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Abstract
Particle Gibbs with Ancestor Sampling (PGAS) is a particle Markov chain Monte Carlo
method (PMCMC) for Bayesian inference and learning. PGAS conditions on a references-
tate trajectory in the underlying particle filter using ancestor sampling. In this paper, we
leverage PGAS for identification of cornering-stiffness parameters in road vehicles only using
production-grade sensors. The cornering-stiffness parameters are essential for describing the
motion of the vehicle. We show how PGAS can be adapted to efficiently learn the stiffness
parameters by conditioning on the noise-input trajectory instead of the state trajectory. We
verify on a three-minute long experimental test drive that our method correctly identifies the
tire-stiffness parameters.
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1. INTRODUCTION

Sequential Monte-Carlo methods (SMCs) (Doucet and Jo-
hansen, 2009) are a set of numerical Bayesian-inference
methods aimed at estimating the posterior distribution
of the state trajectory x1:T , conditioned on the measure-
ment trajectory y1:T and the underlying dynamical model.
Recently, SMCs have been combined with Markov Chain
Monte Carlo methods (MCMCs, see (Robert and Casella,
2004)) for Bayesian inference and learning, resulting in
a class of particle MCMC (PMCMC) methods (Andrieu
et al., 2010). PMCMC relies on SMC to construct MCMC
kernels. In the Particle Gibbs (PG) sampler, the Markov
kernel is constructed by executing an SMC where one
reference (state) trajectory is set a priori. To alleviate the
inherent path-degeneracy problem, there has been exten-
sions of PG including, for example, adding a backward
sweep in the underlying SMC (Lindsten and Schön, 2013).
Notably, PG with ancestor sampling (PGAS) constructs
the Markov kernel by running a particle filter (PF), where,
in each iteration, one of the particle (state) trajectories is
conditioned using an additional ancestral sampling step
(Lindsten et al., 2014). PMCMC and PGAS have thus
far found applications in state smoothing (Svensson et al.,
2015), system identification (Schön et al., 2015), and fi-
nance (Nonejad, 2015).

In this paper, we adapt PGAS for identification of tire-
stiffness parameters. The tire-road contact is what mainly
generates the forces that alter the motion of a ground
vehicle, and the knowledge of variables related to the tire–
road interaction is essential for advanced driver-assistance
systems. During normal driving, that is, far from the
vehicle handling limits, the tire–road model is commonly
assumed to be a static, linear relationship between force
and slip with the tire stiffness defined as the proportion-
ality constant, but to reliably determine the tire stiffness
is complicated even with this simplification. Knowledge

of the tire-stiffness parameters are are necessary for accu-
rately describing the motion of the vehicle (Di Cairano
et al. (2013); Berntorp et al. (2014)). The research on
tire-stiffness estimation is extensive. Linear recursive re-
gression with different types of sensor setups is a common
alternative (Gustafsson, 1997; Lundquist and Schön, 2009;
Lee et al., 2015), but because of the complexity of the iden-
tification problem, linear approaches are not guaranteed to
provide global convergence. We have previously reported
on an approach for real-time estimation of the tire stiffness
(Berntorp and Di Cairano, 2016), but real-time schemes
will always be more or less dependent on a good initial
guess and inherently gives nonperfect estimates. In this
paper we focus on the offline identification part, which
can, for example, be used for providing initial estimates
for real-time schemes and therefore increases robustness of
the complete estimation system. The experimental results
repeated in this paper indicate that PGAS can indeed
correctly identify the tire stiffness using only standard,
production-viable sensors in passenger vehicles.

Sometimes conditioning on the state trajectory, as is usu-
ally done in PGAS, leads to poor performance. Degener-
acy arises in a number of applications, such as tracking
(Gustafsson et al., 2002) and state estimation (Berntorp
and Di Cairano, 2016; Berntorp, 2016). Intuitively, the
reason is tied to needing the inversion of the system model
is needed to update the parameters based on the state
trajectory. Instead, in this paper we condition on the
noise-input trajectory, which is a numerically stable and
therefore more appealing approach, in certain scenarios.

