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Abstract
Pulse-width modulation (PWM) has been extensively used in switched converter systems, and
recently in RF applications, due to an increased interest in all-digital transmitters. These
architectures employ high efficiency switched-mode power amplifiers (SMPA), where PWM
is commonly used to generate the PA driving signal. However, digitally implemented PWM
introduces large amount of in-band distortion, which is traditionally explained by spectral
aliasing. In this paper we derive a novel closed-form time-domain expression for the output
signal of a multilevel carrier-based digital PWM, driven by an arbitrary bounded input signal.
We show that the spectral aliasing effects are equivalent to amplitude quantization of the
PWM input signal, and give theoretical bounds on the output signal resolution for a given
PWM scheme. Parameters of this quantization process are determined, and their dependence
on PWM design specifications is shown. Numerical simulations in MATLAB were used to
verify derived analytical expressions.
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Abstract—Pulse-width modulation (PWM) has been exten-
sively used in switched converter systems, and recently in RF
applications, due to an increased interest in all-digital transmit-
ters. These architectures employ high efficiency switched-mode
power amplifiers (SMPA), where PWM is commonly used to
generate the PA driving signal. However, digitally implemented
PWM introduces large amount of in-band distortion, which is
traditionally explained by spectral aliasing. In this paper we
derive a novel closed-form time-domain expression for the output
signal of a multilevel carrier-based digital PWM, driven by
an arbitrary bounded input signal. We show that the spectral
aliasing effects are equivalent to amplitude quantization of the
PWM input signal, and give theoretical bounds on the output
signal resolution for a given PWM scheme. Parameters of this
quantization process are determined, and their dependence on
PWM design specifications is shown. Numerical simulations in
MATLAB were used to verify derived analytical expressions.

I. INTRODUCTION

In recent years, RF power amplifiers in switched-mode op-
eration (SMPA), have gained a lot of attention from researches
in microwave community, due to their high power efficiency
mode of operation [1]-[2]. SMPAs are driven by multilevel
signals, which are allowed to assume only certain discrete
amplitude values. Baseband pulse-width modulation (PWM)
is commonly used for reduction of amplitude resolution, of
e.g. I or Q baseband signal components (or their amplitude,
in burst-mode transmitters [2]), to adjust for switched-mode
operation. PWM maps an input signal into a digital pulse
train, where amplitude information of the input is encoded
into time-varying width of the output pulses [3]-[5]. PWM
has been traditionally implemented in analog domain, and we
denote such modulation scheme as analog PWM. Forthcoming
communication standards envision transceivers implemented as
software-defined radio [1], utilizing available signal processing
power in digital domain. In this setup, PWM is fully digitally
implemented (both input and output of PWM are digital
signals), and is best described as a ’time sampled’ version of its
analog counterpart. Sampling of an infinite bandwidth analog
PWM signal leads to spectral aliasing, producing considerable
amount of distortion in the digital PWM output’s frequency
band of interest. This represents the main drawback of digitally

This work was done while Omer Tanovic was an intern at Mitsubishi
Electric Research Laboratories (MERL).

implemented PWM. Spectral aliasing effects in digital PWM
have been studied in the past through simple frequency domain
analysis and numerical simulation [6]-[7], and different algo-
rithms were proposed for mitigating this distortion in all-digital
transmitter (ADT) architectures (e.g. see [8] and references
therein). Finite time resolution of switching instants in digital
PWM signals implies finite resolution of the output pulse
widths, and correspondingly of the input signal amplitude. In
the past this has been studied and exploited only in two-level
PWM schemes for switched converter systems (e.g. [9]).

In this paper we derive a novel closed-form time-domain
expression for the output signal of a multilevel carrier-based
digital PWM, driven by an arbitrary bounded input signal.
We show that the spectral aliasing effects are equivalent to
amplitude quantization of the PWM input signal, and give
theoretical bounds on the achievable signal resolution, as well
as dependence of the quantization process on the choice of
PWM parameters. This result implies that aliasing-free digital
PWM is possible if and only if the PWM input signal is
pre-quantized exactly as defined by the inherent quantization
process. We give derivations for symmetric double-edge PWM
only, but explain why analysis extends to arbitrary choice of
carrier signals. The presented analysis significantly improves
understanding of the leading in-band distortion source in
digitally implemented PWM, and represents fundamental step
in understanding behavior and limits of ADT architectures
employing PWM.

II. ANALYTICAL MODEL OF PWM

In this paper we consider carrier-based (CB) double-edge
(DE) amplitude-slicing multilevel (ML) PWM system [5], and
refer to it simply as PWM in the following sections.

