Fji for all pairs {i, j} , we
acquire the correspondence points by matching the SIFT features
in Euclidean distance at the key points detected by the SIFT detec-
tor [13]. Specifically, let ΩSIFT

i and ΩSIFT
j be the coordinate sets of the

key points in the ith and jth image, respectively. Then the correspon-
dence points {x ↔ x′} are defined to be all pairs from x ∈ ΩSIFT

i

and x′ ∈ ΩSIFT
j that satisfy the following condition

‖si(x)− sj(x′)‖2 ≤ C · min
x̃′∈ΩSIFT

j \x′
‖si(x)− sj(x̃′)‖2, (4)

where si(x) represents the SIFT feature vector at x in the ith image,
ΩSIFT
j \ x′ denotes the set ΩSIFT

j excluding the singleton x′, and C is
a constant whose value 0 < C < 1, typically C = 2/3 .

In order to minimize the influence of outlier correspondence
points in estimating the fundamental matrix, we consider the well-
known random sample consensus (RANSAC) [14] method to fit (2)
using the set of initial correspondence points such that a robust esti-
mation of Fji can be achieved.

2.2.3. Dense Correspondence Points Estimation and Transfer

Note that we have estimated the fundamental matrix for each image
pair. In order to perform point transfer using (3), we need to find
dense correspondence points {x↔ x′}. SIFT-flow is a widely used
algorithm that finds the displacement of the pixels in two images
by solving an optimization problem [15]. The SIFT-flow algorithm,
however, can not be applied to search correspondence points directly
in our application for the following reason. Although SIFT-flow can
warp one image such that it is visually similar to another image based
on SIFT features and the smoothness of images, namely, neighbor-
ing pixels should have similar displacement, it does not guarantee
that the estimated correspondence points represent a common point
in the 3D scene. To solve this issue, we propose a modified objec-
tive function with an epipolar geometry constraint to improve the
displacement estimation. Let wx

ji = (wx
1 , w

x
2 , 0) denote the dis-

placement in the jth image of the pixel x = (x1/x3, x2/x3, 1) in
the ith image. Then the set of displacements {wx

ji} for every co-
ordinate in the jth image is obtained by minimizing the following
objective function

{wx
ji} = arg min

{wx}

∑
x

‖si(x)− sj(x + wx)‖1 + γ
∑
x

‖wx‖22

+
∑

(x,y)∈E

min(α|wx
1 − wy

1 |, d) + min(α|wx
2 − wy

2 |, d)

+
∑
x

β((x + wx)TFjix)2

‖Fjix‖22 + ‖FTji(x + wx)‖22
, (5)



where α, d, γ, and β are non-negative tuning parameters, and E de-
notes a collection of all 4-connected neighborhoods in the image.
The first term in the right-hand side of equation (5) measures the
difference in SIFT feature, the second term penalizes large move-
ments, the third term promotes similar displacement of neighboring
pixels, and the last term penalizes the Sampson distance [12], which
is the first-order approximation to the geometric error. Note that the
first three terms are identical to the original SIFT-flow [15], whereas
the last term is our modification. Following the original SIFT-flow
algorithm, we use the accelerated belief propagation algorithm [16]
to minimize the new objective function in (5).

Furthermore, considering that the occlusion effect may lead to
incorrect correspondence points, we verify correspondence points
with two flows for each pair of images. One is from the ith image
to the jth image, and the other is from the jth to the ith. A pair of
correspondence points is verified if both points return to themselves

according to the two flows, i.e., wx
ji = −w

(x+wx
ji)

ij . Otherwise, it is
treated as an occlusion point.

Given all correspondence points {x↔ x′} estimated by epipo-
lar geometry regularized SIFT-flow (5), we warp all images except
the target one, using the point transfer formula (3) to align them.
More specifically, let Ii(x) and Ij(x

′) denote the intensity of the ith
image at x and that of the jth image at x′, respectively. A point x′′

in the warped image satisfying x ↔ x′ ↔ x′′ can be computed us-
ing (3) given the fundamental matrices Fmi and Fmj . Therefore, we
have warped images Îij(x

′′) = Ii(x) and Îji(x
′′) = Ij(x

′), which
are well aligned with the target image after warping, generated from
a pair of multi-angular images Ii and Ij , respectively.