Preliminaries: We consider the model

xk+1 ∼ fθ(xk+1|xk,uk), (1a)

yk ∼ gθ(yk|xk,uk), (1b)

where ∼ means distributed according to, uk is the known
input, hereafter without loss of generalization assumed
zero, at time index k, fθ(·) and gθ(·) are the dynamics and



measurement model, respectively, modeled as probability
density functions and parameterized by the unknown
vector θ. For the ease of notation, we will sometimes write
fk for fθ(xk,uk).

In this paper we focus on a particular form of (1),

xk+1 = f(xk) + g(xk)vk, (2a)

yk = h(xk) + ek, (2b)

where v is Gaussian distributed according to v ∼ N (µ,Σ)
with unknown mean µ and covariance Σ, and where the
process noise vk and the measurement noise ek can be
dependent on each other. The task is to estimate the
mean and covariance of the process noise based on a batch
of measurements y1:T and a state trajectory x1:T . Note
that in general all involved functions in (2) are allowed to
depend on θ.

The aim in Bayesian system identification is to model the
unknown vector θ as a random variable with some prior
distribution, θ ∼ π(θ), and learn the posterior p(θ|y1:T ),
that is, the posterior of the parameters conditioned on the
observed data y1:T = {y1, . . . ,yT } from time index 1 to
time index T . To this end, we can estimate the joint state
and parameter posterior distribution p(θ,x1:T |y1:T ) and
then exploit marginalization,

p(θ|y1:T ) =

∫
p(θ,x1:T |y1:T ) dx1:T

=

∫
p(θ|x1:T ,y1:T )pθ(x1:T |y1:T ) dx1:T . (3)

Hence, to solve the Bayesian system identification prob-
lem, a feasible approach is to first compute the poste-
rior of the parameters conditioned on the complete data
{x1:T ,y1:T } and then marginalize out as in (3).

2. VEHICLE MODEL AND PROBLEM STATEMENT

We use a single-track model (Berntorp, 2014) for estima-
tion. The states to estimate are the longitudinal and lateral
velocity, and yaw rate, that is, x = [vX vY ψ̇]T . This
model is commonly used for control in advanced driver-
assistance systems (Di Cairano et al., 2013). In general,
the longitudinal and lateral tire forces are nonlinearly
dependent on the wheel slip κ and slip angle α. However,
we assume normal driving conditions, meaning that the
tire forces can be expressed as

F x ≈ Cxκ, F y ≈ Cyα, (4)

where Cx and Cy are the longitudinal and lateral (corner-
ing) stiffness, respectively. In addition, we assume small
acceleration and deceleration, implying that F x ≈ 0.
Inserting (4) into the equations of motion for the single-
track model, which are straightforward to derive (Bern-
torp, 2014), gives

m(v̇Y + vX ψ̇) = Cyfαf cos(δ) + Cyrαr, (5a)

Iψ̈ = lfC
y
fαf cos(δ)− lrCyrαr, (5b)

where vX and vY are the longitudinal and lateral vehicle
velocity, respectively, ψ̇ is the yaw rate of the vehicle, δ is
the wheel angle, lf + lr is the wheel base, m is the vehicle
mass, I is the inertia, and where subscripts f, r stand for
front and right, respectively.

The slip angles are computed as

αf ≈ δ
vY + lf ψ̇

vX
, αr ≈

lr ˙ψ − vY
vX

,

The longitudinal velocity vX and steering angle δ are
treated as known inputs. This is consistent with many
navigation systems, where dead reckoning is used to de-
crease state dimension. In practice, vX can be estimated
using the wheel-speed sensors, transmission-shaft speed
sensors, accelerometers, or a combination of them. We
treat the tire-stiffness parameters as deviations from a
nominal component,