A. Analog PWM

In carrier-based PWM schemes, output signal is generated
by comparing input to a fixed carrier signal (e.g. sawtooth or
sinusoid), as shown in Fig.1. So let c = c(t) be a symmetric
double-edge sawtooth signal, oscillating between 0 and 1 with
frequency fp. Signal c(t) is used as a baseline to generate
contiguous carriers in multilevel PWM operation. Frequency
fp is then called the carrier of pulse frequency of PWM, and
Tp = 1/fp is the carrier period).



Q
Q
Q
QQ
�

�
�

��

-

-

-

a(t)

x(t)

c(t)

Comparator
input
signal

carrier
signal

PWM

output
signal

Fig. 1. Block diagram describing basic operation of PWM.

In the case of (M + 1)-level PWM (corresponding to M
carriers), contiguous carriers cm(t) can be expressed in terms
of c(t) as follows:

cm(t) =
1

M
c(t+ τ) +

m− 1

M
, m = 1, . . . ,M

where τ = Tp/2 if m is odd, and τ = 0 otherwise. PWM
input signal a(t) is assumed to be a bounded signal, taking
values in the interval (0, 1). PWM output signal x(t) is then
generated by comparing a(t) and cm(t) as follows:

x(t) =


1, cM (t) ≤ a(t) < 1,
m

M
, cm(t) ≤ a(t) < cm+1(t), 1 ≤ m ≤M − 1

0, 0 < a(t) < c1(t)

.

(1)
An example of output signal generation in a three-level PWM
scheme is illustrated in Fig.2. In this case M = 2, and output
signal x(t) assumes values 0, 1/2 or 1.

In the rest of this paper, we will use P to denote a PWM
operator with an arbitrary (but fixed) number of output levels,
where the actual number should be clear from the context.
Using double Fourier series and the fact that c(t) is periodic,
signal x(t) can be expressed (see e.g. [10]) as

x(t) = (Pa)(t) = a(t) +

∞∑
k=1

2 sin(πMka(t))

πMk
cos(2kπfpt).

(2)
The above expression can be rewritten as

x(t) = x0(t) +

∞∑
k=1

xk(t) cos(2kπfpt), (3)

where

x0(t) = a(t), xk(t) =
2 sin(πMka(t))

πMk
, ∀k ∈ N. (4)

It follows that x(t) can be described as a sum of the baseband
component x0(t), equal to the input a(t), and amplitude
modulated harmonics xk(t) at integer multiples of the PWM
carrier frequency fp. Therefore x(t) is of infinite bandwidth.

B. Digital PWM

The operation of digital PWM can be defined in a similar
way. For given Ts > 0, let c̃ = c̃[n] = c(nTs) be the
discrete-time (DT) symmetric double-edge sawtooth carrier
signal, obtained from c(t) by sampling at rate 1/Ts. Given
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Fig. 2. An example of output signal generation in three-level analog PWM.

c̃[n], an (M + 1)-level digital PWM operator maps bounded
real-valued input signal ã into output signal x̃, as given below

x̃[n] =


1, c̃M [n] ≤ ã[n] < 1,
m

M
, c̃m[n] ≤ ã[n] < c̃m+1[n], 1 ≤ m ≤M − 1

0, 0 < ã[n] < c̃1[n]

,

(5)
where contiguous DT carriers c̃m[n] are obtained from cm(t)
by sampling at rate 1/Ts. In the next section we use the above
definition of digital PWM to find an expression for x̃[n] in
terms of ã[n], similar to that in (2) for x(t) and a(t).

III. TIME-DOMAIN ANALYSIS OF DIGITAL PWM

In this section we consider digital PWM system with carrier
frequency fp and (M + 1) output levels. Let fs = N · fp
and Ts = 1

fs
be the sampling frequency and sampling period

respectively, where N > 1 is the oversampling ratio of PWM.
Without loss of generality we assume N to be an integer, which
is true in most practical applications. We also assume that N
is odd, since analysis in the case of even N is almost identical.

Let (ã, x̃) be an input-output signal pair of a digital PWM
system, that is x̃ = Pã holds, and let analog signal a(t), with
0 < a(t) < 1,∀t ∈ R, be such that ã[n] = a(nTs). It now
follows from (2) and (5) that signal x̃ can be expressed as

x̃[n] = a(nTs) +

∞∑
k=1

2 sin(πMka(nTs))

πMk
cos(2kπfpnTs)

= ã[n] +

∞∑
k=1

2 sin(πMkã[n])

πMk
cos

(
2π

N
kn

)
.

