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Abstract
This paper considers the control of a multievaporator vapor compression system (ME-VCS)
where individual evaporators are permitted to turn on or off. We present a model predic-
tive controller (MPC) that can be easily reconfigured for different on/off configurations of
the system. In this approach, only the cost function of the constrained finitetime optimal
control problem is updated depending on the system configuration. Exploiting the structure
of the system dynamics, the cost function is modified by zeroing elements of the state, input,
and terminal cost matrices. The advantage of this approach is that cost matrices for each
configuration of the ME-VCS do not need to be stored or computed online. This reduces the
effort required to tune and calibrate the controller and the amount of memory required to
store the controller parameters in a microprocessor. The reconfigurable MPC is compared
with a conventional approach in which individual model predictive controllers are indepen-
dently designed for each on/off configuration. Simulations show that the reconfigurable MPC
method provides similar closed-loop performance in terms of reference tracking and constraint
satisfaction to the set of individual model predictive controllers. Further, we show that our
controller requires substantially less memory than the alternative approaches. Experiments
on a residential two-zone vapor compression system further validate the reconfigurable MPC
method.
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Multi-Evaporator Vapor Compression Systems

Daniel J. Burns†, Claus Danielson†, Junqiang Zhou†, and Stefano Di Cairano

Abstract—This paper considers the control of a multi-
evaporator vapor compression system (ME-VCS) where individ-
ual evaporators are permitted to turn on or off. We present
a model predictive controller (MPC) that can be easily re-
configured for different on/off configurations of the system. In
this approach, only the cost function of the constrained finite-
time optimal control problem is updated depending on the
system configuration. Exploiting the structure of the system
dynamics, the cost function is modified by zeroing elements of
the state, input, and terminal cost matrices. The advantage of
this approach is that cost matrices for each configuration of the
ME-VCS do not need to be stored or computed online. This
reduces the effort required to tune and calibrate the controller
and the amount of memory required to store the controller
parameters in a microprocessor. The reconfigurable MPC is
compared with a conventional approach in which individual
model predictive controllers are independently designed for each
on/off configuration. Simulations show that the reconfigurable
MPC method provides similar closed-loop performance in terms
of reference tracking and constraint satisfaction to the set
of individual model predictive controllers. Further, we show
that our controller requires substantially less memory than the
alternative approaches. Experiments on a residential two-zone
vapor compression system further validate the reconfigurable
MPC method.

Index Terms—Vapor Compression Systems, Model Predictive
Control, Plug-and-Play Control, Reconfigurable Control.

I. INTRODUCTION

Vapor compression systems (VCS), such as heat pump,
refrigeration, and air-conditioning systems, are widely used
in industrial and residential applications. The introduction of
variable speed compressors, electronically-positioned valves,
and variable speed fans to the vapor compression cycle has
greatly improved the flexibility of the operation of such
systems [1]. This increased actuator flexibility, along with
increasing onboard computing power, enables more sophisti-
cated control schemes than traditional on-off logic, or decen-
tralized PI controllers. Model Predictive Control (MPC) offers
a flexible and rigorous design process for vapor compression
systems in which the constraints are enforced during transients
and can be modified as the design evolves. Furthermore, by
appropriate design, the resulting controller provides guarantees
on feasibility, optimality, convergence, transient performance
and stability [2]–[4].
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Prior work on predictive control of multi-evaporator systems
has exploited the repeated evaporators and associated mechani-
cal elements to identify structure in the underlying model [5],
and in fact, similar observations underpin the current work.
This structure has led several groups to propose decentralized
controller architectures [6], [7], motivated primarily by an
effort to overcome computational challenges associated with
centralized approaches. However, prior approaches consider
only fixed-operation machines where the number of active
evaporators does not change. In practice, however, many
multi-evaporator systems often experience low heat loads in
localized zones such that a particular evaporator no longer
needs to provide cooling and should be shut off while the
remaining evaporators continue to provide service. Despite
the promising advantages of MPC for vapor compression
systems, key challenges remain to extend the approach to a
multi-evaporator system where individual evaporators can be
turned on or off independently, e.g., by closing the valves
that allow refrigerant to enter the evaporator and shutting off
the associated fan. Turning subsystems on or off alters the
model of the plant dynamics, and therefore induces changes
in the prediction model and number of regulated variables,
actuators, sensors, and constraints. A structural change of this
nature typically requires a separate controller for each machine
configuration, where at each control cycle the appropriate
controller is switched in at runtime [8], [9].

Recent work has extended Youla-Kucera parameterization
to handle the addition or removal of actuators and sensors
from the control system during online operation. This has
been termed ‘plug-and-play’ (PnP) control [9]. The PnP MPC
has also been developed for complex networks based on
decentralized [10] and distributed [11] approaches, motivated
by the time-varying network topology in which subsystems
join or leave the network. These proposed approaches require a
re-design of the controllers to guarantee stability in response to
changing network conditions. Control reconfiguration was in-
troduced in [12] for fault tolerance in distributed MPC, where
proposed controllers are robust to the worst-case coupling and
thus need not be redesigned when faults are detected.

Control re-design for MPC typically requires either complex
numerical procedures [13], [14] (solution of linear matrix
inequalities, Riccati equations, etc.), which in turn require
complex numerical algorithms, or deployment of large pre-
designed sets of controller parameters into the hardware. It is
impractical to implement such algorithms on vapor compressor
machines with microprocessors having limited computational
capabilities and memory. To address this shortcoming, this
paper proposes a reconfigurable MPC design that exploits
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the repeated subsystem model structure that emerges from
multiple evaporators connected in parallel to a compressor
and condenser (see Fig. 1). The proposed approach features a
single “master” controller designed and tuned for the config-
uration where all subsystems are turned on, and enables au-
tomatic reconfiguration of the controller by simple operations
for configurations when any number of evaporators are turned
off. In this way, a master controller can be designed and tuned
based on a single appropriately-partitioned prediction model,
and using the proposed reconfiguration method, scale to any
combination of active evaporators in a multi-evaporator VCS.

The paper is organized as follows: A description of the plant
to be controlled is provided in Section II, which includes a
description of the multi-evaporator VCS dynamics, constraints,
control objectives and structure of the configuration-dependent
model. The reconfigurable MPC is proposed in Section III,
which discusses the plant model augmentations for the MPC
prediction model and provides a design procedure for com-
puting terminal cost and controller matrices that are amenable
to online reconfiguration, as well as a detailed stability and
feasibility analysis for the closed-loop system under a given
configuration. In Section IV, a description is provided of
the laboratory used to experimentally validate reconfigurable
MPC, followed by a comparative simulation study between
reconfigurable MPC and collection of individually-designed
MPC controllers, and these simulated results are further
confirmed with experiments. More advanced experiments are
presented in Section V, including an extension of the method
wherein autonomous reconfiguration is experimentally vali-
dated. Finally, concluding remarks are offered in Section VI.

Notation

R and Z denote the set of real and integer numbers,
respectively. The interior of a set X ⊆ Rn is denoted by
int (X ). The vector formed by concatenating x ∈ Rn and
y ∈ Rm is denoted by col(x, y) ∈ Rn+m. The weighted
squared 2-norm is denoted by ‖x‖2P := x′Px. I ∈ Rn×n

and 0 ∈ Rn×m denote the identity and the all-zero matrices
of appropriate dimension n and m, respectively. Inequalities
are component-wise, and ≺ and � (� and �) indicate positive
and negative (semi)definiteness. For a matrix A, ρ(A) is the
spectral radius, i.e., the maximum of the absolute value of
the eigenvalues, and A is Schur when ρ(A)1. A continuous-
time signal x(τ) sampled with period Ts is denoted by the
discrete-time signal x(t) = x(tTs) where t ∈ Z. xk|t denotes
the k-steps predicted value of x at time t. The block-diagonal
matrix composed of sub-matrices A1, . . . , AN is denoted by

diag({Ai}Ni=1) =

[
A1

. . .
AN

]
.

The dense matrix composed of sub-matrices Aij for i =
1, . . . , N and j = 1, . . . ,M is denoted by

mat({Aij}N,M
i=1,j=1) =

[
A11 ··· A1M

...
. . .

...
AN1 ··· ANM

]

II. MULTI-EVAPORATOR VAPOR COMPRESSION SYSTEM

This section describes the dynamics, constraints, control
objectives and configurations of the Multi-Evaporator Vapor
Compression System (ME-VCS) shown in Fig. 1.

A. ME-VCS Dynamics

The ME-VCS is comprised of a single outdoor unit and
N indoor units. When operating in cooling mode, the out-
door unit receives low pressure, low temperature refrigerant
in the vapor state from the indoor units. The compressor
performs work to increase the pressure and temperature of
the refrigerant. The amount of work done is controlled by
the compressor rotational frequency CF. A sensor measures
the discharge temperature Td of the refrigerant leaving the
compressor. The refrigerant then flows through the outdoor
heat exchanger across which a fan forces air. This removes
heat from the refrigerant and causes it change phase from
vapor to a saturated liquid. The amount of heat removed from
the refrigerant depends on the outdoor air temperature OAT
and outdoor fan speed ODF. In cooling mode, the outdoor
unit heat exchanger acts as a condenser, and the phase change
of the refrigerant in the condenser is assumed to be isobaric
and occurs at a constant condensing temperature Tc which is
measured by a sensor on the heat exchanger.

The dynamics of the vapor compression system over the full
range of operating conditions are nonlinear, however changes
around a particular operating point can be modeled with
linear difference equations, and a controller designed using
these linear models is able to satisfy the control objectives
stated subsequently. Therefore we approximate the ME-VCS
dynamics as linear, and this approach will be justified in
experiments in Section IV. Accordingly, the dynamics of the
outdoor unit are modeled by

x0(t+ 1) = A00x0(t)+
∑N

j=0
B0juj(t) (1a)

y0(t) = Cy
00x0(t)+w0(t) (1b)

where the inputs u0 = col(CF,ODF) ∈ Rm0 are the compres-
sor frequency CF and outdoor fan speed ODF, and the outputs
y0 = col(Td,Te,Tc) are the discharge Td, evaporator Te,
and condenser Tc temperatures. The inputs uj , j = 1, . . . , N
pertain to the individual indoor units and are described below.
The model is fit to input-output data, and thus the state of the
outdoor unit x0(t) ∈ Rn0 is non-physical. The discrete-time
model (1) describes the ME-VCS system when sampled with
a period of 1 minute.

An additive output disturbance w0(t) is used to capture
the effects of outdoor air temperature OAT on the measured
outputs y0(t). Since the outdoor air temperature varies with a
diurnal period, we treat the disturbance w0(t) as constant on
the time scale of the model (1),

w0(t+ 1) = w0(t). (1c)

The ME-VCS has N indoor units indexed by i ∈ I =
{1, . . . , N}. High pressure liquid refrigerant from the outdoor
unit is routed to the indoor units. The amount of refrigerant
that enters the indoor unit is controlled by the opening position
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Fig. 1. Refrigerant piping arrangement of a multi-evaporator vapor compression system. The main actuators in the system are (i) the compressor, (ii) the
outdoor (condenser) fan (ODF), and (iii) N electronic expansion valves (EEV). Sensors provide measurements of the compressor discharge temperature (Td),
the evaporating temperature (Te), the condensing temperature (Tc) and the zone temperatures (Tri).