Cy = Cyn + ∆Cy, (6)

where Cn is the nominal value of the respective stiffness
and ∆Cy is the unknown part. The disturbance vector

v =
[
∆Cyf ∆Cyr

]T
(7)

is modeled as a Gaussian random variable according to
vk ∼ N (µ,Σ) with unknown mean and covariance. In-
serting (6) into (5) and discretizing, results in

xk+1 = f(xk,uk) + g(xk,uk)vk, (8)

where uk = [vX δ]T. Thus, (8) corresponds to (2a) (or
generally to (1a)). We measure the lateral acceleration

aYm and yaw rate ψ̇m, forming the measurement vector

yk = [aYm ψ̇m]T. An automotive-grade inertial sensor has a
bias b, which needs to be modeled for any realistic imple-
mentation. We model the bias for the lateral acceleration
and the yaw rate as a random walk,

bk+1 = bk + vb,k, (9)

where vb,k is modeled as a zero-mean Gaussian with known
covariance matrix Q. The measurement model can be
written as

yk = h(xk,uk) + bk + ek, (10)

which corresponds to (2b) (or generally to (1b)). A compli-
cating factor is that the noise sources vk and ek are depen-
dent on each other. To see this, note that aY = v̇Y + vX ψ̇
can be extracted from (5a) by dividing with the vehicle
mass. Hence, since we measure the lateral acceleration,
the discretized version of (5) will appear in (10), and
ek can be decomposed as ek = ḡ(xk,uk)vk + ēk with
ēk ∼ N (0,R). The mean µ̄ and covariance Σ̄ of the
joint Gaussian distribution of the process noise and the
measurement noise can therefore be written as

µ̄ =

[
µ
ḡkµ

]
, (11a)

Σ̄ =

[
Σ ΣḡTk
ḡkΣ ḡkΣḡ

T
k +R

]
. (11b)

Remark 1. The goal of this paper is to identify the cor-
nering stiffness {Cyf , Cyr } subject to vehicle model (8) and

the measurement model (10), where the inertial sensors
have time-varying bias (9). The cornering stiffness influ-
ences the vehicle state, which is only implicitly observed
through the inertial sensors. The estimation quality of the
vehicle state heavily affects the identification of the noise
statistics, and vice versa, by the multiplicative relation
between tire stiffness and state in (5), which also implies
that the process noise is state dependent. Furthermore, be-
cause of the correlation between process and measurement
noise, also the measurement noise is dependent on the tire
stiffness. A further complicating factor is that because we
rely on inertial sensors, the measurements will be biased.



The considered problem is therefore hard to solve and as
pointed out in (Berntorp and Di Cairano, 2016), linear
estimation techniques are likely to function well only in
certain scenarios with specific settings.

2.1 Problem Formulation

We formulate the problem as identifying the parameter
vector θ = {µ,Σ} of the mean and covariance of the tire
stiffness by formulating a Bayesian system identification
problem, where we estimate the posterior p(θ|y1:T ) of
the parameters conditioned on the entire measurement
history by leveraging (3). We tackle this problem by
approximating the joint posterior p(θ,x1:T |y1:T ) with a
PMCMC approach and then perform marginalization as
in (3) to recover the stiffness estimates.

3. SEQUENTIAL MONTE CARLO AND
MARKOV CHAIN MONTE CARLO

PFs approximate the posterior density pθ(x1:T |y1:T ) by a
set of N weighted state trajectories as

pθ(x1:T |y1:T ) ≈
N∑
i=1

wiT δxi
1:T

(x1:T ), (12)

where wiT is the importance weight of the ith trajectory
xi1:T and δ(·) is the Dirac function. The PF recursively
estimates (12) by utilizing Bayes theorem through the
equation

pθ(x1:T |y1:T ) =
gθ(yk|xk)pθ(x1:T |y0:T−1)

pθ(yT |y0:T−1)
. (13)

By introducing a proposal density for generating the sam-
ples {xiT }Ni=1,

xT ∼ qθ(xT |xT−1,yT ), (14)

combining (12) and (13) leads to the importance weight

wiT = wiT−1
gθ(yT |xiT )fθ(x

i
T |xiT−1)

qθ(xiT |xiT−1,yT )
. (15)

In practice, PFs suffer from path degeneracy, which implies
that (12) will be a poor approximation for any finite N and
large T . This arises because of the (necessary) resampling
step inherent in the PF. Resampling removes particles
with low weights and replaces them with more likely
particles and therefore diversity among the particles is
lost. Hence, the PF estimate collapses for large T . PFs are
therefore often combined with a backward sweep starting
from the marginal density pθ(xT |y1:T ), which typically can
be well approximated by the PF without suffering from
degeneracy. This is done by discarding the history x1:T−1.
The idea is that first a PF is used to construct the marginal
posterior at time index T , whereby a backward pass is
performed that adjusts the state xk with the more recent
measurements yk+1, . . . ,yT .