The above sum is an infinite sum, but the number of possibly
different harmonics is finite, and equal to N . Furthermore,
signal x̃ is real-valued, so its Fourier transform is conjugate
symmetric, and the number of independent harmonics is equal
to
(⌊
N
2

⌋
+ 1
)
. It follows that signal x̃ can be expressed as

x̃[n] = x̃0[n] +

bN
2 c∑

k=1

x̃k[n] cos

(
2π

N
kn

)
, (6)



where

x̃0[n] = ã[n] + 2 ·
∞∑
l=1

sin(πMNlã[n])

πMNl
,

x̃k[n] = 2 ·
∞∑
l=0

sin(πM(Nl + k)ã[n])

πM(Nl + k)
+

+ 2 ·
∞∑
l=0

sin(πM(Nl +N − k)ã[n])

πM(Nl +N − k)
,

(7)

with 1 ≤ k ≤
⌊
N
2

⌋
. Here x̃0 denotes the baseband component

of x̃, and x̃k are higher order harmonics, similar to the
description of analog PWM output, given in (3). It is clear that
aliasing effects manifest in (7) in terms of an infinite number
of additional summands. Let us now simplify expressions in
(7). Baseband component x̃0 can be rewritten as

x̃0[n] = ã[n]+

∞∑
l=1

sin(πMNlã[n])

πMNl
+

−1∑
l=−∞

sin(πMNlã[n])

πMNl
.

Since sin(πMNlã[n])
πMNl

∣∣∣
l=0

= ã[n], we get

x̃0[n] =

∞∑
l=−∞

sin(πMNlã[n])

πMNl
. (8)

Similarly, by applying change of variables in the second
equality in (7), expression for x̃k simplifies to

x̃k[n] = 2 ·
∞∑

l=−∞

sin(πM(Nl + k)ã[n])

πM(Nl + k)
, 1 ≤ k ≤

⌊
N

2

⌋
.

(9)
It can be observed from (8) and (9) that expressions for
harmonics of x̃ involve only infinite sums of discrete sinc
functions which can be computed analytically (see Appendix).

Let Q be a uniform quantizer with dynamic range (0, 1)
and L =

⌊
MN
2

⌋
output levels, and let ãQ denote the response

of Q to signal ã, i.e. ãQ[n] = (Qã)[n]. From (8), (9) and
results given in the Appendix, it follows that

x̃0[n] = ãQ[n],

x̃k[n] =
2 sin (πkMãQ[n])

MN sin
(
πk
N

) , 1 ≤ k ≤
⌊
N

2

⌋
.

(10)

Thus, a DT analog of CT equation (2) can be written as

x̃[n] = ãQ[n] +

bN
2 c∑

k=1

2 sin (πkMãQ[n])

MN sin
(
πk
N

) cos

(
2π

N
kn

)
. (11)

PWM output is by definition a pulsed signal (whose Fourier
series coefficients are sinc functions) and therefore a formula
similar to (11) should hold, regardless of the choice of baseline
carrier. Though parameters of the quantization process may
change in this case, e.g. for trailing edge PWM L = MN
holds, and for sinusoidal carriers quantization process would
be non-uniform. Expression (11) now implies that aliasing-free
digital PWM is possible if and only if the PWM input signal is
pre-quantized exactly as defined by the inherent quantization
process. In order to minimize in-band distortion introduced by
the inherent quantization, e.g. delta-sigma modulator (DSM)
can be used to pre-quantize digital PWM input, and shape

Fig. 3. Baseband spectrum of digital PWM output for different number of
DSM pre-quantization levels.

noise to out-of-band frequencies. But relation L =
⌊
MN
2

⌋
is crucial in achieving optimal in-band signal-to-noise ratio
(SNR). Indeed, if it is not satisfied, additional in-band dis-
tortion will be generated by PWM, as confirmed by Matlab
simulation results shown in Fig. 3. These plots depict baseband
spectrum of the output of a digital PWM with M = 2 and
N = 6, driven by the same high resolution input signal with
four different DSM configurations: uniformly quantized with
the number of quantization levels L equal to 100, 15, 6 and 3.
Clearly L = 6 satisfies relation L =

⌊
MN
2

⌋
, and gives optimal

in-band SNR.

