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Abstract
One of the key technologies to safely operate self-driving vehicles is the threat assessment
of other vehicles in the neighborhood of a self-driving vehicle. Threat assessment algorithms
must be capable of predicting the future movement of other vehicles. Many algorithms, how-
ever, predict future trajectories based only on the model of the dynamics and the environment,
which implies that they sometimes make too conservative predictions. This work reduces this
conservativeness by capturing the driver intention of other vehicles using a randomforests
classifier. Then, the algorithm computes possible future trajectories with a sequential Monte
Carlo method, which biases the predicted trajectory by the recognized intention. Lastly, the
algorithm calculates the potential threat to the ego vehicle. To evaluate the performance, we
conduct numerical simulations and show that the proposed algorithm can accurately capture
driver intentions and prevent motion predictions that are too conservative.
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Abstract: One of the key technologies to safely operate self-driving vehicles is the threat
assessment of other vehicles in the neighborhood of a self-driving vehicle. Threat assessment
algorithms must be capable of predicting the future movement of other vehicles. Many
algorithms, however, predict future trajectories based only on the model of the dynamics and the
environment, which implies that they sometimes make too conservative predictions. This work
reduces this conservativeness by capturing the driver intention of other vehicles using a random-
forests classifier. Then, the algorithm computes possible future trajectories with a sequential
Monte Carlo method, which biases the predicted trajectory by the recognized intention. Lastly,
the algorithm calculates the potential threat to the ego vehicle. To evaluate the performance,
we conduct numerical simulations and show that the proposed algorithm can accurately capture
driver intentions and prevent motion predictions that are too conservative.
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1. INTRODUCTION

Passenger vehicles are always required to operate safely,
and this requirement also holds for autonomous vehicles.
For autonomous vehicles to be accident free, the control
system needs to assess the threat of the environment (e.g.,
static obstacles, pedestrians, and other vehicles) with data
from sensors such as radars, lidars, and cameras. When the
computed threat is greater than a specified threshold, the
vehicle employs its path planning algorithm to compute
a path that avoids the potentially unsafe objects. If the
threat assessment (TA) is too optimistic, then the vehicle
may collide with the objects. By contrast, if the TA is too
conservative, then the vehicle will make an unnecessary
detour, which will worsen efficiency, comfort, and the
safety of the neighborhood traffic. Thus, TA algorithms
play a key role in operating self-driving vehicles.

TA algorithms are either deterministic or stochastic. While
deterministic TA algorithms predict a single future tra-
jectory and compute the threat level, stochastic methods
represent the future trajectories with probability density
functions (PDFs), which are estimated using statistical
methods such as Monte Carlo (MC) sampling (Broad-
hurst et al. (2005)). By taking into account the uncer-
tainty, stochastic methods offer safer and more robust
performance than deterministic methods. The most fa-
mous and popular stochastic motion prediction method is
the Kalman filter (KF), which originally assumes a linear
system model. This assumption is too strict because many

1 This research was performed while at MERL.

real-world systems are nonlinear, and in that case the KF
is sub-optimal. To mitigate this problem, several methods
have been proposed based on techniques such as extended
Kalman filter (EKF), unscented Kalman filter (UKF), and
particle filter (PF). Researchers employ these methods
to the state estimation and prediction of vehicle (e.g.,
interacting multiple model Kalman filter, (Carvalho et al.
(2014)), unscented transform-based sampling and switch-
ing KF (Veeraraghavan et al. (2006)), and Gaussian pro-
cesses (GP), (Armand et al. (2013))). Another approach to
predict future trajectories is to directly solve the ordinary
differential equation (ODE) of the system, which is non-
linear and stochastic. Solving nonlinear stochastic ODE is,
however, difficult in general. Thus, solution-approximation
methods are proposed such as Markov chain-based method
(Althoff et al. (2011)) and zonotopes-based method (Al-
thoff and Dolan (2014)). Note that general stochastic
methods, which perform predictions only with models of
the dynamics and the environment, sometimes predict fu-
ture trajectories that rarely occur and are too conservative.

We mitigate this conservativeness using a machine-learning
algorithm that performs driver intention recognition (DIR)
of other vehicles. DIR approaches found in literature are
typically either model-based or data-based. One model-
based algorithm is employed by Salvucci (2004) who pro-
posed a mind-tracking architecture with two-point visual
driver control model. One of the most classical data-
based DIR is hidden Markov models (HMMs)(Kuge et al.
(2000); Lefèvre et al. (2015)). Recently, researchers em-
ploy supervised-classification algorithms for DIR such as
support vector machine (SVM) (Mandalia and Salvucci



(2005)), SVM and Bayesian filters (SVM-BF) (Aoude and
How (2009)), and relevance vector machine (RVM) (Mc-
Call et al. (2005)).

