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Abstract

Coupled mode theory (CMT) provides a simple and clear framework to analyze the radiation
energy exchange between reservoirs. We apply CMT to analyze the radiative heat transfer
between layered Lorentz materials, whose dielectric functions can be approximated by the
Lorentz oscillator model. By comparing the transmissivity computed by the exact solution
to that computed by CMT, we find CMT generally gives a good approximation for this
class of materials. The biggest advantage of CMT analysis, in our opinion, is that only the
(complex) resonant energies are needed to obtain the radiation energy transfer; the knowledge
of spatial profile of resonances is not required. Several issues, including how to choose the
resonant modes, what these modes represent, and the limitation of this method, are discussed.
Finally, we also apply CMT method to the electronic systems, demonstrating the generality
of this formalism.
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Coupled mode theory (CMT) provides a simple and clear framework to analyze the radiation
energy exchange between reservoirs. We apply CMT to analyze the radiative heat transfer between
layered Lorentz materials, whose dielectric functions can be approximated by the Lorentz oscillator
model. By comparing the transmissivity computed by the exact solution to that computed by
CMT, we find CMT generally gives a good approximation for this class of materials. The biggest
advantage of CMT analysis, in our opinion, is that only the (complex) resonant energies are needed
to obtain the radiation energy transfer; the knowledge of spatial profile of resonances is not required.
Several issues, including how to choose the resonant modes, what these modes represent, and the
limitation of this method, are discussed. Finally, we also apply CMT method to the electronic
systems, demonstrating the generality of this formalism.

PACS numbers:

I. INTRODUCTION

Coupled mode theory (CMT) is a phenomenological but powerful tool to describe a system whose behavior is
governed by a few resonant modes [1], including photonic devices [2-4] and wireless power transfer systems [5, 6]. CMT
has recently been used to study the radiation energy transfer 7, 8], and is shown to greatly reduce the computational
expenses while maintaining the sufficient accuracy. The near-field thermophotovoltaic (TPV) system [9-18], which
converts heat to the electricity by reshaping the radiation spectrum, is another system where CMT analysis naturally
applies. Traditionally, the radiative heat transfer between the heat reservoirs (such as the emitter and the PV cell
in a TPV system) is analyzed using dyadic Green function [13, 19-22] and the fluctuation-dissipation theorem [23].
The method is exact, but the resulting expression is complicated and is not easy to analyze. Recently, Karalis
and Joannopoulos developed a CMT framework that can describe the radiative heat exchange between reservoirs,
and applied it the metal/dielectric interface [24]. Their CMT-based formalism not only describes all possible loss
mechanisms, but also gives a unified scheme, via introducing the “generalized Planck distribution” [25, 26], to compute
both the radiation input power and the resulting electric output power. Based on CMT, they are able to include
general decaying mechanisms, and design system configurations that achieve the high heat-to-electricity efficiency
[27]. In this work, we apply CMT framework to analyze another class of materials, whose dielectric functions can
be approximated by the Lorentz oscillator model. Generally, a material that has a dipolar coupling to the electric
field displays the Lorentzian profile in the dielectric function, and in this paper we refer these materials as “Lorentz
material”. The origin of the dipolar coupling can come from optical phonons [28, 29|, valance-to-conduction band
transition [30], or the quantum states of nano-size particles [31]. We are particular interested in the heat transfer
between a material of Lorentzian dielectric function and another material whose dielectric function is characterized
by the interband transitions. By comparing the transmissivity computed using exact solution to that using CMT, we
find that CMT generally gives satisfactory results for this class of materials. In our opinion, the biggest advantage of
CMT analysis is that only the (complex) resonant energies are needed to obtain a good approximation of radiation
energy transfer; the information of spatial profile of resonances is not required. The knowledge of resonant energies
can be from some numerical solver or experiments. However, CMT analysis is not numerically useful for systems not
supporting any resonances, and thus do not provide a quantitative description on some interesting classes of systems,
such as the micro-gap TPV [32, 33] and meta-materials supporting continuous hyperbolic modes [34]. Several issues,
including how to choose the resonant modes, what these resonant modes represent, the limitation of the method, and
its generalization to electronic systems are discussed.