2.3. Image Fusion using Matrix Completion

After warping all pairs of images chosen from theN−1 images (ex-
cluding the target image), we have obtained a total of 2×

(
N−1

2

)
well

aligned images, but with missing pixels due to cloud contamination
or occlusion. To improve the fusion performance, we only select a
subset of the warped images that are potentially of high quality in
terms of the correlation coefficient between a warped image and the
dominant eigen image Î0 of all warped images. A warped image is
selected if its mutual correlation coefficient with Î0 is higher than a
preset threshold. A matrix X is then formed by concatenating vec-
tors of the selected images {Îij} as well as the target image Im.

Low-rank matrix completion estimates the missing entries of a
matrix under the assumption that the matrix to be recovered has low
rank. Since direct rank minimization is computationally intractable,
convex [17] or nonconvex [18] relaxation is usually used to refor-
mulate the problem. Here we consider the convex relaxation, i.e.,
a nuclear norm regularized least squares problem to perform matrix
completion

min
X

1

2
‖A(X)− b‖22 + µ‖X‖∗,

where A is a linear operator, b is a vector of observations, and
µ > 0 is a tuning parameter. In the image fusion problem, the lin-
ear operator A is a selection operator, which is defined as A(X) =
vec(X{Ωn}), where {Ωn} defines all visible area as indicated in
(1). To solve the problem, we employ the accelerated proximal gra-
dient (APG) algorithm [19] for efficient and fast solutions. The
APG algorithm, which is an extension of Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [20] to the matrix setting, can be

specified as follows

Yk = Xk +
tk−1 − 1

tk
(Xk −Xk−1) (6)

Gk = Yk − (τ)−1A∗(A(Yk)− b) (7)

Xk+1 = proxµ/τ‖·‖∗(G
k) (8)

tk+1 =
1 +

√
1 + 4(tk)2

2
, (9)

where k ≥ 1 is the iteration index, the initialization follows t0 = 1
and X0 = X1 = 0, τ ≥ LA (the Liptchitz constant of the operator
A), and proxµ/τ‖·‖∗ is a proximal operator defined as follows.

proxλ‖·‖∗(G) = UDλV
T,

where the singular value decomposition of G is G = UDVT and
the entries of Dλ are given by

Dλ(p, q) =

{
D(p, q)− λ, if D(p, q) > λ

0, otherwise
.

The adjoint A∗ puts the elements of the vector back into the
matrix form and fills the missing entries in {Ω − Ωn}, the comple-
ment of visible area {Ωn}, with zeros. Using the APG algorithm
(6) – (9), the estimated cloud-free target image Îm is obtained by
extracting the corresponding column from the reconstructed matrix
Xk+1 computed in (8) after the iteration index k exceeds some pre-
defined maximum iteration number K, and converting the column
vector back to the image form.

3. NUMERICAL RESULTS

Our dataset is a collection of N = 13 DigitalGlobe multi-angular
high spatial resolution images of a common urban scene, where each
is of size 14178 × 14178. The images are of the same 3D scene of
interest according to the ground objects but captured from different
angles so they are not well aligned to each other. Three regions
with clouds, each of pixel size 1024 × 1024, are cropped from the
original 13 images for testing. In our experiments, the intensity of
the images are normalized to be in [0, 1]. We set parameters in (5)
as α = 30, d = 300, γ = 0.01, and β = 10, and those in (8) as
µ = 20, τ = 1, and maximum iteration number K = 100. Since
most existing algorithms assume that the images are well-aligned,
they either fail or produce blurry images when directly applied to
our dataset due to the inappropriate assumption. We compare our
method with graph-cut based digital photomontage [4], robust PCA
[7], and online tensor robust PCA algorithm [9] to demonstrate the
improvement of our proposed method.