3.1 Particle Markov Chain Monte Carlo

MCMCs (Robert and Casella, 2004; Andrieu et al., 2010)
can be used to sample from complicated distributions π(θ).
The idea is to simulate a Markov chain that has π as
stationary distribution. For instance, MCMC can be used
to generate {θ(0),θ(1), . . . ,θ(m)} where θ(m) depends on

θ(m−1) at each iteration, which for sufficiently largem are
samples from π, that is, has π as stationary distribution.
If the chain is ergodic, by the ergodic theorem (Robert and
Casella, 2004) sample paths can be used to approximate
expectations Eπ with respect to π,

1

M − k + 1

M∑
m=k

φ(θ(m))→ Eπ(φ(θ)), M →∞, (16)

for any test function φ where the first k samples in (16)
belong to the burn-in phase, that is, the transient behavior,
and are discarded.

MCMC methods are commonly used to sample from
p(θ,x1:T |y1:T ) by alternately updating x1:T given θ and
θ given x1:T . An important step in the design of MCMC
is constructing the Markov chain such that it converges to
the distribution of interest. There are several approaches
for achieving this. The Gibbs sampler is an MCMC method
that estimates p(θ,x1:T |y1:T ) relying on the decomposi-
tion

p(θ,x1:T |y1:T ) = p(θ|x1:T ,y1:T )pθ(x1:T |y1:T ). (17)

A possible benefit with using (17) is that it is often pos-
sible to sample from p(θ|x1:T ,y1:T ), and a proposal for
θ, which can be tedious to design, is therefore avoided.
Assuming that it is possible to sample a state trajectory
from the smoothing density pθ(x1:T |y1:T ), a procedure
for approximating (17) is shown in Algorithm 1. Algo-

Algorithm 1 Bayesian learning of state-space models
1: Set θ(0) and x1:T (0) arbitrarily.
2: for m← 0 to M do
3: Draw x1:T (m + 1) ∼ pθ(m)(x1:T (m)|y1:T ).
4: Draw θ(m + 1) ∼ p(θ|x1:T (m + 1),y1:T ).
5: end for

rithm 1 produces the sequence of parameters and states
{θ(m),x1:T (m)}Mm=1, which forms a Markov chain. In
the limit the simulated Markov chain has the density
p(θ,x1:T |y1:T ) as stationary distribution, and under cer-
tain assumptions the Markov chain is consistent in the
sense of (16). The smoothing density pθ(x1:T |y1:T ) can be
intractable to sample from. In those cases we can replace
exact sampling by leveraging SMC for constructing the
samples on Line 3 in Algorithm 1, which still ensures
convergence of the MCMC.

The particle Gibbs with ancestor sampling (PGAS) is
a PMCMC that estimates the smoothing density by a
procedure similar to the standard PF, except for that the
PF is conditioned on one prespecified reference trajectory
x′1:T , which is retained throughout the procedure. In
PGAS, at each time step x′k is connected with one of the
N − 1 particles in the previous time step (i.e., one of the
ancestors) by sampling a value for the ancestor index aNk
with probability according to the respective importance
weights {wjk−1}Nj=1 of the particles at time k−1; in this way
connections are made with the particles at the previous
time index while still retaining a dependence on the
reference trajectory. In (Lindsten et al., 2014) it is shown
that Algorithm 1 using PGAS admits the joint distribution
p(θ,x1:T |y1:T ) as stationary distribution. Furthermore,
PGAS produces state trajectories that can be used as
samples from the smoothing distribution pθ(x1:T |y1:T ) for
any N > 1. PGAS takes a state trajectory x′1:T and



maps it onto another trajectory x1:T and can therefore
be viewed as a Markov kernel defined on the space of state
trajectories.