Several researchers employed DIR for their TA meth-
ods.Eidehall and Petersson (2008) employed an iterative
MC method that is biased by the driver-preference distri-
bution. Aoude et al. (2010) addressed the problem of TA
at intersections and employed an SVM-BF for DIR and
explored future trajectories with the closed-loop rapidly-
exploring random tree (CL-RRT), which is biased by the
recognized driver intention. Laugier et al. (2011) employed
a hierarchical HMM for DIR and used GP, which is trained
a priori, to predict the future trajectories. Carvalho et al.
(2014) employed IMM-KF to predict future trajectories.
Our approach modifies these preceding methods and is
able to compute future trajectories more computationally
efficiently than iterative MC methods, recognize poten-
tially more driver intentions than SVM-based methods,
perform online tuning of parameters, and exhibit more
versatile future predictions than KF-based methods.

The proposed algorithm follows the following four steps.
First, to perform DIR of other vehicles, the algorithm
employs random forests (RF), a supervised-classification
algorithm proposed by Breiman (2001). The RF classifier,
which is an ensemble learning method, creates many small
decision trees to solve a given problem and votes for the
most popular result. Second, we convert the recognized
driver intention to a linear function of the vehicle state
by modeling in the road-aligned coordinate frame. Third,
we compute possible future trajectories with a sequential
Monte Carlo (SMC) method, PF with optimal sampling
(Arulampalam et al. (2002)), which biases the particles
based on DIR. Fourth, we compute threat level using time
to collision (TTC).

2. STATISTICAL THREAT ASSESSMENT METHOD
WITH DRIVER INTENTION RECOGNITION

This section explains the proposed algorithm. Firstly, we
define some terminologies employed in this paper. Sec-
ondly, we describe the entire framework of the algorithm.
Then, we explain the feature extraction method and clas-
sification algorithm for intention recognition. Lastly, we
describe the proposed algorithm to efficiently compute
possible future trajectories of vehicles.

2.1 Notation

We refer to a vehicle that employs the proposed method
as an “ego vehicle” (EV). Suppose that an EV wants to
compute the threat of another vehicle in its neighborhood,
the region of interest (ROI). The ROI corresponds to the
range of the employed sensors (e.g., radars, cameras, or
lidars). All the vehicles in the ROI are denoted by “other
vehicles” (OVs) (see Fig. 1). Note that OVs can be au-
tonomous, semi-autonomous, or completely human-driven.
In addition, we assume that the EV has access to the map
of the road (e.g., given by a car-navigation system). We
also assume that the EV can measure the following state
of the OVs: distance along the road, deviation from the
center of the road, and longitudinal and lateral speed. Be-
cause these measurements can be estimated from onboard
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Fig. 1. The EV is the white vehicle in the center, and the OVs
are the blue vehicles. Each state of OV is mapped to the road-
aligned coordinate, and the shape of the ROI is not affected by
the number of lanes and road curvature.

sensors such as cameras, radars, and global positioning
systems (GPS), this assumption is reasonable for a vehicle
equipped with an advanced driver assist system (ADAS).

2.2 Entire Structure

As shown in Algorithm 1, the proposed algorithm consists
of the following four steps: DIR, intention-to-path conver-
sion, reachable set computation, and threat computation.
The first step is OV DIR with the RF algorithm using
the data of the driving behavior of OV over the previous
several seconds. The second step is to convert the captured
driver intention to the corresponding path in the road-
aligned frame. The third step, which we call “reachable set
computation,” predicts possible future trajectories of the
OV with a sequential MC method. The last step assesses
potential threat of the OV and outputs a threat measure.

Algorithm 1 Statistical TA Method with DIR

for each OVi in ROI
1. DIi ← DIR(OVi)
2. yi ← Intention to path(DIi)
3. ReachableSeti ← PF with TA(yi)
4. ThreatLeveli ← Threat level(ReachableSeti)
end for

2.3 Intention Recognition of Other Vehicles

After an OV enters the ROI of the EV, the proposed
algorithm first estimates the intention of the OV driver.
Since our interest is mostly in the lateral motion, we
assume that the driver intention (DI) consists of the
following three intentions: to change lane to the left, CL;
to change lane to the right, CR; and to stay in the lane,
SL.