We first validate our fusion framework on synthetic cloud-
contaminated images, in which case we have access to the ground
truth. In particular, we select a cloud-free image (Fig. 1(a)) as the
target image, which serves as the ground-truth from a set of multi-
angle images with examples shown in Fig. 1(a)–(b). The synthetic
cloud-contaminated image used to test our algorithm is generated by
artificially replacing an area with a white cloud-like patch (Fig. 1(c)).
The reconstruction result of online tensor robust PCA is shown in
Fig. 1(d), which is blurry due to misalignment. We notice that in
Fig. 1(d) the objects that are close to the ground are less blurry than
those with higher altitude. This is because the objects close to the
ground are roughly aligned, whereas there is a significant movement
of the building tops, as can be seen by comparing Figs. 1(a) and 1(e).



(a) (b) (c) (d) (e)

Fig. 1: Simulation results for synthetic cloud-contaminated images: (a), (b) example images captured from different view angles; (c) synthetic
cloud-covered target image using (a) as groundtruth; (d) fused result by online tensor robust PCA; (e) fused image by our algorithm.

Original Image 21 Low Rank Component Sparse Component

(a) (b) (c)

Original Image 21 Low Rank Component Sparse Component

(d) (e) (f)

Fig. 2: Simulation results for real cloud contaminated images. Each row corresponds a set of testing images. Columns from the left to the
right show examples of (a) the original cloud-contaminated images; (b)–(d) reconstructed results by graph cut photomontage, robust PCA,
and online tensor robust PCA respectively; (e) reconstructed results by our algorithm; and (f) one of the images that are used for image fusion.

Our result shown in Fig. 1(e) has correctly located all the build-
ings at different elevations, comparing to the ground truth shown in
Fig.1(a), and produced a visually plausible sharp image.

We also perform experiments on practical captured cloud-
contaminated images and compare our framework with several other
existing fusion methods. Considering that all the other methods
require aligned images, we share our intermediate aligned images
using epipolar geometry with all the methods for further fusion
process. The results for two sets of images are shown in two rows
of Fig. 2, respectively. Column (a) shows examples of the original
cloud-contaminated images; columns (b)–(d) show the best results
we can get using graph-cut based digital photomontage, robust PCA,
and online tensor robust PCA methods respectively, and column (e)
presents the results using our proposed algorithm. Since we do not
have the ground-truth, instead we plot one of the images that are
used for image fusion in column (f) of Fig. 2 as a reference for visual
comparison. Note that the fusion results using existing methods ei-
ther exhibit artifacts or blurs in the cloud-contaminated and shadow
areas, while our framework convincingly outperforms these methods
in overall visual quality. According to the reference image viewed
from a different angle, our fused images preserve very good fidelity
and resolution of the 3D scene. When we check the details of our

fused images, we observe that the building tops are well recovered,
while the side surfaces of the buildings and the areas that are close
to the high buildings are less satisfactory due to occlusions. This is
however to be improved in our future work.

As regarding to the computational time, it takes about 15 sec-
onds to detect clouds for all images, 28 minutes for each pair of im-
ages to finish image warping, and around 4 minutes for the final ma-
trix completion-based image fusion to obtain a 1024× 1024 cloud-
free image. All experiments were performed on a desktop with a
3.6GHz Intel Xeon CPU and 64G RAM using Matlab R2010b.

4. CONCLUSION

We proposed an end-to-end framework for recovering the cloud-
contaminated areas in a collection of multi-angular aerial images.
Our framework first warps images viewed from different angles to
the same view angle of the target image using epipolar geometry reg-
ularized SIFT-flow followed by point transfer, then fuses the missing
pixels of contaminated areas or occluded areas using a low-rank ma-
trix completion method. Numerical results on cloud contaminated
images demonstrated that our algorithm significantly improves the
performance in fusing multi-angular high spatial resolution images.
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