EEVi of an electronic expansion valve. If the electronic
expansion valve is open (EEVi > 0), then refrigerant flows
into the i-th indoor unit. As the refrigerant flows through the
expansion valve, it experiences a rapid drop in pressure and
temperature and changes state into a two-phase mixture of
liquid and vapor. The low temperature two-phase refrigerant
then flows through the indoor unit heat exchanger. A fan forces
air from the zone across the heat exchanger, which absorbs
heat from the zone. For the system considered, zone occupants
can directly specify fan speed for personal comfort, therefore
we do not consider the fan speed as an input available to
the controller. An unmeasured heat load acts in each zone.
Depending on the relative magnitude of the heat load and
the heat removed by the indoor unit, the temperature in the
zone Tri may be maintained, increased or decreased. The
heat absorbed by each indoor unit causes the refrigerant to
evaporate from a two-phase mixture to a saturated vapor. The
phase change is assumed to be isobaric and occurs at a constant
evaporating temperature Te, which is measured by sensors on
the indoor unit heat exchangers.

Remark 1. The entire ME-VCS is characterized by a single
evaporating temperature due to the arrangement of valves
shown in Fig. 1. In particular the ME-VCS considered does
not include valves at the outlet of each indoor unit. Thus,
all indoor units with open valves are at the same pressure
and therefore the same evaporating temperature. As a conse-
quence, the evaporator temperature Te is modeled as an output
of the outdoor unit (1b) and depends only on the state x0 of
the outdoor unit.

Since the effect of the electronic expansion valve position
EEVi on the room temperature Tri is nonlinear, each indoor
unit has an inner feedback loop that manipulates the expansion
valve position EEVi to achieve a desired cooling capacity
CCCi. The cooling capacity is the amount of heat removed
from the zone by the corresponding evaporator per unit time.
The cooling capacity controllers linearize the response from
the reference cooling capacity command of each zone CCCi

to the associated zone temperature Tri. Additional details on
the inner feedback loops are provided in [15].

The dynamics of the i-th indoor unit, i = 1, . . . , N , are

modeled by

xi(t+ 1) =Aiixi(t) +Ai0x0(t)+
∑N

j=0
Bijui(t) (1d)

yi(t) =Cy
iixi(t) + wi(t) (1e)

where the input ui = CCCi ∈ Rmi is the cooling capacity
command and the output yi = Tri ∈ R is the zone temperature.
The state of the i-th indoor unit xi ∈ Rni is non-physical. The
dynamics of the indoor unit depend on the state x0 and input
u0 of the outdoor unit, as well as the inputs ui for i = 1, . . . , N
for each of the indoor units.

An additive output disturbance wi(t) is used to account for
the effects of the heat load on the zone temperature yi(t). On
the time scale of the discrete-time model (1d), we consider
the heat load to be a constant disturbance

wi(t+ 1) = wi(t). (1f)

The model (1) was experimentally identified with the struc-
ture described above for the ME-VCS operating under typical
conditions as described in Section IV-A. The signals ui(t),
yi(t), and wi(t) for i ∈ I0 = {0, . . . , N} are the deviations of
the inputs, outputs, and disturbance from their nominal values,
respectively. The physical meaning of the inputs, outputs, and
disturbances in the ME-VCS model (1) are summarized in
Table I. The model (1) has been reduced using standard Hankel
singular value model reduction techniques and therefore is
a minimal realization of the dynamics of the ME-VCS. The
pairs (Aii, Bii) and (Aii, C

y
ii) are controllable and observable,

respectively, for i = 0, . . . , N .

B. ME-VCS Constraints

This section describes the constraints on outputs, states, and
inputs of the multi-evaporator vapor compression system.

The discharge, evaporating and condensing temperatures are
constrained to protect the equipment. Physical damage to the
compressor motor can occur when its internal temperature
exceeds some critical value, thus we have an upper-bound
Tdmax on the compressor discharge temperature Td ≤ Tdmax.
If the indoor unit evaporators become too cold, frost can
accumulate on the heat exchanger inhibiting heat transfer, thus
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TABLE I
DEFINITION OF PHYSICAL SIGNALS

Type Symbol Description Units

Inputs
u0

Compressor Frequency (CF) Hz
Outdoor Fan Speed (ODF) rpm

ui
Cooling Capacity Command %to i-th Zone (CCCi)

Outputs y0

Discharge Temp (Td) ◦C
Evaporating Temp (Te) ◦C
Condensing Temp (Tc) ◦C

yi i-th Zone Temp (Tri) ◦C

Disturbances
w0

Temp offset due to ◦COutdoor Air Temp (OAT)

wi
Temp offset due to ◦Cheat load in i-th Zone (Qi)

References r0 Discharge Temp Ref (Td ref) ◦C
ri i-th Zone Temp Ref (Tri ref) ◦C

we have a lower-bound Temin on the evaporating temperature
Te ≥ Temin. Additionally, excessive condenser-side pressures
(as measured through the surrogate condensing temperature)
can rupture components of the equipment, and thus we have
an upper-bound Tcmax on the condenser temperature Tc ≤
Tcmax. Finally, the liquid component of a two-phase mixture
of refrigerant entering the compressor can damage mechanical
elements within the compressor, and therefore we ensure
that the state of the refrigerant entering the compressor is
superheated vapor by enforcing a lower bound Tdshmin on the
compressor discharge superheat temperature Tdsh ≥ Tdshmin,
where Tdsh := Td− Tc.

Note that the output constraints only apply to the outputs
(1b) of the outdoor unit. The outputs (1e) of the indoor units
are unconstrained. In particular, the evaporating temperature
constraint, which physically relates to the indoor units, is
modeled as an output of the outdoor unit for reasons described
in Remark 1. Thus, we define Y0 as the set of outputs of the
outdoor unit y0 that satisfy the output constraints

Y0 =

y0 :


−∞

Temin

−∞
Tdshmin

 ≤ y0 ≤


Tdmax

∞
Tcmax

∞


 .

Since the outputs Td, Te, Tc, and Tdsh are the deviations
of the discharge, evaporating, condensing and discharge su-
perheat temperatures from their nominal values, we have
Tdmax,Tcmax > 0, and Temin,Tdshmin < 0. Thus the output
set Y0 contains the origin in its interior 0 ∈ int(Y0). The
output constraints can be written as a constraint set on the
outdoor unit state x0(t) parameterized by the outdoor unit
disturbance w0(t)

X0(w0) =
{
x0 : C00x0 + w0 ∈ Y0

}
. (2a)

We define X = X0×R
N∑

i=1
ni

as the state constraint set for the
composite state x = col(x0, x1, . . . , xN ).

The outdoor unit has lower and upper bounds on the
compressor frequency CFmin ≤ CF ≤ CFmax and outdoor

fan speed ODFmin ≤ ODF ≤ ODFmax. We define U0 as the
set of inputs u0 to the outdoor unit that satisfy the constraints

U0 =

{
u0 :

[
CFmin

ODFmin

]
≤ u0 ≤

[
CFmax

ODFmax

]}
. (2b)

Since the compressor frequency input CF is the deviation of
the compressor frequency from its nominal value, we have
CFmin < 0 < CFmax. Likewise ODFmin < 0 < ODFmax.
Thus the input set U0 contains the origin in its interior, 0 ∈
int(U0).

Since the cooling capacity commands represent a fraction
of the total rated cooling capacity of each evaporator [15],
the inputs to the indoor units have lower and upper bounds
CCCi,min ≤ CCCi ≤ CCCi,max. We define Ui as the set of
inputs ui to the i-th indoor unit that satisfy the constraints

Ui =
{
ui : CCCi,min ≤ ui ≤ CCCi,max

}
(2c)

where CCCi,min < 0 < CCCi,max. Thus the set Ui contains
the origin in its interior 0 ∈ int(Ui). We define U = U0 ×
U1 × · · · × UN as the input constraint set for the composite
input u = col(u0, u1, . . . , uN ).

The system also has constraints on the amount the inputs
can change during each sample period. The outdoor unit has
constraints on the change in compressor frequency ∆CFmin ≤
∆CF ≤ ∆CFmax and outdoor fan speed ∆ODFmin ≤
∆ODF ≤ ∆ODFmax. We define ∆U0 as the set of admissible
changes ∆u0(t) = u0(t)−u0(t−1) to the inputs to the outdoor
unit

∆U0 =

{
∆u0 :

[
∆CFmin

∆ODFmin

]
≤ ∆u0 ≤

[
∆CFmax

∆ODFmax

]}
.

(2d)

The set ∆U0 contains the origin in its interior 0 ∈ int(∆U0)
since the change in actuators can be positive or negative
∆CFmin ≤ 0 ≤ ∆CFmax and ∆ODFmin ≤ 0 ≤ ∆ODFmax.

The indoor units have inner feedback loops that control
the position of the electronic expansion valves to track the
cooling capacity command. The change in cooling capacity
command is bounded ∆CCCi,min ≤ ∆CCCi ≤ ∆CCCi,max to
ensure that the transient response of the inner-loop controllers
settles during the sample period. We define ∆Ui as the set of
admissible changes ∆ui(t) = ui(t)−ui(t−1) to the input of
the i-th indoor unit

∆Ui =
{

∆ui : ∆CCCi,min ≤ ∆ui ≤ ∆CCCi,max

}
. (2e)

The set ∆Ui contains the origin in its interior 0 ∈ int(∆Ui)
since ∆CCCi,min < 0 < ∆CCCi,max.We define ∆U = ∆U0×
∆U1 × · · · ×∆UN as constraint set for the composite change
in input ∆u = col(∆u0,∆u1, . . . ,∆uN ).

C. ME-VCS Configuration-Dependent Model

An indoor unit is said to be active when its associated
expansion valve is open allowing refrigerant to flow through
the evaporator providing cooling. Conversely, an indoor unit
is said to be inactive when its associated expansion valve is
closed and no cooling occurs. A configuration of the ME-
VCS is a combination of active and inactive indoor units. In
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this section we describe our configuration-dependent model of
the ME-VCS.

To each indoor unit i ∈ I we assign a configuration variable
ςi ∈ {0, 1} where ςi = 1 if the unit is active and ςi = 0 if
the unit is inactive. The configuration of the entire ME-VCS
is given by the vector ς = col(ς0, ς1, . . . , ςN ) where ς0 = 1
since the outdoor unit is always active. The configuration ς ∈
{1} × {0, 1} × · · · × {0, 1} is used to obtain a parameter-
dependent controller [14] which operates for any ME-VCS
configuration. In the subsequent analysis, the configuration is
assumed to be kept constant, at least for a sufficiently long
dwell time.

