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Abstract
Multiple scattering of light as it passes through an object is a fundamental problem limiting
the performance of imaging systems. We describe a new technique for robust imaging under
multiple scattering based on a nonlinear scattering model and sparse-regularization.
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1. Introduction

Estimation of the spatial permittivity distribution of an unknown object from the measurements of the scattered light-
field is common in numerous imaging applications such as tomographic microscopy [1] and digital holography [2].
Traditionally, this inverse scattering problem is approximately solved by linearizing the relationship between the per-
mittivity distribution and the measured light. A linear forward model can be obtained by assuming a straight-ray prop-
agation of light, or by adopting more refined scattering models based on the first Born or Rytov approximations [3].

Linear scattering models assume weakly scattering objects, making corresponding imaging methods inherently
inaccurate for many applications. This places fundamental limits—in terms of resolution, penetration, and quality—on
the imaging systems relying on such models. Increasingly, however, inverse scattering approaches are being formulated
as large-scale optimization problems, combining nonlinear scattering models with regularizers that can increase the
robustness to noise and limited-data artifacts [4–7]. In this paper, we discuss an extension of the prior work by a
new nonlinear scattering model and a total variation (TV) regularized inversion algorithm [8]. The key aspect of the
proposed method—called Series Expansion with Accelerated Gradient Descent on Lippmann-Schwinger Equation
(SEAGLE)—is its efficiency and stability, even for objects with large permittivity contrasts. This makes it suitable
for robust imaging under multiple scattering. Here, we experimentally validated SEAGLE on the dataset [9], which
contains measurements of strongly scattering objects at microwave frequencies.

2. Method

Consider the scattering problem (Fig. 1) where an object of the permittivity distribution ε(xxx) in the bounded domain
Ω is immersed into a background medium of permittivity εb and illuminated with the incident electric field uin(xxx). We
assume that the incident field is monochromatic and coherent, and it is known inside Ω and at the locations of the
sensors. The result of object-light interaction is measured at the location of the sensors as a scattered field usc(xxx). The
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Fig. 1. Schematic representation of scattering scenarios in two and three dimensions. An object of a scattering potential f (xxx)
is illuminated with an input wave uin, which interacts with the object and leads to the scattered wave usc at the sensors.



multiple scattering of light can be accurately described by the Lippmann-Schwinger equation inside the image domain

u(xxx) = uin(xxx)+
∫

Ω

g(xxx− xxx′) f (xxx′)u(xxx′)dxxx′, (xxx ∈Ω) (1)

where u(xxx) = uin(xxx)+usc(xxx) is the total electric field, f (xxx) , k2(ε(xxx)−εb) is the scattering potential, which is assumed
to be real, and k = 2π/λ is the wavenumber in vacuum. The function g(xxx) is the Green’s function defined as

g(xxx) ,


j
4

H(1)
0 (kb‖xxx‖`2) in 2D

ejkb‖xxx‖`2

4π‖xxx‖`2

in 3D,

(2)

where kb , k
√

εb is the wavenumber of background medium and H(1)
0 is the zero-order Hankel function of the first

kind. Note that the knowledge of the total-field u inside the image domain Ω enables the prediction of the scattered
field at the sensor domain

usc(xxx) =
∫

Ω

g(xxx− xxx′) f (xxx′)u(xxx′)dxxx′. (xxx ∈ Γ) (3)

The discretization and combination of (1) and (3) leads to the following matrix-vector description of the scattering
problem

y = H(u • f)+ e (4a)
u = uin +G(u • f), (4b)

where f ∈ RN is the discretized scattering potential f , y ∈ CM is the measured scattered field usc at Γ, uin ∈ CN is the
input field uin inside Ω, H ∈CM×N is the discretization of the Green’s function at Γ, G ∈CN×N is the discretization of
the Green’s function inside Ω, • denotes a component-wise multiplication between two vectors, and e∈CM models the
random noise at the measurements. Using the shorthand notation A , I−Gdiag{f}, where I ∈ RN×N is the identity
matrix and diag{·} is an operator that forms a diagonal matrix from its argument, we can represent the forward
scattering in (4b) as a minimization problem

û(f) , argmin
u∈CN

{S (u)} with S (u) ,
1
2
‖Au−uin‖2

`2
. (5)

The gradient of S can be computed as ∇S (u) = AH(Au−uin), which allows us to compute the total field û iteratively
using the Nesterov’s accelerated gradient method [10]

qt ←
1
2

(
1+
√

1+q2
t−1

)
(6a)

st ← ut +((qt−1−1)/qt)(ut −ut−1) (6b)

ut ← st −νAH(Ast −uin), (6c)

for t = 1,2, . . . ,T , where u−1 = u0 = uin, q0 = 1, and ν > 0 is the step-size. We finally set the predicted scattered field
to z(f) = H(û(f) • f) with û(f) = uT .

It is worth noting that the final z returned by our forward scattering model is a function of f, which leads to the
following formulation of the inverse scattering problem

f̂ = argmin
f∈CN

{D(f)+R(f)} , (7)

where

D(f) ,
1
2
‖y− z(f)‖2

`2
and R(f) , τ

N

∑
n=1
‖[Df]n‖`2 . (8)

Here, D is the data-fidelity term that measures the discrepancy between the actual measurements y and the ones pre-
dicted by our scattering model z. The functional R is the isotropic TV regularizer with the parameter τ > 0 controlling



the strength of the regularization. The image formation can then be done iteratively, using the proximal-gradient
method

fi← proxγR

(
fi−1− γ∇D(fi−1)

)
, (9)

for i = 1,2,3, . . . , where γ > 0 is a step-size. The operator proxγR for isotropic TV can be efficiently evaluated [11].
The gradient is given by ∇D(f) = Re{r0}, where r0 is computed using the following iteration

Tt ← diag
{

GH(Ast −uin)
}H

+diag{st}HGHA (10a)

qt−1← (1−µt)Sqt +µt+1Sqt+1 (10b)

rt−1← rt +νTtqt , (10c)

for t = T,T −1, . . . ,1, where st is from (6b), qT+1 = 0, qT = diag{f}HHH(z−y) and rT = diag{û}HHH(z−y). Here,
we use the definitions S , I−νAHA and µt , (1−qt−1)/qt . The remarkable aspect of this backpropagation algorithm
is that it allows for an explicit differentiation of a nonlinear scattering model with respect to the scattering potential,
which in turn enables efficient large-scale computational imaging.

3. Results

To validate the algorithm, we consider experimental measuremnts of the object FoamDielExtTM from a dataset [9].
The object consists of two cylinders on a rim of radius of 1.67 m, and a measurement set-up is similar to that in
Fig. 1(a). The image domain has size 15 cm × 15 cm. There are 9 transmitters and 240 detectors for each transmitter,
all equally spaced on the rim. Our results in Fig. 2 use the data only at 3 GHz, and highlight the remarkable performance
of SEAGLE on this strongly scattering object.
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Fig. 2. Experimental validation of the proposed method on the highly scattering object FoamDielExtTM. The first three
columns show from left to right, the ground truth, reconstruction using the Rytov approximation, and using SEAGLE, re-
spectively. The fourth column shows the evolution of the normalized data-fit (top) and the normalized reconstruction error
(bottom). The last column shows the true and predicted measurements for the transmission angle zero. The scale bar is equal
to the wavelength λ at 3 GHz.
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