Feature Extraction: Since we employ an RF classifier
as a supervised-learning classification algorithm, we need
training data with DI. To have enough amount of training
data, we employ a sliding window approach as follows.
We compute the feature values from the following OV
state variables: vehicle lateral position, y; longitudinal and
lateral speed, vx and vy, respectively. We assume that the
EV can observe these state variables by processing infor-
mation from onboard sensors (e.g., radars and cameras),
GPS, and the road map. From the state variables and
the road geometry, we compute the following features for



intention recognition: normalized lateral position, ȳ; nor-
malized longitudinal speed, v̄x; and lateral speed, vy. Each
feature is explained in detail below. The raw data of these
variables are subject to noise. Thus, for the robustness, we
compute the following six statistical values of the features:
the minimum, maximum, mean, variance, the difference
between the first and the second value, and the difference
between the last and the second to last value. Furthermore,
to include changes of the values in the feature vector, we
divide the dataset to four sub-datasets and compute the
same statistical values of each sub-dataset. Therefore, the
feature vector we create has 90(= 3× 6× (1 + 4)) entries.

To train the classifier, we employ a sliding-window ap-
proach. Let Ntotal (= 4 × N), N ∈ N, be the number
of time steps of a window. We calculate the feature values
ȳ(t) ∈ [−1, 1] and v̄x(t) by ȳ(ti) = mod(2y(ti)/w+1, 2)−1,
where w is the width of the road, mod(a, b) returns the
remainder after division of a by b, and

v̄x(ti) =
vx(ti)

maxt0≤t≤tNtotal−1
(vx)

, (1)

where maxt0≤t≤tNtotal−1
(vx) denotes the maximum value

among vx(ti), where i = 0, 1, . . . , Ntotal−1. Then, we define
the feature vector as

z(ξ, ts, te) = [min(ξ(ti)),max(ξ(ti)),mean(ξ(ti)),

Var(ξ(ti)), ξ(ts+1)− ξ(ts), ξ(te)− ξ(te−1)] , (2)

and ξ ∈ {ȳ, v̄x, v̄y}, ts ∈ {t0, tN , t2N , t3N}, te ∈
{tN−1, t2N−1, t3N−1, tNtotal−1}. Thus, we define our feature
vector as:

Z = [ztotal(ȳ), ztotal(v̄x), ztotal(vy)], (3)

where

ztotal(ξ) = [z(ξ, t0, tN ), z(ξ, tN+1, t2N ),

z(ξ, t2N+1, t3N ), z(ξ, t3N+1, tNtotal
)] . (4)

Data Labeling: Consider Fig. 2 where a driver intends
to change lane from lane 1 to lane 2. We define the
time the vehicle crosses the lane boundary as tcross and
the vehicle reaches the center of lane 2 as treach. The
window starts at tcross − t1 and ends at tcross + t2. The
window size, t1 + t2, needs to be large enough so that the
classification algorithm can capture the driver intention.
Within the time window, we move a sub-window with
length twindow, extract features from the state variables
in the sub-window, and generate a dataset. We label the
data in each sub-window as “Change Lane” (i.e., CL or CR
depending on the direction) if the data start is between
tcross − t1 and treach, and SL if it starts after treach. Note
that when the training data has no lane changes, we cannot
define a window as denoted above. Thus, we just extract
dataset with length t1+ t2 and label all the dataset as SL.
Algorithm 2 briefly describes the algorithm.

Algorithm 2 DIR

Input: vehicle lateral position, y, longitudinal and lateral
speed, vx, vy, over the last Ntotal steps.
Output: DI ∈ {CL, CR, SL}
1: Compute Z in (3)
2: DI ← RandomForests(Z)

1

2

Fig. 2. Window size and data labeling.