For configuration ς , the dynamics of the outdoor unit are
modeled by

x0(t+ 1) = A00x0(t) +
∑N

j=0
ςjB0juj(t) (3a)

where the future state x0(t + 1) of the outdoor unit is only
affected by the inputs uj(t) of active units ςj = 1. The
dynamics of the i-th indoor unit are modeled by

xi(t+ 1) =Aiixi(t)+ςiAi0x0(t)+

N∑
j=0

ςiςjBijuj(t) (3b)

If the i-th indoor unit is inactive ςi = 0, then its future state
xi(t + 1) depends only on its current state xi(t). If the i-th
indoor unit is active ςi = 1, then its future state xi(t+ 1) also
depends on the outdoor unit state x0(t) and the inputs uj(t)
to the other active indoor units ςj = 1.

The state xi(t) and zone temperature yi(t) of inactive units
ςi = 0 will converge to some equilibrium values for a constant,
finite heat load |wi|∞. Thus, since (3) is a minimal realization
of the ME-VCS dynamics, the dynamics matrix Aii of the i-th
indoor unit is Schur, ρ(Aii)1.

The configuration-dependent model (3) can be written more
compactly in the form

x(t+ 1) = Aςx(t) +Bςu(t) (4)

where x = col(x0, x1, . . . , xN ) and u = col(u0, u1, . . . , uN )
are the composite state and input respectively. The state-update
matrix Aς is block lower-arrowhead and the input matrix Bς

is dense, given by

Aς =

 A00

ς1A10 A11

...
. . .

ςNAN0 ANN

 , Bς = mat({ςiςjBij}i,j∈I0)

The structure of the state-update matrix A reflects the one-
way coupling between the state x0 of the outdoor unit and the
states xi of the indoor units [16]. The reconfigurable controller
described in the next section will exploit the block lower-
arrowhead structure of the Aς matrix to guarantee stability
in different configurations. We assume that the pair (Aς , Bς)
is controllable for every configuration ς .

D. Control Objectives

The control objectives are to regulate the discharge and
zone temperatures to desired reference values while satisfying
the constraints in the presence of persistent disturbances.

In particular, the compressor discharge temperature Td is
regulated to a setpoint Tdref determined for optimal energy
efficiency. The zone temperatures Tri are regulated to setpoints
Tri,ref provided by an external source such as a thermostat.

Further, we aim to design a single controller that can be
easily reconfigured and achieves these control objectives for
every configuration of the ME-VCS. This avoids the computa-
tional complexity of designing and storing separate controllers
for each possible configuration. To achieve these objectives,
the following section develops a configuration-dependent ME-
VCS model and details its structure for control design.

III. RECONFIGURABLE CONTROL DESIGN

In this section we present a reconfigurable model predictive
controller for the configuration-dependent ME-VCS. First, we
augment the model (4) of the ME-VCS to provide the desired
steady-state behavior. Then, we present a reconfigurable linear
controller that achieves the control objectives in the absence
of constraints. Finally, we present a reconfigurable model
predictive controller that achieves the control objective while
satisfying constraints.

A. Augmentations of the ME-VCS Model

In this section we describe augmentations to the
configuration-dependent plant model (3) that capture the con-
trol objectives described in Section II-D.

We define reference signals r0 = Tdref and ri = Tri,ref
for the discharge and zone temperature setpoints. The energy-
optimal discharge temperature reference is a linear function of
the compressor frequency CF (control input) and the outdoor
air temperature OAT (disturbance input) [17] given by

r0 = E00u0 +G00w0 (5)

where the coefficients E00, G00 are experimentally charac-
terized to minimize power consumption over a range of
operating conditions. Since w0 is constant in prediction (1c),
the prediction model of the reference discharge temperature is
given by

r0(t+ 1) = r0(t) + E00∆u0(t). (6a)

The reference zone temperatures are assumed constant and
modeled by

ri(t+ 1) = ri(t), (6b)

for i = 1, . . . , N . For consistency we define Eii = 0
and Gii = 0 for i ∈ I. Thus, the composite reference
r = col(r0, r1, . . . , rN ) is modeled by

r(t+ 1) = r(t) + E∆u0(t)

where E = col(E00, E11, . . . , ENN ) and G =
col(G00, G11, . . . , GNN ).

The compressor discharge temperature and zone room tem-
peratures are defined as performance outputs

z0(t) = C00x0(t) +D00w0(t) (6c)
zi(t) = Ciixi(t) +Diiwi(t) (6d)
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where z0 = Td ∈ Rp0 is the discharge temperature and zi =
Tri ∈ Rpi for i = 1, . . . , N are the zone temperatures. The
output additive disturbances w0(t) and wi(t) are constant (1c)
and (1f). The zone temperature tracking errors zi(t) − ri are
integrated

ξi(t+ 1) = ςiξi(t) + ςi
(
zi(t)− ri(t)

)
(6e)

for i = 1, . . . , N . The integrators (6e) provide integral action
and hence zero steady-state tracking error in the presence
of uncertainties in zone volume and heat loads. Although
the auxiliary output offset (1c) and (1f) provide offset-free
tracking [18], [19], our experimental results have shown that
combining both integral action and output offsets provides
improved transient performance. Note that when the i-th
indoor unit is inactive ςi = 0 the corresponding integrator
is shut-off ξi(t+ 1) = 0.

The control objectives require that the controller enforces
constraints. Since the ME-VCS has constraints (2d) and (2e)
on the change in input, we use incremental inputs [20]

ui(t) = ςiui(t−1) + ςi∆ui(t) (6f)

for the outdoor i = 0 and indoor i = 1, . . . , N units. This
also ensures that the steady-state incremental input ∆ui(t)→
0 approaches zero when tracking a constant reference with
constant disturbances. Note that when the i-th indoor unit is
inactive ςi = 0 equation (6f) sets the input ui(t) to zero, and
the associated inner feedback loop closes the expansion valve.

It will be convenient to combine the ME-VCS model (3)
and the model augmentations (6) into a single configuration-
dependent model. The augmented state of the outdoor unit
x̂0 = col(x0, u0) includes the outdoor unit state x0 and input
u0. The augmented output ẑ0 = z0 − r0 is the difference
between the discharge temperature z0 = Td and its reference
r0 = Tdref. The augmented state of the i-th indoor unit
x̂i = col(xi, ui, ξi) includes the indoor unit state xi, input ui,
and integrator ξi. The augmented output ẑi = col(zi−ri, ξi)
includes the room tracking error zi−ri = Tri−Tri,ref and its
integral ξi. The augmented dynamics are modeled by

x̂(t+ 1) = Âς x̂(t) + B̂ς∆u(t) + B̂ς
ww(t) + B̂ς

rr(t) (7a)

ẑ(t) = Ĉς x̂(t) + D̂ww(t) + D̂rr(t) (7b)

where x̂ = col(x̂0, x̂1, . . . , x̂N ) and ẑ = col(ẑ0, ẑ1, . . . , ẑN )
are the augmented state and performance outputs respec-
tively, ∆u = col(∆u0,∆u1, . . . ,∆uN ) are the incremental
inputs, r = col(r0, r1, . . . , rN ) are the references, and w =
col(w0, w1, . . . , wN ) are the disturbances. The dense state-
update matrix Âς = mat({Âij}Ni,j=0) is comprised of the
sub-matrices

Âς
00 =

[
A00 B00

0 I

]
, Âς

0j =
[

0 B0j 0
0 0 0

]
,

Âς
i0 =

[
0 Bi0
0 0
0 0

]
, Âς

ii =

[
Aii ςiBii 0
0 ςiI 0

ςiCii 0 ςiI

]
, Âς

ij =
[

0 ςiςjBij 0
0 0 0
0 0 0

]
for i 6= j ∈ I. The input matrices are given by B̂ς =
mat

(
{B̂ς

ij}i,j∈I0
)
, B̂r = diag(B̂r,00, . . . , B̂r,NN ), and B̂w =

diag(B̂w,00, . . . , B̂w,NN ) where

B̂ς
ii =

[
Bς

ii

ςiI
0

]
, B̂ς

ij =

[
Bς

ij

0
0

]
, B̂ς

r,ii =
[

0
0
−ςiI

]
, B̂ς

w,ii =
[

0
0

ςiD

]
.

The output matrices are block diagonal and given by Ĉς =
diag(Ĉ00, . . . , ĈNN ), D̂ς

w = diag(D̂w,00, . . . , D̂w,NN ), and
D̂ς

r = diag(D̂r,00, . . . , D̂r,NN ) where Ĉς
00 = [ C00 0 ],

D̂ς
w,00 = Dw,00, D̂r,00 = −I , and

Ĉς
ii =

[
ςiCii 0 0

0 0 I

]
, D̂ς

w,ii =
[
ςiDw,ii

0

]
, D̂r,ii =

[−ςiI
0

]
.

Although the matrices are dense, the following proposition
reveals important configuration-dependent structure of the
augmented model (7).

Proposition III.1. For configuration ς , let A = {i ∈ I0 :
ςi = 1} be the set of active units and N = {i ∈ I : ςi = 0}
be the set of inactive units. Then, the model (7) can be written
as[

x̂A(t+1)
x̂N (t+1)

]
=
[
ÂAA 0

0 ÂNN

][
x̂A(t)
x̂N (t)

]
+
[
B̂AA 0

0 0

][
∆uA(t)
∆uN (t)

]
(8a)

+
[
B̂w,AA 0

0 0

][
wA(t)
wN (t)

]
+
[
B̂r,AA 0

0 0

][
rA(t)
rN (t)

]
[
ẑA(t)
ẑN (t)

]
=
[
ĈAA 0

0 0

][
x̂A(t)
x̂N (t)

]
+
[
D̂w,AA 0

0 0

][
wA(t)
wN (t)

]
+ (8b)

+
[
D̂r,AA 0

0 0

][
rA(t)
rN (t)

]
Furthermore, for any configuration ς , we have the following
properties:

1) The dynamics of the inactive state xN are stable i.e., the
matrix ÂNN is Schur ρ

(
ÂNN

)
< 1.

2) The dynamics of the active state xA are controllable i.e.,
the pair (ÂAA, B̂AA) is controllable.

3) The dynamics of the active state xA are observable i.e.,
the pair (ÂAA, ĈAA) is observable.

4) The dynamics of the inactive state xN are unobservable.

The structure (8) of the augmented model (7) will be used
to prove that the reconfigurable linear and model predictive
controllers stabilize the ME-VCS for every configuration ς .