4. PGAS BASED ON CONDITIONAL-INPUT
PARTICLE FILTER FOR PARAMETER LEARNING

PGAS is based on a conditional particle filter with ances-
tral sampling (CPF-AS), where the conditioning is done
with respect to the state trajectory. However, when PGAS
is used for the purpose of learning θ, it can be inconvenient
to condition on x1:T . One reason is that to generate the
samples on Line 4 in Algorithm 1, inversion of parts of
the dynamics is typically necessary. However, in practice
this inversion can be avoided. To this end, this section
formulates our modified PGAS for learning θ, which we
apply to tire–road friction estimation.

Instead of only storing the ancestral states, resulting in
the output state trajectory on Line 3 in Algorithm 1, we
also store the noise-input sequence corresponding to the
ancestral trajectories. The PGAS kernel is summarized in
Algorithm 2. Then, the noise-input sequence is used to
update the posterior density of the parameters on Line 4
in Algorithm 1. The only differences in Algorithm 2 com-
pared with standard PGAS are in Lines 4, 7, 11, and 16,
which are omitted in standard PGAS. However, this small
modification has implications in practical applications of
the framework. We will demonstrate the method in the
next section. For an extensive discussion of particle ances-
tor sampling in nearly degenerate models and methods to
alleviate this, see (Lindsten et al., 2015).

Algorithm 2 PGAS kernel

Initialize: Draw {xi
1}

N−1
i=1 ∼ p(x1) and set xN

1 = x′1,
{wi

1}Ni=1 = gθ(y0|xi
0).

1: for k ← 2 to T do
2: for i← 1 to N − 1 do
3: Draw aik with P(aik = j) ∝ wj

k−1
.

4: Draw {xi
k,v

i
k−1} ∼ qθ(xk|x

ai
k

k−1
,yk).

5: end for
6: Set xN

k = x′k.
7: Set vNk−1 = v′k−1.

8: Draw aNk with P(aNk = j) ∝ wj
k−1

fθ(x′k|x
j
k−1

).
9: for i← 1 to N do

10: Set xi
1:k = {xai

k
1:k

,xi
k}.

11: Set vi0:k−1 = {va
i
k

0:k−2
,vik−1}.

12: Set wi
k ∝ gθ(yk|xi

k)fθ(xi
k|xi

k−1)/qθ(xi
k|xi

k−1,yk).
13: end for
14: end for
15: Draw J with P(i = J) ∝ wi

T .
16: Set x′1:T = xJ

1:T , v′0:T−1 = vJ0:T−1.
Output: {x′1:T ,v′0:T−1}

5. PGAS FOR ROAD-FRICTION ESTIMATION

Because the tire-stiffness parameters θ = {µ,Σ} are
modeled as Gaussian process noise, we can assign a con-
jugate prior (Murphy, 2007) to the prior π(θ) of the
parameters. If a prior distribution belongs to the same
family as the posterior distribution, the prior is conjugate
to the likelihood. For Gaussian distributed data v we

can use a Normal-inverse Wishart distribution as con-
jugate prior for the mean and covariance according to
θ ∼ NiW(µ0, λ,Ψ, ν), where {µ0, λ,Ψ, ν} are the hyper-
parameters of the Normal-inverse Wishart. The resulting
posterior distribution for the mean and covariance will also
be a Normal-inverse Wishart,

θ|v ∼ NiW(µT , λT ,ΨT , νT ), (18)

where the hyperparameters are (Murphy, 2007)

µT =
λµ0 + (T + 1)v̄

λ+ T
,

λT = λ+ T,

νT = ν + T,

ΨT = Ψ + S +
λT

λ+ t
(v̄ − µ0)T(v̄ − µ0),

in which

v̄ =
1

T

T∑
k=1

vk, S =

T∑
k=1

(vk − v̄)(vk − v̄)T

are the mean and scatter matrix, respectively. Hence,
samples from p(θ|x1:T ,y1:T ) = p(θ|v0:T−1) in Algorithm 1
are generated from (18).