Random Forests As discussed, the proposed algorithm
captures DI based on the behavior of the vehicle over
the previous several seconds. To estimate the intention, we
employ RF (Breiman (2001)). While Torkkola et al. (2004)
employed an RF classifier for an EV DIR, to the best of our
knowledge, RF classifier has never been employed for OV
DIR. As we mentioned in Section 1, many DIR algorithms
employ SVM. Both SVM and RF are state-of-the-art
algorithms for classification tasks, and determining which
classifier outperforms the other a priori is difficult since the
results depend on the data and the problem. Some research
compared the performance of SVM and RF in various
problem settings such as medical diagnosis (Statnikov and
Aliferis (2007))). The reason why this work employs an RF
classifier is that RF has superior performance than SVM
in multi-class classification tasks. Although this current
paper assumes that the driver has three intentions, the
future work will capture the longitudinal intention of
drivers (e.g., “to accelerate”, “to decelerate”, and “to keep
a constant speed”) simultaneously. To this end, we will
need to solve a nine-class (=3 × 3) classification problem
that is computationally heavy for SVM classifiers since
they are based on the one-vs-all strategy, implying the
need of training nine classifiers. By contrast, RF classifiers
do not need to train nine classifiers. One classifier will
classify the data to all of the nine intentions. Thus, RF
is more favorable for our objective than SVM. Note that
we can decouple the longitudinal and lateral dynamics
and train separate classifiers. However, the longitudinal
and lateral dynamics are in fact coupled, and ignoring
this coupling may result in an inferior performance and
possibly wrong conclusions about threat level.

2.4 Reachable Set Computation

Having obtained the driver intention of the OV from
the RF-based intention-recognition algorithm described
above, the proposed TA algorithm computes a reachable
set that is possible future trajectories of the OV. Since
the intention recognition algorithm effectively reduces the
diversion of the prediction problem, our algorithm will
predict less conservative trajectories.

Conversion of DI to path First, the algorithm converts
the recognized intention to corresponding desired location
and velocity profiles in the road-aligned coordinate frame
(see Fig. 1). This conversion is possible because, for in-
stance, the intention of changing to the left lane implies
an intended lateral position equal to the middle of the lane
left to our current lane, and similar for the other options.



Hence, transforming intentions to actual expressions on
the road gives us a measurement relation yk = Hxk + nk,
which is linear because we model everything in the road-
aligned frame. Although other statistical motion predic-
tion algorithms can be applied, our motion prediction
algorithm employs an SMC method, specifically a PF with
optimal sampling (Arulampalam et al. (2002)). We denote
the dynamic model of OV as:

xk+1 = f(xk) + vk, (5)

yk = Hxk + nk, (6)

where vk ∼ N (vk; 0nx×1, Qk), nk ∼ N (nk; 0ny×1, Rk), and
f : Rnx → Rnx is the vehicle dynamics, H ∈ Rny×nx is an
observation matrix, and Qk ∈ Rnx×nx and Rk ∈ Rny×ny

are symmetric positive definite. PFs numerically estimate
PDFs p(xk|y0:k) by generating NP random states {xi

k}
NP
i=1

at each time step k and assigning a probability weight wi
k,

which reflects how well the state explains the observations
yk. In previous work we have developed a sampling-based
motion planner based on particle filtering (Berntorp and
Di Cairano (2016)), in which task specifications y are used
to guide the motion planner to the relevant parts of the
state space. In this work, we let yk be the intended path
of a driver.

Remark: By incorporating the driver intention, we bias the
reachable set toward the recognized intention. Thus, the
reachable set we compute here is more reasonable and less
conservative than previous statistical approaches.

Algorithm 3 summarizes the process. Let x0 be the initial
state. The initialization step is to generate xi

1 and wi
1|0

according to (12). Let T be the time horizon to perform
prediction, then at each time step, perform the following
four steps: measurement update, estimation, resampling,
and time update. In the measurement update, given obser-
vation yk, the algorithm updates the weights by (13) and
(14). Then, the algorithm estimates the state according to
(15), where δ is the Dirac delta function. Next, if some of
the weights are too small, we resample particles. At last,
we predict state according to (16) and update the weight
as (17).

The performance of a PF depends on how to generate
particles from q in (16) (Gustafsson (2010)). The optimal
proposal is computed as:

q(xk+1|xi
k, yk+1) =

N (xk+1; f(x
i
k) +Ki

k(yk+1 − ŷik+1),Σ
−1
k ), (7)

where

Ki
k = Qk(H

i
k)

>(Hi
kQk(H

i
k)

> +Rk)
−1, (8)

Σk = Hi
kRk(H

i
k)

> +Qk, (9)

ŷik+1 = Hf(xi
k). (10)

Thus, the weights are updated as the following.

wi
k+1 ∝ wi

k N (yk+1; ŷ
i
k+1,H

i
kQk(H

i
k)

> +Rk). (11)

A key for guiding the particles using (7) is that we model
everything in the road-aligned coordinate frame, resulting
in a linear measurement model (6).