B. Desired Steady-State

At steady-state, the integrator states ξi(∞) = 0 and incre-
mental inputs ∆ui(∞) = 0 should be zero indicating that the
performance outputs (6c) track the desired reference values
(6a) and (6b). However, the steady-state inputs ui(∞) = u∞i
and states xi(∞) = x∞i for each unit i = 0, . . . , N will
depend on the values of the constant disturbances wi(t) = w∞i
and steady-state references ri(t) = r∞i for i = 0, . . . , N .
The equilibrium states x∞i and inputs u∞i are determined by
solving

x∞ = Aςx∞ +Bςu∞ (9a)
r∞ = Cςx∞ +Dς

ww
∞ (9b)

where x∞ = col(x∞0 , x
∞
1 , . . . , x

∞
N ), u∞ =

col(u∞0 , u
∞
1 , . . . , u

∞
N ), r∞ = col(r∞0 , r∞1 , . . . , r∞N ),

and w∞ = col(w∞0 , w∞1 , . . . , w∞N ) are the composite
states, inputs, references, and disturbances, respectively.
The composite matrices Aς and Bς are defined
in (4) while Cς = diag(ς0C00, . . . , ςNCNN ) and
Dς

w = diag(ς0Dw,00, . . . , ςNDw,NN ). For steady state
references r∞, only (r∞1 , . . . , r∞N ) are independent variables,
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and r∞0 is a function given by r∞0 = E00u
∞
0 + G00w

∞
0 .

Therefore, Equation (9) can be rewritten as[
Aς − I Bς

Cς Eς

] [
x∞

u∞

]
=

[
0

Dς
rr
∞ + D̄ς

ww
∞

]
(10)

where Eς = diag(ς0E00, . . . , ςNENN ), Dς
r =

diag(0, ς0I, . . . , ςNI), D̄ς
w = Gς − Dς

w and
Gς = diag(ς0G00, . . . , ςNGNN ). Notice that we keep
r∞0 in the vector r∞ in (10) for notational consistency, and
the corresponding entries in Dς

r are set as zero.
Instead of finding x∞, u∞ corresponding to each given

(w∞, r∞) by solving (10), we are interested in finding pa-
rameterized solutions x∞ = Πς

ww
∞ + Πς

rr
∞ and u∞ =

Γς
ww
∞ + Γς

rr
∞ for (w∞, r∞) ∈ Ως

s, where Ως
s denotes the

set of admissible constant disturbance inputs and references.
Equation (10) can thus be written as[

Aς − I Bς

Cς Eς

] [
Πς

w Πς
r

Γς
w Γς

r

]
=

[
0 0
D̄ς

w Dς
r

]
(11)

Equation (11) is solvable if rank
[
Aς−I Bς

Cς Eς

]
=
∑N

i=0 ni +∑
i∈A pi where A is the set of active units. Solutions

to (11) are determined for a given configuration ς of the
ME-VCS, and then the steady-state of the augmented states
x̂∞ = col(x̂∞0 , x̂

∞
1 , . . . , x̂

∞
N ) in (7) can be derived in which

it follows x̂∞0 = col(x∞0 , u
∞
0 ) and x̂∞i = col(x∞i , u

∞
i , 0)

for i = 1, . . . , N since the integrator states ξi(∞) = 0.
The solutions x̂∞ will be used to update the terminal cost
in the reconfigurable model predictive controller. The set of
admissible constant disturbance input and reference signals
Ως

s, in which desired constant outputs can be tracked without
steady state error, are given by

Ως
s =

{
(w∞, r∞) : Πς

ww
∞ + Πς

rr
∞ ∈ int (X0(w∞)),

Γς
ww
∞ + Γς

rr
∞ ∈ int (U)

}
(12)

C. Reconfigurable Linear Controller
In this section we present a procedure for designing a

configuration-dependent linear controller that achieves the
desired tracking objectives for the ME-VCS. The structure of
the controller guarantees that the linear controller stabilizes
the ME-VCS in every configuration ς . Such a reconfigurable
linear controller will be used to design a reconfigurable model
predictive controller in the next section.

We consider a configuration-dependent linear controller
with the following structure

∆u0(t) = ς0K̂00

(
x̂0(t)− x̂∞0

)
+ (13a)

+
∑N

i=1ςiK̂0i

(
x̂i(t)− x̂∞i

)
∆ui(t) = ςiK̂ii(x̂i(t)− x̂∞i ) (13b)

for i = 1, . . . , N where x̂∞0 = col(x∞0 , u
∞
0 ) and x̂∞i =

col(x∞i , u
∞
i , 0) are the target equilibrium of the augmented

states of the outdoor x̂0 and indoor x̂i units respectively.
The linear controller (13) can be written more compactly as
∆u(t) = K̂ς(x̂(t)− x̂∞) where the gain K̂ς is given by

K̂ς =

 ς0K̂00 ς1K̂01 ... ςN K̂0N

0 ς1K̂11

...
. . .

0 ςN K̂NN

 . (14)

A configuration-dependent controller of the form (13) will
be used to stabilize the configuration-dependent augmented
system (7). The stability of the closed-loop system will be
certified in Lemma III.2 by the existence of a configuration-
dependent Lyapunov function V (x̂) = x̂′P̂ ς x̂ where matrix
P̂ ς has a block diagonal structure

P̂ ς =

[
ς0P̂0

. . .
ςN P̂N

]
� 0 (15)

where P̂ 1 � 0. The controller gain (14) and the matrix (15)
are chosen to satisfy the discrete-time Lyapunov equation

(Â1 + B̂1K̂1)′P̂ 1(Â1 + B̂1K̂1)− P̂ 1 (16)

� −Ĉ1′Q̂1Ĉ1 − K̂1′R̂1K̂1

for the nominal configuration ς = 1 where all units are
active ςi = 1 for i = 0, . . . , N . The structured ma-
trices Q̂ς = diag(ς0Q̂0, . . . , ςN Q̂N ) � 0 and R̂ς =
diag(ς0R̂0, . . . , ςN R̂N ) � 0 are used to shape the closed-loop
behavior of the controller (13). In the next section Q̂ς and
R̂ς will be the penalty matrices in the reconfigurable model
predictive controller.

From (16) it can be shown that the configuration-dependent
linear controller (13) stabilizes the configuration-dependent
augmented system (7) when both are in the nominal configura-
tion ς = 1. This means that the linear controller (13) achieves
the desired tracking objective zi(t) → r∞i . The following
lemma shows that this result holds for any configuration ς .

Lemma III.2. Let (14) and (15) satisfy (16). Consider the
configuration-dependent linear controller (13) in closed-loop
with the configuration-dependent augmented model (7). Then

1) The closed-loop state x0(t) → x∞0 and input u0(t) →
u∞0 of the outdoor unit converge to their desired equi-
librium values. The discharge temperature z0(t) → r∞0
converges to its reference value.

2) The closed-loop states xi(t) → x∞i and inputs ui(t) →
u∞i of the active indoor units ςi = 1 converge to
their desired equilibrium values. The room temperature
zi(t)→ r∞i converge to their reference values.

3) The closed-loop states xi(t) of the inactive indoor units
ςi = 0 converges to zero. The room temperatures zi(t)→
Dw,iiw

∞
i are bounded and converge to some steady-state

temperature Dw,iiw
∞
i which depends on the constant

heat load w∞i .

Proof. For configuration ς let A and N be defined as in
Proposition III.1. Define the augmented offset states

x̃i =

{
x̂i − x̂∞i if i ∈ A
x̂i if i ∈ N .

Substituting the augmented offset states into the augmented
dynamics (7) produces the linear system

x̃(t+ 1) = Âς x̃(t) + B̂ς∆u(t). (17)

The offset dynamics (17) do not depend on the references and
disturbances due to the definition (9) of the target equilibrium
x̂∞ and since the integrators (6e) are shut-off when a unit is
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inactive, and the references (6a) and (6b), and disturbances
(1c) and (1f) are constant. By definition of the offset states,
the claims of Lemma III.2 are true if the controller (13)
asymptotically stabilizes (17).

According to Proposition III.1 the offset model (17) has the
structure[

x̃A(t+1)
x̃N (t+1)

]
=
[
ÂAA 0

0 ÂNN

][
x̃A(t)
x̃N (t)

]
+
[
B̂AA0

0 0

][
∆ũA(t)
∆ũN (t)

]
(18a)

and the controller (13) has the structure[
∆ũA(t)
∆ũN (t)

]
=
[
K̂ς

AA 0
0 0

] [
x̃A(t)
x̃N (t)

]
. (18b)

We will prove that the closed-loop system (18) is asymptoti-
cally stable using the quadratic Lyapunov function

V (x̃) =

[
x̃A
x̃N

]′ [
P̂A 0
0 SN

] [
x̃A
x̃N

]

where P̂A = diag({P̂i}i∈A) � 0 is the active part of
the Lynapunov matrix (15) and SN � 0 will be specified
later. Based on its structure, the closed-loop system (18) is
asymptotically stable if the following Lyapunov equations are
satisfied

(ÂAA + B̂AAK̂AA)′P̂A(ÂAA + B̂AAK̂AA)−P̂A≺0 (19a)

Â′NNSN ÂNN − SN ≺0. (19b)

By Proposition III.1, there exists a matrix SN � 0 that
satisfies (19b) since ÂNN is Schur ρ

(
ÂNN

)
< 1. By (16), the

Lyapunov equation (19a) holds in the nominal configuration
ς = 1. We will uses this fact to show that (19a) holds in
general. Note that

[
P̂A 0
0 0

]
�
[
P̂A 0

0 P̂N

]
for any partitions

(A,N ) of active A and inactive N units. Thus by (16) we
have[

ĀAA ĀAN
ĀNA ĀNN

]′ [
P̂A 0
0 0

] [
ĀAA ĀAN
ĀNA ĀNN

]
−
[
P̂A 0

0 P̂N

]
(20)

�
[
ĀAA ĀAN
ĀNA ĀNN

]′ [
P̂A 0

0 P̂N

] [
ĀAA ĀAN
ĀNA ĀNN

]
−
[
P̂A 0

0 P̂N

]
�
[
−Ĉ′

AAQ̂AĈAA−K̂′
AAR̂AK̂AA ∗

∗ ∗

]
where ∗ denotes irrelevant terms and the closed-loop dynamics
Ā matrix is given by

Ā =
[
ĀAA ĀAN
ĀNA ĀNN

]
=
[
ÂAA+B̂AAK̂AA ∗

∗ ∗
]

Pre- and post-multiplying (20) by [ I 0
0 0 ] produces the Lyapunov

inequality

(ÂAA + B̂AAK̂AA)′P̂A(ÂAA + B̂AAK̂AA)− P̂A (21)

� −Ĉ ′AAQ̂AĈAA − K̂ ′AAR̂AK̂AA.

Thus the Lyapunov inequality (19a) holds since Q̂A � 0
and the pair (ÂAA, ĈAA) is observable by Proposition III.1.
Therefore the closed-loop system (18) is asymptotically stable
and the offset states x̃→ 0 converge to zero.

We call the configuration-dependent linear controller (13) a
reconfigurable linear controller since it stabilizes the system
(7) in any configuration ς . In the next section we will use the
reconfigurable linear controller (13) to design a reconfigurable
model predictive controller that achieves the constraint satis-
faction control objective in addition to the tracking objective.