IV. MODEL VERIFICATION

In order to verify the closed-form expressions derived in
the previous section, numerical simulations in MATLAB have
been carried. Amplitude of a randomly generated 64QAM
signal, upsampled and rescaled in amplitude to fit into (0, 1)
interval, has been used as the input into digital PWM. Input
signal bandwidth is set to B = 20MHz, and the PWM carrier
frequency is fp = 0.5GHz. Both the oversampling ratio N
and the number of output levels (M + 1) of PWM have been
varied. Relative distance between digital PWM output signals
obtained by simulation of a process shown in Fig. 1. and by
the derived analytical formulas, was used as a measure of
error. That is, if x and xa denote PWM outputs obtained by
numerical simulation and analytical formulas, respectively, the
error is given as

d(x, xa) =
‖x− xa‖2
‖x‖2

· 100 [%] (12)

Values of (12), for various combinations of N and M , are
shown in Table I. As can been seen, the error is negligible,
which confirms validity of derived expressions. As an illustra-
tion the spectra of a digital PWM output signal obtained by
simulation, and the corresponding validation error signal, for
N = 4 and M = 4, are shown in Fig. 4. It is clear that power
level of the error signal, between simulated and analytically
obtained PWM outputs, is significantly lower than the signal
level, as was expected from error values in Table I.

V. CONCLUSION

In this paper, a novel closed-form time-domain expression
for the output signal of a multilevel carrier-based digital



TABLE I. DIFFERENCE BETWEEN SIMULATED AND ANALYTICALLY
OBTAINED DIGITAL PWM OUTPUT (VALUES IN PART-PER-TRILLION OF %)

H
HHHN
M+1 3 5 7 9 11 13

2 0 0 0.001 0 0.001 0.001
3 0.197 0.164 0.120 0.090 0.076 0.063
4 0.108 0.074 0.053 0.041 0.034 0.028
5 0.158 0.120 0.086 0.067 0.055 0.045
6 0.323 0.224 0.159 0.125 0.103 0.085
7 0.201 0.150 0.111 0.085 0.069 0.057
8 0.202 0.139 0.097 0.077 0.062 0.051
9 0.349 0.249 0.179 0.140 0.114 0.094
10 0.247 0.172 0.120 0.094 0.077 0.064

Fig. 4. Spectra of simulated digital PWM output and error signals.

PWM, driven by an arbitrary bounded input signal, was
presented. Quantization process, due to finite time resolution
of switching instants inherent to digital PWM operation, was
fully described, giving theoretical bounds on the achievable
output signal resolution for a given PWM scheme. It was
shown that this quantization is a time-domain manifestation
of spectral aliasing effects in digital PWM. This result implies
that aliasing-free digital PWM is possible if and only if the
input signal, before being fed into PWM, is quantized exactly
as defined by the inherent quantization process. The presented
analysis significantly improves understanding of the leading
in-band distortion source in digitally implemented PWM.

APPENDIX

We find closed form expressions for infinite sums in (8) and
(9) by sampling carefully chosen continuous-time signals, and
then use the Fourier transform to compute the DC component.

For fixed a ∈ (0, 1), let continuous-time signal f be defined
as f(t) = sin(πat)

πt for t 6= 0 and f(0) = a. The Fourier
transform of signal f is given by

F (ω) =

{
1, |ω| < πa

0, otherwise
.

Let S(K, a) =
∑∞
n=−∞

sin(πKna)
πKn . Clearly the infinite sum

in (8) is equal to S(K, a) for K = MN . For T > 0, let
discrete-time signal fT be defined as

fT [n] = f(nT ) =
sin(πanT )

πnT
, ∀n ∈ Z.

The sum S(K, a) can now be rewritten in terms of fT as

S(K, a) =

∞∑
n=−∞

fT [n]

∣∣∣∣∣
T=K

.

Let FT denote the Fourier transform of fT . Since fT is a
sampled version of f , FT is given as

FT (Ω) =
1

T

∞∑
k=−∞

F

(
Ω

T
− 2πk

T

)
. (13)

Evaluating FT at Ω = 0 we get FT (0) =
∑∞
n=−∞ fT [n], and

hence
S(K, a) = FT (0)|T=K . (14)

Thus computing S(K, a) amounts to finding the value of FT
at Ω = 0. From (13) and (14) it follows that

S(K, a) =
1

K

∞∑
k=−∞

F

(
−2πk

K

)
. (15)

Depending on the values of K and a, the number of elements
in the sum in (15) will change. More precisely

F

(
−2πk

K

)
= 1 for

∣∣∣∣2πkK
∣∣∣∣ ≤ πa,

which implies

S(K, a) =
2µ+ 1

K
, (16)

where µ =
⌊
aK
2

⌋
. This can be restated as follows

S(K, a) =
2k + 1

K
, (17)

where 2k
K ≤ a <

2k+2
K ,∀k ∈ {0, . . . ,

⌊
K−1
2

⌋
}.

Infinite sum in (9) can be found in a similar way by
sampling function g(t) = f(t+Mk) for 1 ≤ k ≤

⌊
N
2

⌋
.
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