In the underlying CPF, the total number of states to
estimate consists of the vehicle state and the bias state.
The CPF therefore targets the joint posterior density
p(x1:k, bk|y1:k) at each time step k to create the refer-
ence trajectory necessary for estimating the tire-stiffness
parameters. The joint posterior can be decomposed as

p(bk,x1:k|y1:k) = p(bk|x1:k,y1:k)p(x1:k|y1:k). (19)

Thus, the computation of the joint posterior can be done
recursively by alternately estimating the vehicle state and
the bias state.

Estimating the Vehicle State Choosing a proper pro-
posal density (14) is important for reliable performance
of any PF implementation, because the proposal alone
determines how the particles are predicted. A suboptimal
but rather common choice that is used in the bootstrap
PF (Gordon et al., 1993) is to use the dynamics (1a)
for propagating the particles. Because the inertial sensors
introduce a dependence between the process noise and
the measurement noise, the standard proposal needs to
be modified to account for such dependence (Saha and
Gustafsson, 2012). Since we model the unknown part of
the stiffness parameters as a Gaussian random variable,
this results in the Gaussian proposal

qθ(xk|xk−1,yk−1) =

N
(
fk + gkΣḡ

T
k (ḡkΣḡ

T
k + Pk +Rk)−1(yk − hk − bk),

gk(Σ−ΣḡTk (ḡkΣḡ
T
k + Pk +Rk)−1ḡΣ)gTk

)
. (20)

Estimating the Bias The vehicle state only affects the
bias state through the measurement equation (10), which
is affine in bk given the state trajectory x1:k. Furthermore,
the time evolution of the bias is described by a Gaussian
random walk (9), which is linear and independent from
the state. Hence, given the state trajectory, the posterior
of the bias is a Gaussian according to

p(bk|x1:k,y1:k) = N (b̂k|k,Pk|k), (21)



where the mean and covariance are computed with a
Kalman filter conditioned on the state trajectory x1:T ,
resulting in the update equations

b̂k+1|k = b̂k|k, Pk+1 = Pk +Q, (22)

for the time update and

b̂k|k = b̂k|k−1 +Kk(yk − hk − ḡkµ− b̂k|k−1),

Pk|k = Pk|k−1 −KkS
−1
k KT

k ,

Kk = Pk|k−1S
−1
k ,

Sk = (Pk|k−1 +R+ ḡkΣḡ
T
k ).

(23)

for the measurement update, where (22), (23) are taken
per particle.

We summarize the resulting PGAS for this specific appli-
cation in Algorithm 3, which replaces the generic Algo-
rithm 2 on Line 3 in Algorithm 1.

Algorithm 3 PGAS kernel for Tire-Stiffness Identifica-
tion

Initialize: Draw {xi
1}

N−1
i=1 ∼ p(x1) and set xN

1 = x′1,
{wi

1}Ni=1 = gθ(y0|xi
0).

1: for k ← 2 to T do
2: for i← 1 to N − 1 do
3: Draw aik with P(aik = j) ∝ wj

k−1
.

4: Measurement update of bias ancestor aik using (23).

5: Draw {xi
k,v

i
k−1} ∼ qθ(xk|x

ai
k

k−1
,yk−1) using (20).

6: Predict bias statistics from ancestor aik using (22).
7: end for
8: Set xN

k = x′k.
9: Set vNk−1 = v′k−1.

10: Draw aNk with P(aNk = j) ∝ wj
k−1

fθ(x′k|x
j
k−1

) using (8).
11: for i← 1 to N do

12: Set xi
1:k = {xai

k
1:k

,xi
k}.

13: Set vi0:k−1 = {va
i
k

0:k−2
,vik−1}.

14: Set wi
k ∝ gθ(yk|xi

k)fθ(xi
k|xi

k−1)/qθ(xi
k|xi

k−1,yk) using
(8), (10), and (20).