The design of a controller gain (14) and Lyapunov matrix
(15) that satisfy the discrete-time Lyapunov equation (16)
can be posed as the following linear matrix inequality using
standard techniques (see, e.g., [21, Sec. 3.4], [14])


X ∗ ∗ ∗

Â1X + B̂1Y X ∗ ∗
(Q̂1)1/2Ĉ1X 0 I ∗

(R̂1)1/2Y 0 0 I

 � 0 (22)

where the P̂ 1 = X−1 is the Lyapunov matrix and K̂1 =
Y X−1 is the controller gain. In general, the linear matrix in-
equality (22) may not be feasible in which case the hypothesis
of Lemma III.2 will not hold. For the purposes of this paper,
we assume that (22) has a solution. In general, the existence
of a solution can be guaranteed if the matrix B̂1 is block
diagonal or block upper-triangular [22].

D. Reconfigurable Model Predictive Controller

In this section we present a reconfigurable model predictive
controller for the ME-VCS that achieves the tracking objective
while satisfying input and state constraints.

First we examine when it is possible to satisfy the con-
straints (2). The state constraint set for the composite aug-
mented state x̂ = col(x̂0, x̂1, . . . , x̂N ) is given by

X̂ (w0) =
(
X0(w0)× U0)×

(∏N
i=1Rni × Ui × R

)
. (23)

The set X̂ (w0) does not depend on the configuration ς .
However it may not be possible to satisfy the constraints
x̂(t) ∈ X̂ for every configuration ς since the state x0(t) of
the outdoor unit i = 0 depends (3a) on the inputs uj(t) for all
the indoor units j = 1, . . . , N . Thus, when units are inactive
ςj = 0, we have less control authority over the outdoor unit
state x0(t). We define the following configuration-dependent
maximal control invariant set

Ĉς∞(w, r) =
{
x̂ ∈ X̂ (w0) : ∃∆u ∈ ∆U s.t. (24)

Âς x̂+ B̂ς∆u+ B̂ς
rr + B̂ς

ww ∈ Ĉς∞(w, r)
}
.

The volume of the control invariant Ĉς∞(w, r) changes depend-
ing on the configuration ς . However the control invariant set
(24) is always non-empty Ĉς

∞(0, 0) 6= ∅ and contains the
origin in its interior 0 ∈ int

(
Ĉς
∞(0, 0)

)
for any configuration

ς since the pair (ÂAA, B̂AA) is controllable, the matrix ÂNN
is Schur, and the sets X̂ (0) and ∆U contain the origin in
their interiors. Furthermore the set Ĉς∞(w, r) is non-empty
and contains the desired equilibrium state x̂∞ in its interior
for sufficiently small disturbances w and references r. The
stability and constraint satisfaction results will only hold on
subsets of the invariant set (24).
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The reconfigurable model predictive controller computes the
control input by solving the following constrained finite-time
optimal control problem

min
∆u

∑N

i=0

(
ςi‖x̂i,T |t−x̂∞i ‖2P̂i

+

+
∑T−1

k=0
ςi‖ẑi,k|t‖2Q̂z

i

+φi‖∆ui,k|t‖2R̂i

)
(25a)

s.t. ui,k|t ∈ Ui, ∆ui,k|t ∈ ∆Ui, x0,k+1|t ∈ X0 (25b)

x̂k+1|t =Â1x̂k|t+B̂
1∆uk|t+B̂

1
r rk|t+B̂

1
wwk|t

rk+1|t =rk|t + Ê∆uk|t

wk+1|t =wk|t

ẑk|t = Ĉzx̂k|t + D̂rrk|t + D̂rrk|t

(25c)

x0|t = x(t), u−1|t = ςiu(t−1),

r0|t = r(t), w0|t = w(t)
(25d)

where x̂k|t is the predicted augmented state under the in-
cremental input ∆uk|t over the horizon T , and ∆u =
col(∆u0,0|t, . . . ,∆uN,0|t, . . . ,∆uN,T−1|t, . . . ,∆uN,T−1|t) is
the optimization variable. The reconfigurable model predictive
controller integrates the optimal incremental input ∆u?i,k|t to
obtain the implemented input

ui(t) = ςiui(t−1) + ∆u?i,0|t (26)

for each unit i = 0, . . . , N .
The cost function (25a) of the constrained finite-time op-

timal control problem (25) is configuration-dependent. The
term ςi‖ẑi,k|t‖2Q̂z

i

penalizes the performance outputs of the
augmented model (7). For the outdoor unit i = 0, the
performance output ẑ0 = z0−r0 is the difference between the
discharge temperature z0 = Td and the reference discharge
temperature r0 = Tdref, which maximizes energy efficiency.
Since the outdoor unit is always active ς0 = 1, the model
predictive control always regulates the discharge temperature.
For the indoor units i = 1, . . . , N , the performance outputs
ẑi = col(zi− ri, ξ) includes the room temperature tracking
errors zi − ri, and their integrals ξ. If an indoor unit is
inactive ςi = 0, then the room temperature tracking error
and integrated error for that indoor unit do not appear in the
cost ςi‖ẑi,k|t‖2Q̂z

i

= 0. Thus, the reconfigurable MPC does not
regulate the room temperature of inactive zones.

The term φi‖∆ui,k|t‖2R̂i
in the cost function (25a) penalizes

changes ∆ui,k|t to the inputs ui,k|t. For the outdoor unit i = 0,
this term penalizes changing the compressor frequency and
outdoor fan speed. For the indoor units i = 1, . . . , N this
term penalizes changing in cooling capacity command. The
scalar φi is defined as

φi =

{
1 if ςi = 1

M if ςi = 0
(27)

where the “big-M” scalar M is chosen to be large compared to
the eigenvalues of the matrices Q̂i, R̂i, and P̂i. The scalar φi
ensures the optimal incremental input ∆u?i,k|t = 0 is zero for
inactive indoor units ςi = 0 [23]. Thus, the cooling capacity
command ui,k|t = ui,k−1|t + ∆ui,k|t = 0 to an inactive room
ςi = 0 is zero since it is initially zero ui,−1|t = ςiui(t−1) and
does not change ∆ui,k|t = 0 for k = 0, . . . , T − 1.

The terminal cost term ςi‖x̂i,T |t − x̂∞i ‖2P̂i
penalizes the

deviation of the augmented state x̂i,N |t from the desired
terminal equilibrium x̂∞i for i = 0, . . . , N . When the i-
th indoor unit is inactive ςi = 0, its terminal cost is zero
ςi‖x̂i,T |t − x̂∞i ‖2P̂i

= 0. The terminal cost matrices P̂i are
the Lyapunov matrices (15) for the linear controller (13) and
satisfy (16). We will show that this terminal cost guarantees
the stability of the model predictive controller (26) in closed-
loop with the augmented system (7).

The prediction model (25c) used by the model predictive
controller does not depend on the configuration ς of the ME-
VCS. Instead the optimal control problem (25) uses the model
(25c) for the nominal configuration ς = 1. The following
lemma shows that, due to the structure of the cost (25a), solv-
ing the optimal control problem (25) with the configuration-
independent prediction model (25c) is equivalent to solving the
problem with the correct configuration-dependent model (7).

Lemma III.3. Let x̂(t) ∈ Ĉς∞(w, r) 6= ∅. Let u?i,k|t and
∆u?i,k|t be the optimal solution to problem (25) and let uςi,k|t
and ∆uςi,k|t be the solution when the model (25c) is configura-
tion ς dependent. Then u?i,k|t = uςi,k|t and ∆u?i,k|t = ∆uςi,k|t.

Proof. We will show that replacing the configuration-
independent prediction model (25c) with the configuration-
dependent model (7), does not change the solution to the
optimal control problem (25).

If an indoor unit is inactive ςi = 0 then the initial input
ui,−1|t = ςiu(t − 1) = 0 is set to zero and the cost
φi‖∆ui,k|t‖2R̂i

of changing the input is effectively infinite
since φi = M � λ̄P , λ̄Q, λ̄R. Thus, the optimal control
problem (25) will not change the input ∆ui,k|t = 0 for ςi = 0
if this is a feasible solution. This choice ∆ui,k|t = 0 satisfies
the input ui,k|t = ui,k−1|t +∆ui,k|t = 0 ∈ Ui and incremental
input ∆ui,k|t = 0 ∈ ∆Ui constraints since the sets Ui and
∆Ui contain the origin. Furthermore, since x̂(t) ∈ Ĉς∞(w, r)
there exists feasible incremental inputs ∆ui,k|t for only the
active units i ∈ A such that the augmented state constraints
X̂ (w0) can be satisfied since

Âς x̂+ B̂ς∆u+ B̂ς
rr + B̂ς

ww ∈ Ĉς∞(w, r)

and Ĉς∞(w, r) ⊆ X̂ (w0). Thus the optimal input and incremen-
tal input sequences produced by the optimal control problem
(25) satisfies

∆u?i,k|t = ςi∆u
?
i,k|t (28a)

u?i,k|t = ςiu
?
i,k|t (28b)

for each i = 0, . . . , N . Plugging the configuration-dependent
inputs (28) into the configuration-independent prediction
model (25c) produces the configuration-dependent model[

x̂A(t+1)
x̂N (t+1)

]
=
[
ÂAA 0

ÂNA Â1
NN

] [
x̂A(t)
x̂N (t)

]
+
[
B̂AA 0

B̂NA 0

] [
∆uA(t)
∆uN (t)

]
+
[
B̂r,AA 0

B̂r,NA 0

] [
rA(t)
rN (t)

]
+
[
B̂w,AA 0

B̂w,NA 0

] [
wA(t)
wN (t)

]
.

This model incorrectly predicts the states x̂N of the inactive
units N = {i ∈ I : ςi = 0}. However, by Proposition III.1
these states are not observable in the cost function (25a) since
ςi‖ẑi,k|t‖2Q̂z

i

= 0 when ςi = 0. In addition, these incorrectly
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predicted states x̂N do not affect the constraints (25b) of the
optimal control problem (25) since the ME-VCS only has state
constraints on the outdoor unit which is always active 0 ∈ A.
Thus, the incorrect sub-model for the inactive states x̂N can
be ignored since it does not affect the cost or feasible region
of the optimal control problem. On the other hand, this model
correctly predicts the states x̂A of the active units A = {i ∈
I : ςi = 1} since the state x̂N of the inactive units do not
affect the active units. Thus, the relevant portion of the model
is correct and therefore the optimal control problem (25) yields
the same solution as if the correct model (7) was used.

Lemma III.3 means that we can prove theoretical results
about the model predictive controller (26) under the assump-
tion that the optimal control problem (25) is configuration-
dependent without having to change the prediction model
(25c) in practice. In particular, the following theorem shows
that the model predictive controller (26) stabilizes the aug-
mented system (7).

Theorem III.4. Let (14) and (15) satisfy (16). Let Ĉς∞(w, r) 6=
∅ be non-empty. Consider the model predictive controller (26)
in closed-loop with the configuration-dependent augmented
system (7). Then there exists a non-empty domain O 6= ∅
such that for all x(0) ∈ O ⊆ Ĉς∞(w, r) we have

1) The closed-loop state x0(t) → x∞0 and input u0(t) →
u∞0 of the outdoor unit i = 0 converge to their desired
equilibrium values x∞0 and u∞0 , respectively. The dis-
charge temperature z0(t)→ r∞0 converges to its desired
reference value r∞0 .