2.5 Threat Quantification

As we predict the future trajectories with a PF, we can
employ a PDF of future state of an object as a threat

Algorithm 3 PF with TA

Input: Intended path yk, current state x0, disturbances
vk and nk, where k = 0, . . . , T − 1.
Output: Particles xi

k and weight wi
k|k, where i =

1, . . . , NP .

1: Initialization.

xi
1 ∼ p(x1|x0), w

i
1|0 = 1/NP (12)

2: for k = 1 : T − 1 do
3: Measurement Update.

wi
k|k = wi

k|k−1p(yk|x
i
k) (13)

wi
k|k = wi

k|k/

NP∑
i=1

wi
k|k. (14)

4: Estimate PDF.

p̂(x1:k|y1:k) =
NP∑
i=1

wi
k|kδ(x1:k − xi

1:k), (15)

5: if needed then
6: Resampling.
7: end if
8: Time Update.

xi
k+1 ∼ q(xk+1|xi

k, yk+1), (16)

wi
k+1|k = wi

k|k
p(xi

k+1|xi
k)

q(xi
k+1|xi

k, yk+1)
. (17)

9: Threat Assessment.
10: if xi

k+1 collides with an obstacle then

wi
k+1|k = 0. (18)

11: end if
12: end for

measure. Note that since we are investigating a TA method
for autonomous vehicles, more complex measures can be
an output such as a union of the PDF of all obstacles.
The PDF can be leveraged by path planners such as the
one proposed by Berntorp and Di Cairano (2016). But, for
simplicity, in the numerical simulations in Section 3, we
employ TTC defined by:

TTCi = ∆t · inf
k∈{1,T}

{
k|posik ∈ BposEV

k
(r)

}
, (19)

where ∆t is the discretization time of the dynamics, posik
is the ith predicted position of the OV at time step k, and
BposEV

k
(r) represents the ball of radius r centered at the

position of the EV at time step k.

3. NUMERICAL SIMULATION

In the previous section, we introduced the proposed TA
algorithm. This section evaluates the performance using
numerical simulations. First, we evaluate the performance
of the RF-based algorithm to recognize OV driver inten-
tion and compare it with an SVM-based method. Second,
we show the effectiveness of the proposed algorithm in a
situation where taking OV driver intention into account
significantly impacts the performance.

To reproduce the vehicle dynamics in our simulation, we
employ CarSim. 2 This software has sophisticated dynamic
models and is frequently used in the automotive industry.
2 www.carsim.com
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Fig. 3. The path to follow in training dataset. We put points in
the transition path, which length is 30 meters independent
on speed. We smooth the path by a spline interpolation and
extrapolation.

3.1 Intention Recognition

Training Dataset In this paper the intentions to be
recognized are CL, CR, and SL. Using CarSim, we create
a training dataset with the following six speed settings:
80, 90, 100, 110, 120, and 130 kph. Thus, we prepared
18 (=3×6) datasets for training in total. The datasets are
recorded at 40 Hz, which is enough to capture the driver
intention for our RF classifier. A driver model installed in
CarSim controls the vehicle and tries to follow a specified
path, which we design a priori (see Fig. 3).

Performance Measure As performance measure, we em-
ploy precision, recall, and the F1 score: precision =
TP/(TP+FP), recall = TP/(TP+FN), F1 = 2 ·precision ·
recall/(precision+recall), where TP, FP, and FN represent
“true positive”, “false positive”, and “false negative”. True
positive/negative is the number of times the classifier
correctly identifies the class the given data do/do not
belong to. False positive/negative is the number of times
the classifier incorrectly identifies the class the given data
do/do not belong to.

Results We test the proposed intention recognition al-
gorithm with a test dataset, which we generate in the
same way as the training dataset, but the speed is 95
kph. As the sliding window parameters, we set t1 = 2 sec,
t2 = 3 sec, and twindow = 1 sec. The trained RF classifier
has 100 classification trees. Table 1 lists the results. The
precision of recognizing CL and CR are 1.00, but the values
of recall are around 0.96 and 0.95, respectively. This result
implies that the RF-based method always detects the
driver intention when the driver changes lanes, although
very few false detection occurs. By contrast, the recall
of recognizing SL is 1.00 but the precision is 0.96. This
result implies that the false detection of SL does not
occur, but the algorithm does not always detect SL. To
compare the performance, Table 1 also lists the perfor-
mance of an SVM-based method with a tuned radial basis
function kernel. The F1 score of our RF-based method
is competitive to that of an SVM-based method. Also,
as we discussed in Section 2, SVM-based methods have
difficulty in multi-class classification. Although RF does
not outperform SVM for lane-change intention recognition,
it performs comparably. It is therefore clear that RF is
more suitable when generalizing to more complex intention
scenarios.