15: end for
16: end for
17: Draw J with P(i = J) ∝ wi

T .
18: Set x′1:T = xJ

1:T , v′0:T−1 = vJ0:T−1.
Output: {x′1:T ,v′0:T−1}

5.1 Experimental Results

We have used a mid-size SUV, equipped with state-of-the-
art validation equipment, to gather data. The parameters
of the vehicle model are extracted from data sheets and
experimental validation. The vehicle is equipped with
state-of-the-art sensors, only used to verify the algorithm,
and the ground truth of the lateral stiffness parameters has
previously been obtained by extensive vehicle experiments.
The model (5) assumes knowledge of the front-wheel
steering angle, which is not measured. However, the angle
of the steering wheel, available from the CAN bus, is
converted to a steering angle of the front wheel using a
constant gear ratio. The stiffness values are initialized to
50% of the true values. Note that we also tried the original
formulation of PGAS, but the convergence was not reliable
enough and the results are therefore omitted.

The data set consists of normal driving on a regular dry
asphalt road and is about 300 seconds long. We stress

that this data set is collected from a period of regular
driving on a standard two-lane road and was not gathered
for the purpose of this experiment. The road requires
only light steering, which reduces observability, and it
contains nonzero inclination and bank angles, which are
not explicitly accounted for in the current implementation.
Thus, the dataset also tests how robust the algorithm is
to these unmodeled effects.

Fig. 1 displays the estimated mean and standard devia-
tion of the cornering stiffness for both wheel axles when
executing Algorithm 1 using M = 5000 iterations. The un-
derlying CPF in Algorithm 3 uses N = 400 particles. The
measurements are gathered at 100 Hz, which is also the
time step used in the discretization of the dynamics. Thus,
the CPF executes for T = 30 000 time steps. The tire-
stiffness estimates converge very close to the true values
and the estimated standard deviation is about 8% of the
true value. It is interesting to compare with stiffness values
obtained on different surfaces. It is difficult to give exact
thresholds on how much the stiffness values differ between
different surfaces, because they depend on a number of
things, such as the specific tire, the evenness of the actual
road stretch, and more. However, it is still possible to
deduct that the stiffness values between snow and dry
asphalt differ about a factor of two, and the corresponding
differences between dry and wet asphalt are in the order of
20% (Svendenius, 2007). Hence, it is obvious from Fig. 1
that the algorithm can distinguish between dry asphalt
and snow on this particular data set. Furthermore, it is
likely that it can distinguish dry and wet asphalt with
high certainty, although more tests have to be made to
verify this statement.

In Fig. 2 we show the resulting posterior estimate (i.e.,
p(θ|y1:T )) of the tire stiffness, excluding the burn-in phase,
normalized with respect to the true values. Note that
although the ground-truth values have been calibrated us-
ing high-precision instruments, also the ground truth has
some inherent uncertainty because of, for example, slight
variations in tire load, tire pressure, and temperature,
between the time of calibration and the time of collection
of the considered data set. The posterior means are the red
dashed vertical lines. In the upper plot, the error compared
with the true value is about 3%. The rear lateral stiffness
estimate deviates less than 1%, which is remarkable con-
sidering that the method only uses production sensors and
that the data set has not been gathered for the purpose of
identifying the tire stiffness.

6. CONCLUSION

The main contribution of this paper is adaptation and
implementation of the particle Gibbs with ancestor sam-
pling for identification of the cornering stiffness parameter
that are necessary in many advanced vehicle-control and
estimation applications. The method only uses inertial
and wheel-speed sensors, which are typically installed in
production vehicles. We explained how to implement the
underlying conditional particle filter for this application.
The method was verified on a three minute long data set
taken from a test drive on dry asphalt. The experimental
results on dry asphalt show that the method leads to
stiffness estimates that deviate less than 1% from the
true values after the transient phase. It is future work to
fully evaluate the algorithm on more data sets and vehicle
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Fig. 1. Identified mean (red) and standard deviation (blue) of the
cornering stiffness, respectively, for the front (upper two plots)
and rear axle. True values are shown in black. The scales are
normalized with respect to the ground-truth value because of
confidentiality.
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Fig. 2. Posterior estimates (p(θ|y1:T )) for the front (upper plot)
and rear lateral stiffness. The red dashed vertical lines signify
the posterior means. The scales are normalized with respect to
the ground-truth value because of confidentiality.

configurations, based on these highly encouraging initial
results.
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