2) The closed-loop states xi(t) → x∞i and inputs ui(t) →
u∞i for the active indoor units ςi = 1 converge to
their desired equilibrium values x∞i and u∞i , respectively.
The room temperatures zi(t) → r∞i converge to their
reference values r∞i .

3) The closed-loop states xi(t) of the inactive indoor units
ςi = 0 converge to zero. The room temperatures zi(t)→
Dw,iiw

∞
i are bounded and converge to some steady-state

temperatures Dw,iiw
∞
i which depend on the constant

heat loads w∞i .
4) The closed-loop state x0(t) and input u0(t) for the

outdoor unit satisfy the constraints (2).
5) The closed-loop states xi(t) and inputs ui(t) for the

active indoor units ςi = 1 satisfy the constraints (2).
6) The closed-loop states xi(t) and inputs ui(t) for the

inactive indoor units ςi = 0 satisfy the constraints (2).

Proof. According to Proposition III.1, the augmented system
(7) has the structure[

x̃A(t+1)
x̃N (t+1)

]
=
[
ÂAA 0

0 ÂNN

] [
x̃A(t)
x̃N (t)

]
+
[
B̂AA0

0 0

][
∆uA(t)
∆uN (t)

]
where x̃A = x̂A−x̂∞A and x̃N = x̂N are the augmented offset
states. The dynamics of the active x̃A and inactive x̃N states
are decoupled. By Proposition III.1 the inactive dynamics are
stable. Thus claim 3 holds. The inputs ui(t) = 0 ∈ Ui and
increment inputs ui(t) − ui(t−1) = 0 ∈ ∆Ui to the inactive
indoor units ςi = 0 satisfy the constraints (2c) and (2e) since
the sets Ui and ∆Ui contain the origin. Furthermore there are

no constraints on the states of the indoor units. Thus claim 6
holds.

The model predictive controller (26) is used to stabilize the
active dynamics

x̃A(t+1) = ÂAAx̃A(t)+B̂AA∆u?A,0|t. (29)

As shown in Lemma III.3, the optimal control problem (25)
uses the correct model (29). Thus we can prove that the model
predictive controller (26) stabilizes the active subsystem (29)
using the standard approach, where the optimal value function
(25a) is used as a Lyapunov function V (x) = J?(x). We
will use the linear controller (13) to show that the Lyapunov
function V (x) decreases on some non-empty set O.

The desired equilibrium state x∞i ∈ int (Xi) and input
u∞i ∈ int (Ui) are contained in the interiors of the sets Xi

and Ui respectively for i = 0, . . . , N . Thus, the set Ĉς∞(w, r)
is non-empty and Ĉς∞(w, r) − x̂∞ contains the origin in
its interior. Thus, the system (29) in closed-loop with the
controller ∆u = K̂ς

AAx̃A has a non-empty positive invariant
set O1 6= ∅ since the closed-loop system is stable and the sets
∆U and Ĉς∞(w, r)− x̂∞ contain neighborhoods of the origin.
Since the linear controller (13) satisfies (21) we can conclude
that the value function (25) decreases in closed-loop for states
x̂(t) ∈ O2 in some larger set O2 ⊇ O1 6= ∅. Thus claims 1
and 2 hold on the non-empty domain O2.

Finally we note that since the model predictive controller
(26) stabilizes the augmented system (7) in a neighborhood
O2 of the desired equilibrium x̂∞, there exists a non-empty-
interior positive invariant O ⊆ O2 for which the closed-loop
states x̂(t) and inputs ∆u(t) satisfy the constraints (2) since
Ĉς∞(w, r)− x̂∞ ⊆ X̂ (w0)− x̂∞ and ∆U contain the origin in
their interiors. Thus claims 4 and 5 hold on such non-empty-
interior domain O.

In practice, the ME-VCS can switch configurations ς(t) 6=
ς(t + 1), but the switches are infrequent compared to the
timescale of the model (3). It is well known that if each con-
figuration is stable and the system dwells in each configuration
for a sufficiently long time, then the switched system is sta-
ble [22]. This result was recently extended to system stabilized
by model predictive controllers [24]. Therefore we conclude
that the reconfigurable model predictive controller (26) stabi-
lizes the configuration-dependent ME-VCS (7) when there is
sufficient time between changes in the configuration ς . This
fact will be verified in our simulation and experimental results
in the next section.

IV. VALIDATION AND COMPARISON

In this section, simulations and experimental results are
presented that validate the reconfigurable MPC approach.
Section IV-A describes the experimental facility used to
demonstrate the performance of the reconfigurable MPC on
a two-zone vapor compression system. Linearized models are
obtained from the experimental system and these models are
used to design the reconfigurable MPC. In IV-B the recon-
figurable MPC is compared to a collection of independently
designed model predictive controllers for each configuration
in simulations, that are further validated with experiments.
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Fig. 2. The outdoor unit and two indoor units of a split-ductless style vapor
compression system is installed in three test chambers. A balance-of-plant
system consists of a set of adjustable-power heaters (red) and an adjustable-
power hydronic system (blue), and is used to manage the boundary conditions
of the vapor compression system under test.

A. Experimental Facility

A two-zone commercially-available vapor compression sys-
tem, and a supporting HVAC system necessary for generating
loads and regulating boundary conditions are installed in a
test facility as shown schematically in Fig. 2. The ME-VCS
outdoor unit (consisting of the compressor, condensing heat
exchanger and associated fan) is installed in a 6.3 m3 insulated
test chamber and is connected via refrigerant lines to two
indoor units, which are installed in separate 9.9 m3 insulated
test chambers. The boundary conditions for this system are
the heat loads injected in the indoor unit test chambers and
the air temperature in the outdoor unit test chamber.

In addition to the vapor compression system, the experimen-
tal facility also includes a balance-of-plant system consisting
of variable power heaters and variable power chilled water fan
coils and associated controllers configured to regulate the heat
loads in the indoor unit test chambers and the air temperature
in the outdoor unit test chamber.

The plant model used in the following simulation and
model predictive controller is derived from experimental data
collected in this test facility. With 1.6 kW fixed heat loads
applied in the indoor unit test chambers, the outdoor test
chamber regulated to 35◦C, and the vapor compression system
operating at steady state, steps are separately applied to each
control input u (CF, ODF, CCC1 and CCC2). Measurements
of the system outputs y (Td, Te, Tc, Tr1 and Tr2) are collected
and a state space model of the plant in the form of Equation (1)
is obtained. The conditions of the operating point about which

TABLE II
OPERATING POINT OF THE VCS SELECTED FOR LINEARIZATION.

Inputs, u Outputs, y Boundary Conditions, w
compressor
freq (CF) 28 Hz discharge

temp (Td) 63◦C

outdoor fan
speed (ODF) 525 rpm condensing

temp (Tc) 40◦C outdoor air
temp (OAT) 35◦C

cooling cap
cmd 1 (CCC1) 65% zone temp 1

(Tr1) 27◦C heat load 1
(Q1) 1.6 kW

cooling cap
cmd 2 (CCC2) 65% zone temp 2

(Tr2) 24◦C heat load 2
(Q2) 1.6 kW

the linear model is created are summarized in Table II.

B. Reconfigurable MPC vs. a Collection of Controllers

The main advantage of reconfigurable MPC is the reduction
in the number of parameters that specify controllers for all
configurations of a ME-VCS while preserving transient per-
formance. We demonstrate this by comparing the tuning effort
and memory storage requirements of reconfigurable MPC to
a collection of model predictive controllers where each is
designed for a single configuration.

Commercial multi-evaporator air conditioners can be config-
ured with 50 or more evaporators. Designing model predictive
controllers for all possible configurations would require 250

individual controllers. In addition, it would require an un-
realistically large amount of memory to store the associated
controller parameters. In contrast, the memory required for a
50-zone reconfigurable MPC design is approximately 3.4 MB,
which compares favorably to the few megabytes of memory
typically available for embedded microcontrollers [20]. Ta-
ble III compares the reconfigurable MPC approach with a
set of independently-designed model predictive controllers in
terms of (i) the number of elements in the system matrices
(SM) required to specify the optimal control problem for all
configurations, (ii) the number of elements in the penalty
matrices (PM) that must be tuned and (iii) the associated
memory requirements (MR) to store the controller parameters
assuming double precision representation. The table shows that
design effort and memory requirements for the reconfigurable
MPC grow linearly with the number of zones instead of
exponentially as in the case of the collection of controllers.

TABLE III
COMPARISON OF SYSTEM MATRICES (SM), PENALTY MATRICES (PM),

AND MEMORY REQUIRED (MR) BETWEEN A SET OF MPC CONTROLLERS
AND THE RECONFIGURABLE MPC APPROACH.

NO. of
Zones

Elements in SM and PM and
Megabytes of MR to store controller parameters

Set of MPC Controllers Reconfigurable MPC
(SM) (PM) (MR) MB (SM) (PM) (MR) MB

2 3.5e3 2.5e3 0.092 880 613 0.023
8 1.25e6 9.25e5 33.3 4.9e3 3.6e3 0.13
50 1.4e20 1.1e20 3.8e15 1.24e5 9.5e4 3.4

Next we compare the transient performance of the recon-
figurable MPC and the collection of individual controllers
observed during simulations.

The proposed reconfigurable MPC is designed according
to the approach outlined in Section III. Model augmentations
are applied as described, creating the configuration-dependent
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Fig. 3. Simulation of a two-zone multi-evaporator VCS where zone 2 is periodically switched off (when the zone is off, the plots are shaded gray). Performance
of the proposed reconfigurable MPC method is compared to a set of independently-designed controllers. The closed loop performance is shown to be largely
similar, however, the number of system matrices stored in memory and the design/tuning parameters required for the reconfigurable method are substantially
fewer. The actuators are shown on the left (A) and the performance outputs are shown on the right (B). The performance outputs most strongly associated
with a particular actuator are plotted on the same row (i.e., compressor frequency with compressor discharge temp., and cooling command for zone 1 with
the air temp. in that zone.)

Fig. 4. Experiment largely reproducing the conditions tested in simulation in Fig. 3. The reconfigurable MPC controlling a production ME-VCS in a
laboratory setting is shown to perform similarly to simulations of the linearized plant. (The method of designing a set of MPC controllers is not implemented
in experiments).

model (7), and a reconfigurable model predictive controller
is designed to achieve the tracking objective while satisfy-
ing constraints. At runtime, the configuration ς of the ME-
VCS is determined and a controller is synthesized from the
configuration-dependent optimal control problem (25).

For comparison, a collection of two independently-designed
and tuned MPC controllers is created following the tradi-
tional approach—one for a single evaporator turned on and
another for two evaporators turned on. The two controllers
are designed offline and stored, and the appropriate controller
is loaded from memory at runtime. The reference tracking
and constraint enforcement performance of both methods is

compared for a two-zone multi-evaporator vapor compression
system undergoing reconfiguration where one zone is period-
ically switched on and off.