3.2 Parallel Driving

In the previous scenario, we showed that the RF-based
classifier we propose has a competitive performance to

Table 1. DIR performance (RF: left, SVM: right).

RF SVM
CL CR SL CL CR SL

precision 1.000 1.000 0.963 0.991 1.000 0.992
recall 0.964 0.946 1.00 1.000 0.982 0.996

F1 0.982 0.972 0.981 0.995 0.991 0.994

1
2
3

Fig. 4. The lane 3 has an obstacle, and the OV (red) avoids it by
changing lane to lane 2 and back to lane 3. The EV (blue)
assesses the threat while the OV is avoiding the obstacle.

the SVM-based algorithm in the three-class DIR task and
explained the advantage RF has over SVM. In the second
numerical simulation, we assume that two vehicles are
driving straight in parallel on a three-lane road. Here, we
show that taking into account the OV driver intention
prevents too conservative predictions that may lead to
unnecessary escaping maneuvers.

We assume that an EV is driving on lane 1 and an OV
is driving on lane 3 (see Fig. 4). Furthermore, we assume
that the OV finds an obstacle (e.g., a bursted tire, a broken
car, or a pitfall) in the middle of the lane 3 and because
the obstacle is very large, the OV tries to avoid it by
changing lane to lane 2 and back to lane 3. We investigate
the performance of the proposed TA method for the EV
while the OV is performing this maneuver. Note that for
simplicity we neglected the uncertainty of the EV future
trajectories.

The data of the OV is generated with CarSim a priori,
and the classification tree for the intention recognition
is trained with the same database as the one trained for
the first numerical simulation. The dynamics employed for
motion prediction in this scenario is a single-track vehicle
model (Berntorp et al. (2014)). We also converted the
recognized intention to the path as described in Algorithm
4. We set the parameters as t1 = 2.0 sec, t2 = 3.0 sec,
and twindow = 1 sec (See Fig. 2). The number of particles
was 26. We compared the performance of the proposed
algorithm with an MC-based method inspired by Eidehall
and Petersson (2008) without taking into account the
DI and biasing the proposal probability, i.e., a naive
MC approach. The number of cases for the MC was
28. Both methods compute the TTC when the threat of
collision exists. Figures 5 shows the predicted path of
the proposed method and iterative MC method at one
time step. Knowing the OV driver intention, the proposed
method does not predict future collision. By contrast, the
method without DIR predicted collisions, which leads to
unnecessary escaping maneuver of the EV.



Algorithm 4 Intention to path

Input: current y coordinate, ȳ; DI ∈ {CL, CR, SL}
Output: intended path at time step k, yk
1: η2, η3 ←coordinate of the center of lane2, lane3
2: if DI == CL then
3: yk ←η3
4: else if DI == CR then
5: yk ←η2
6: else
7: if |ȳ − η3| < |ȳ − η2| then
8: yk ←η3
9: else

10: yk ←η2
11: end if
12: end if

Y
 (m

)

X (m)
(a) Proposed Method

X (m)

Y
 (m

)

(b) MC

Fig. 5. The EV drives straight along with y = 0. The red straight
line is the predicted path of the EV. The blue asterisk is the
current position of the OV. The blue lines are the reachable set
of the OV, and the green star indicates the OV driver intention.
The red box is the obstacle for the OV to avoid. The magenta
line is the OV path, which is generated using CarSim a priori.

4. CONCLUSION

This paper addressed a new statistical algorithm to assess
the threat of the neighborhood traffic of a vehicle. Firstly,
the algorithm recognizes the intention of the OV driver
using an RF classifier with behavioral data over the previ-
ous several seconds. After recognizing the driver intention,
the algorithm computes possible future trajectories of the
OV using a particle filter with optimal sampling. In a
numerical simulation, the algorithm successfully recog-
nized the intention of the driver and successfully prevented
producing too conservative predictions.

Future work will include simultaneous recognitions of lat-
eral and longitudinal driver intentions. The RF-based clas-
sifier we employ is expected to outperform SVM-based
methods in this multi-class classification scenario. Further-
more, online learning of the reachable set computation
parameters, Qk and Rk, is a possible research topic. In
addition, we will generalize the algorithm and provide a
more thorough comparison with other recently proposed
methods.
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