In the following simulations and experiments, and for both
the reconfigurable MPC and the collection of individual con-
trollers, the sampling period of the controller is 1 minute and
the prediction horizon is 16 minutes. For both controllers the
optimal control problem is converted into a quadratic program
and solved with the solver in [25].

The simulation results are shown in Fig. 3, in which Fig. 3A
shows the actuator values: (i) CF and ODF, (ii) CCC1, and (iii)
CCC2. Fig. 3B shows the performance outputs and some of
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the constrained outputs: (i) Td and Tdref, (ii) Tr1, Tr1,ref and
Q1, (iii) Tr2, Tr2,ref and Q2. Te and Tc temperatures are also
constrained outputs, but these constraints were not active and
therefore have been omitted from the plots for clarity.

After the initial transient with both zones turned on, zone
2 is switched off at 60 minutes. With zone 2 switched off,
the actuator associated with that zone (CCC2, Fig. 3A-iii)
is reset to the equilibrium of the linearized model (CCC2

is set to the origin in linearized coordinates, or 65% in
engineering units as shown in Table II). Since this actuator
setting provides a cooling capacity that is too low to meet the
heat load, the air temperature in that zone increases (Fig. 3B-
iii). When the zone is switched on, the air is warmer than the
18◦C setpoint, so CCC2 is increased to its maximum value
(CCC2,max = 100%), and the compressor frequency is also
increased to provide additional cooling for zone 2. In turn,
this increased compressor frequency causes a disturbance in
the air temperature in zone 1, which is rejected through CCC1.

Fig. 3B-i shows the time varying reference of the compres-
sor discharge temperature, which is computed from the com-
pressor frequency according to (6a). Both controllers are tuned
such that the compressor discharge temperature is allowed to
deviate from its reference so that tracking other references
and satisfying constraints may be prioritized. A maximum
constraint is enforced on the discharge temperature during
two periods in the simulations, where the small violations are
permitted by constraint softening.

Comparing the performance of reconfigurable MPC to that
of the collection of MPC controllers, negligible difference
is observed in the overall transient behavior, except minor
differences in command rates of outdoor fan (ODF) speed
when the evaporator in zone 2 is shut off. This may be
caused by the slightly more conservative terminal cost of
the reconfigurable MPC method, due to the required block
diagonal structure of P̂ς in equation (15).

Next, we validate these results by performing an experiment
that aims to reproduce the simulated conditions. Using the
experimental facility, the reconfigurable MPC controls the
two-zone commercial ME-VCS. Referring to Fig. 4, the vapor
compression system is configured with setpoints Tr1,ref =
25◦C, Tr2,ref = 20◦C and the boundary conditions are set to
Q1 = Q2 = 1600 W , and OAT = 35◦C.

Qualitatively, the experimental results of Fig. 4 largely
resemble the simulated results of Fig. 3, and differences are
attributed to slightly different test conditions (e.g. 1800 W
simulated loads vs. 1600 W experimental loads, different MPC
constraints (e.g. faster rate limits on CF used in experiment)
and mismatch between a linear simulation model and the
true nonlinear dynamics of the real system. Despite these
differences, we conclude that the simulations comparing re-
configurable MPC to a collection of controllers accurately
reflect the dynamics of the experimental system.

The simulation and associated validation experiment in this
section reset the actuator for the zone switched off to the origin
in the linearized coordinates u2 = 0, which is CCC2 = 65% in
engineering units. This strategy maintains the system dynamics
near the operating point about which the linear model was
obtained, and therefore enables fair comparison of controller

performance without introducing strong nonlinearities from
the physical system operated away from the linearization
point. However, when an evaporator is to be turned off in
the real system (due to low loads in the associated zone),
the appropriate control action is to fully close the EEV
in order to stop refrigerant flow. However, this method of
operation emphasizes nonlinearities in the system dynamics,
and understanding the robustness to this nonlinear effect is
explored in the following experiments in which the EEV is
fully closed when the associated zone is turned off.

V. ADVANCED EXPERIMENTAL VALIDATION

In this section, the reconfigurable MPC is tested under
more strenuous conditions. In Section V-A the configuration
of the ME-VCS is changed while a plant output constraint is
active. In Section V-B a supervisory state machine algorithm
automatically reconfigures the closed-loop system.

A. Enforcing Constraints During Reconfiguration

This section describes an experiment where a step change
to a setpoint is applied in order to induce a transient response
where an output constraint becomes active. While the con-
straint is active, the ME-VCS is reconfigured to turn on a
zone, and the output constraint remains enforced during the
remainder of the transient.

Referring to Fig. 5, the vapor compression system is config-
ured for single zone operation with a setpoint Tr1,ref = 25◦C
and the boundary conditions Q1 = 2200 W, and OAT = 35◦C.
Initially zone 2 is off, and CCC2 = 0% (engineering units, not
linearized units as in the previous section) which equates to a
fully closed EEV2 and therefore no refrigerant flows through
the evaporator. The initial load in zone 2 is 0 W, and the initial
zone temperature is Tr2 = 29.5◦C (Fig. 5B-iii).

At t = 5 min, the setpoint for zone 1 is lowered to Tr1,ref =
22◦C (Fig. 5B-ii), and the controller increases the CF and
saturates CCC1 to reduce the temperature in that zone. As a
result of the increased CF, the discharge temperature begins to
increase until it reaches its constraint at t = 8 min (Fig. 5B-
i). The CF commands subsequently selected by the MPC are
modulated to maintain Td at or below its constraint.

After the Td constraint has been active for 2 minutes,
zone 2 is switched on. CCC2 is set to 75% and the MPC is
reconfigured to enable control of this input. Simultaneously,
an 1800 W load is applied to zone 2, and together with the
2200 W load in 1, it is a significant amount of heat with a
restrictive (and active) constraint on Td.

From t = 20 to 35 minutes, Td largely follows the
constraint until at about t = 35 min a constraint violation of
about 2◦C occurs (Fig. 5B-i), which is attributed to modeling
errors. Additionally, the CCC1 input is also saturated at its
maximum value (Fig. 5A-i), making two constraints active
during this transient. The Td constraint violation causes an
immediate reduction in CF at t = 35 min, and Td is decreased
accordingly, relieving the violation. Finally, both zones achieve
their setpoints with zero steady state error at t = 50 min.

The oscillatory behavior of the CCC2 command (Fig. 5A-
iii) and associated response of Tr2 (Fig. 5B-iii) is attributed
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Fig. 5. Enforcing constraints during controller reconfiguration. With zone 2 turned off, the setpoint temperature in zone 1 is reduced, causing the compressor
discharge temperature Td to constraint to become active. With this constraint active, zone 2 is turned on and a load step is applied, and the discharge
temperature constraint is enforced throughout the transient.

to a combination of aggressive tuning of performance weights
in the cost function, experimental operation at conditions
different than the linearized model, and an interaction with a
nonlinear resetting integrator. Further discussion of nonlinear
integrators and their interaction with reconfigurable MPC is
beyond the scope of the present work.

Despite the oscillatory behavior in zone 2, this experiment
demonstrates that a plant output constraint can be enforced be-
fore and after system reconfiguration. Further, a reconfigurable
MPC designed from a linear model when both zones are active
can applied to a configuration with one zone switched off
and still maintain setpoint tracking performance and constraint
enforcement. The ability to reconfigure the MPC provides
flexibility in application that is exploited in the next section
to create a realistic control system (MPC under the direction
of a supervisory state machine) that automatically turns zones
on or off based on the per-zone loading conditions.

B. Automatic Reconfiguration

A production-ready control system for a multi-evaporator
vapor compression system must turn zones on or off au-
tonomously in order to regulate zone temperatures when the
heat loads are lower than the minimum continuously-available
cooling capacity. In the context of this work, this requires
supervisory logic to automatically determine the system con-
figuration ς(t). In this section, a state machine is designed to
detect low heat load conditions and reconfigure the ME-VCS
as conditions require.

Whereas Theorem III.4 shows the stability of the
configuration-dependent controller (i.e., for a given configu-
ration), stability of the overall switched system requires suffi-
cient dwell time between changes in the configuration [24].
The objective of this experiment is to empirically demon-
strate reference tracking and constraint enforcement of the
reconfigurable MPC controlling a switching system where the

dwell times for a particular configuration are determined by
an autonomous supervisory state machine. The state machine
logic considers the sign and magnitude of the zone temperature
error signal and associated cooling command to determine
when to switch a zone on or off. Specifically, if a zone is off
and has become overheated by 1◦C, then the state machine
will turn that zone on. If a zone is on and either the zone
has become overcooled by 2.5◦C, or the cooling capacity
command for that zone has been low enough for long enough,
then the zone is turned off.

Regarding the latter condition, an integrator is used to
determine the low actuator condition as follows: If CCCi

is less than 40%, then an integrator state ei(t) increases
according to

ei(t+ 1) = ei(t) + (40− CCCi) (30)

Once the integrator has reached a predetermined value, then
condition (2) has been met and the zone is turned off. This
predetermined value is chosen so that if CCCi has been at
its low constraint of 20% for about 5 minutes, then condition
(2) becomes true. This test on the cooling capacity command
will cause a zone to be turned off even if good setpoint
tracking is achieved, but requires a low capacity command
to do so, which is the intended behavior. The parameters
used in the state machine have been determined heuristically.
This state machine operates as a supervisory algorithm for
the reconfigurable MPC, and coordinates operation such that
actuator commands and integrators states are zeroed when
reconfiguration occurs.

Using this state machine to automate the zone on/off signal
ς(t), an experiment is conducted wherein the heat load in
zone 2 is reduced. Referring to Fig. 6, the vapor compression
system is brought into steady state operation with setpoints
Tr1,ref = 21◦C, Tr2,ref = 25◦C and the boundary conditions
are set to Q1 = Q2 = 1800 W , and OAT = 35◦C. At this
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Fig. 6. Automatic reconfiguration during low load conditions. An experiment is shown in which the applied thermal load is lower than the minimum capacity
continuously available from the zone evaporator and therefore requires the machine to begin “low load cycling.” The reconfigurable MPC is shown to drive
the two zone temperatures to their respective setpoints on average while a non-reconfigurable controller results in steady state errors.

initial condition, both zone loads are met in steady state with
a compressor frequency of CF = 40 Hz, and cooling capacity
commands of CCC1 = 100% and CCC2 = 60%.

At t = 10 min, the heat load in zone 2 is decreased to 500
W, which is a load that is about equal to the cooling provided
when operated at CCC2,min = 20%. As a result of the load step,
the temperature in zone 2 is reduced, and the MPC decreases
the associated actuator command to its minimum value in an
attempt to raise the zone temperature back to the setpoint.

After about 10 minutes, the integrator in the supervisory
state machine has reached its predetermined value, and ς2 is
set to 0, triggering reconfiguration of the controller. Zone 2 is
automatically switched off, and the CCC2 command is set to
0 (Fig. 6A-iii, black), which closes the associated EEV. The
zone temperature subsequently increases under the influence of
the 500 W load until it becomes overheated by 1◦C (Fig. 6B-
iii, black), at which point the state machine sets ς2 to 1 and
the controller is again reconfigured to turn zone 2 back on.
This pattern is repeated under automatic control, establishing
a cyclic response.

Note that the coupling inherent in the vapor compression
system induces a periodic disturbance in zone 1 (Fig. 6B-ii,
black) as zone 2 is switched on and off, which can only be
partially rejected since the associated actuator CCC1 is satu-
rated at its maximum value for large periods of the disturbance
cycle (Fig. 6A-ii, black). Despite the large imbalance in loads
between the two zones, both zone temperatures cycle around
their respective setpoints, and when averaged over multiple
periods, both zones are shown to achieve their setpoints. The
experiment demonstrates that the reconfigurable MPC can
operate in combination with supervisory logic determining the
on/off conditions.

Fig. 6 also shows the same experiment for the case where
the controller is not permitted to reconfigure. This non-
reconfigurable MPC is shown in blue for the same test

conditions. Since the controller cannot turn zone 2 off, CCC2

is driven to its lower limit (Fig. 6A-iii, blue) while CCC1

remains saturated at its upper limit (Fig. 6A-ii, blue). The
corresponding temperatures for these zones settle to a nonzero
steady state error (about 1◦C overheated in zone 1 (Fig. 6B-
ii, blue), and about 1◦C overcooled in zone 2 (Fig. 6B-iii,
blue)). Note that since both zone temperature tracking errors
are equally penalized in the cost function, the MPC controller
selects compressor frequency commands that equally distribute
the zone tracking errors despite both zone capacity commands
being saturated. Whereas the non-reconfigurable approach
results in persistent steady state errors, the reconfigurable
MPC permits low-load cycling to meet the zone setpoints on
average.

In summary, experiments presented in this section demon-
strate that reconfigurable MPC drives performance outputs to
their references, rejects disturbances and enforces constraints
before and after reconfiguration. Further, despite similar tran-
sient performance, reconfigurable MPC is orders-of-magnitude
more efficient in memory storage requirements and tuning
effort than traditional approaches. Finally, reconfiguration is
automated with a supervisory state machine, a required feature
for wide-scale deployment.

VI. CONCLUSIONS

Reconfigurable MPC is presented for a multi-evaporator
vapor compression system where indoor units are permitted
to turn on or off. Whereas a traditional MPC approach
requires separate controllers for each configuration that must
be designed and tuned and where parameters that define
each controller must be stored on the embedded platform,
reconfigurable MPC uses a single controller formulation and
online updates to the parameterized cost. The approach is
compared to a collection of independently-designed model
predictive controllers and validated in experiments.



16 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. YY, MONTH YYYY

Daniel J. Burns Daniel Burns received the M.S. and
Ph.D. degrees in mechanical engineering from the
Massachusetts Institute of Technology, Cambridge,
in 2006 and 2010, respectively. Since 2010, he has
been with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA, where he is currently a
Principal Research Scientist. At MERL, Dr. Burns
develops and prototypes advanced control meth-
ods for vapor compression systems. Before joining
MERL, he worked on flight instrumentation and
control at the Commercial Aviation Systems division

of Honeywell, Inc. and NASA’s Goddard Space Flight Center. His research
interests include multi-physical modeling and control of mechatronic and
thermodynamic systems, instrumentation and experimentation, and applied
predictive and adaptive control.

Claus Danielson Claus Danielson received his PhD
in 2014 from the Model Predictive Control Labo-
ratory at the University of California, Berkeley. He
is currently a Research Scientist at Mitsubishi Elec-
tric Research Laboratories in Cambridge, MA. His
research interests are in predictive and constrained
control. His specialty is developing methods for
exploiting structure in large-scale or complex con-
trol and optimization problems. He has applied his
research to a variety of fields include energy storage
networks, heating ventilation and air conditioning,

adaptive optics, spacecraft guidance and control, atomic force microscopy,
autonomous vehicles, cancer treatment, and robotics.

Junqiang Zhou Junqiang Zhou received the M.S.
and Ph.D. degrees in Mechanical Engineering from
The Ohio State University in 2013 and 2015, respec-
tively. During May-August 2015, he was a research
intern at Mitsubishi Electric Research Laboratory,
Cambridge, MA. Since 2016, he has been with
GE Global Research Center, Niskayuna, NY. His
research interests span the field of dynamical system
and control theory, model predictive control with
emphasis on tracking and output regulation and
applications to automotive systems and thermal-fluid

energy systems. His current projects include control and optimization of
combined-cycle power plant and wind turbines.

Stefano Di Cairano (M’08) Stefano Di Cairano re-
ceived the Master (Laurea), and the PhD in Informa-
tion Engineering in ’04 and ’08, respectively, from
the University of Siena, Italy. During ’08–’11, he
was with Powertrain Control R&A, Ford Research
and Adv. Engineering, Dearborn, MI. Since 2011,
he is with Mitsubishi Electric Research Laborato-
ries, Cambridge, MA, where he is the Senior Team
Leader for Optimization-based Control, and a Senior
Principal Researcher in Mechatronics. His research
is on optimization-based control strategies for com-

plex mechatronic systems, in automotive, factory automation, transportation
and aerospace. His research interests include model predictive control, con-
strained control, networked control systems, hybrid systems, optimization.

Dr. Di Cairano has authored/co-authored more than 100 peer reviewed
papers in journals and conference proceedings, and 25 patents/patent applica-
tions. He was the Chair of the IEEE CSS Technical Committee on Automotive
Controls, is the Chair of IEEE Standing Committee on Standards, and an
Associate Editor of the IEEE Trans. Control Systems Technology.

REFERENCES

[1] X. D. He, S. Liu, H. H. Asada, and H. Itoh, “Multivariable control
of vapor compression systems,” HVAC&R Research, vol. 4, no. 3, pp.
205–230, July 1998.

[2] N. Jain, D. J. Burns, S. Di Cairano, C. R. Laughman, and S. A.
Bortoff, “Model predictive control of vapor compression systems,” in
15th International Refrigeration and Air Conditioning Conference at
Purdue, July, 2014, 2014.

[3] M. Wallace, B. Das, P. Mhaskar, J. House, and T. Salsbury, “Offset-
free model predictive control of a vapor compression cycle,” Journal of
Process Control, vol. 22, no. 7, pp. 1374–1386, August 2012.

[4] M. Wallace, P. Mhaskar, J. House, and T. I. Salsbury, “Offset-free model
predictive control of a heat pump,” Industrial & Engineering Chemistry
Research, vol. 54, no. 3, pp. 994–1005, 2015.

[5] J. Koeln and A. Alleyne, “Scalable model predictive control for multi-
evaporator vapor compression systems,” in American Control Confer-
ence (ACC), 2014, June 2014, pp. 392–397.

[6] M. S. Elliott and B. P. Rasmussen, “Decentralized model predictive con-
trol of a multi-evaporator air conditioning system,” Control Engineering
Practice, vol. 21, no. 12, SI, pp. 1665–1677, December 2013.

[7] J. P. Koeln and A. G. Alleyne, “Decentralized Controller Analysis and
Design for Multi-Evaporator Vapor Compression Systems,” in American
Control Conference (ACC), 2013, 2013, pp. 437–442.

[8] J. Stoustrup, “Plug & play control: Control technology towards new
challenges,” European Journal of Control, vol. 15, no. 3, pp. 311–330,
2009.

[9] J. Bendtsen, K. Trangbaek, and J. Stoustrup, “Plug-and-play control:
Modifying control systems online,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 1, pp. 79–93, 2013.

[10] S. Riverso, M. Farina, and G. Ferrari-Trecate, “Plug-and-play model
predictive control based on robust control invariant sets,” Automatica,
vol. 50, no. 8, pp. 2179–2186, 2014.

[11] M. N. Zeilinger, Y. Pu, S. Riverso, G. Ferrari-Trecate, and C. N. Jones,
“Plug and play distributed model predictive control based on distributed
invariance and optimization,” in 52nd Annual Conference on Decision
and Control (CDC). IEEE, 2013, pp. 5770–5776.

[12] S. Riverso, F. Boem, G. Ferrari-Trecate, and T. Parisini, “Fault diagnosis
and control-reconfiguration in large-scale systems: a plug-and-play ap-
proach,” in 2014 IEEE 53rd Annual Conference on Decision and Control
(CDC). IEEE, 2014, pp. 4977–4982.

[13] S. Di Cairano and A. Bemporad, “Model predictive control tuning by
controller matching,” vol. 55, no. 1, pp. 185–190, 2010.

[14] S. Di Cairano, “Model adjustable predictive control with stability
guarantees,” in American Control Conference (ACC), 2015, July 2015,
pp. 226–231.

[15] D. Burns and S. Bortoff, “Cooling Capacity Control for Multi-
Evaporator Vapor Compression Systems,” in 16th International Refrig-
eration and Air Conditioning Conference at Purdue, 2016.

[16] N. Jain, J. P. Koeln, S. Sundaram, and A. G. Alleyne, “Partially
decentralized control of large-scale variable-refrigerant-flow systems in
buildings,” Journal of Process Control, vol. 24, no. 6, pp. 798–819,
2014.

[17] D. Burns and C. Laughman, “Extremum seeking control for energy
optimization of vapor compression systems,” in 14th International
Refrigeration and Air Conditioning Conference at Purdue, July 2012.

[18] G. Pannocchia and J. B. Rawlings, “Disturbance models for offset-free
model-predictive control,” AIChE journal, vol. 49, no. 2, pp. 426–437,
2003.

[19] U. Maeder, F. Borrelli, and M. Morari, “Linear offset-free model
predictive control,” Automatica, vol. 45, no. 10, pp. 2214–2222, 2009.

[20] S. Di Cairano, J. Doering, I. Kolmanovsky, and D. Hrovat, “Model
predictive control of engine speed during vehicle deceleration,” IEEE
Transactions on Control Systems Technology, vol. 11, no. 4, 2012.

[21] M. Lazar, “Model predictive control of hybrid systems: Stability and
robustness,” 2006.

[22] D. Liberzon, Switching in systems and control. Springer Science &
Business Media, 2003.

[23] C. A. Floudas, Nonlinear and Mixed-Integer Optimization. Oxford
University Press, 1995.

[24] L. Bridgeman, C. Danielson, and S. Di Cairano, “Stability and feasibility
of MPC for switched linear systems with dwell-time constraints,” in
American Control Conference (ACC), 2016.

[25] S. Di Cairano, M. Brand, and S. A. Bortoff, “Projection-free parallel
quadratic programming for linear model predictive control,” Interna-
tional Journal of Control, vol. 86, no. 8, pp. 1367–1385, 2013.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2017-083.pdf
	Reconfigurable Model Predictive Control for Multi-Evaporator Vapor Compression Systems
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16