The rest of the paper is organized as follows. In Section II, we review how CMT is used to describe the radiation
energy transfer between reservoirs fixed at different temperatures. In Section III, we study several examples involving
the Lorentz oscillator model of dielectric functions. Different choices of resonant modes are compared and discussed.
In Section IV, we apply the CMT method to the one-dimensional (1D) electronic system. The limitation of CMT as
a numerical solver is discussed in this system. A brief summary is given in Section V. In the Appendix, we give a
short derivation on the eigenmodes of planar structures.



II. REVIEW OF COUPLED MODE THEORY ON RADIATIVE HEAT TRANSFER
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FIG. 1: (a) The “first-principle” description of the radiative heat transfer. Thermal electric currents, whose amplitudes
depends on the temperature, radiate EM wave from one reservoir to other reservoirs. Summing over all contributions gives the
net radiative heat transfer. (b) The CMT description of the radiative heat transfer. The key ingredient of CMT is how (cavity)
modes of different reservoirs couple. The couplings between cavity modes of different reservoirs are not direct, but originate
their (effective) coupling to common resonant modes. (c) The coupling between the reservoir cavity mode and the resonance is
from their coupling to a common loss object (e.g. a two-level atom). Inside nth reservoir specified by 75, the nth loss object
receives the photons from (the cavity mode of) the nth reservoir, and emits photons to both nth reservoir and the resonant
mode.

A. Radiation heat transfer

Microscopically, the heat transfer via radiation is illustrated in Fig. 1(a). The thermal energy generates some
random electric current density, whose temperature-dependent amplitude is governed by the fluctuation-dissipation
theorem [23]. These random thermal currents radiate electromagnetic (EM) fields which satisfy boundary conditions
imposed by Maxwell’s equations. By evaluating the Poynting vector using dyadic Green’s function [20-22], one can
determine the thermal radiation power from first principle. For the planar structure, where the in-plane momentum
K (defines x — y plane) is a good quantum number, the Poynting vector normal to the plane as a function z has the
form
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Here ©;(w) = [eMw/(ksTi) 1] ' is the Planck distribution, kp is the Boltzmann constant, k¥ = |K|, and e(w, k; 2),
which is dimensionless and will be related to the transmissivity, is a function determined by the spatial configuration.
We refer Eq. (1) as the exact solution, and the detailed expression can be found in several references [20-22]. Note
that when O;(w) is replaced by the “generalized Planck distribution” [25, 26], one is able to describe the reservoir
maintained at a nonzero voltage [24]. The generalization is straightforward, and we do not consider this situation in
this work.
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B. Coupled mode theory

We now briefly review the coupled mode theory (CMT) applied to the radiative heat transfer, developed by Karalis
and Joannopoulos in Ref. [24]. With CMT, the (complex) resonant energies are all we need in order to compute the
energy exchange via thermal radiation; the spatial profiles of EM fields are not required. It is particularly useful when
the whole system sustains only a few resonant modes within the energy window of interest.

The thermal radiative energy of a given reservoir is governed by the cavity-mode occupation number of that
reservoir. The radiative energy transfer between reservoirs concerns the steady-state cavity-mode occupation numbers
of all reservoirs, which can be different from their respective equilibrium values when there are couplings between
these cavity modes. The key ingredient of CMT is to model how cavity modes from different reservoirs couple to
one another, and the whole CMT framework is illustrated in Fig. 1(b) and (c). The couplings between cavity modes
of different reservoirs are not direct, but originate their (effective) coupling to common resonant modes [Fig. 1(b)].
Furthermore, the coupling between the cavity mode (of one reservoir) and the resonant mode is also not direct,
but originates their (direct) coupling to the common “loss objects” (or “loss mechanism”) residing in that reservoir
[Fig. 1(c)]. An example of loss objects is two-level atoms, which absorb and emit photons of a certain energy; the
photons can be from reservoir cavity mode and/or the resonant modes.

We now make the above description more quantitative. Here we consider two resonant modes of resonant frequencies
wy and wo, specified by amplitudes a; and as. The coupling between the two resonant modes is x. Each resonance
also couples to “loss objects” residing inside reservoirs. The equation of motion for these two modes are
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In Eq. (2), Tyn (Ta,) represents the coupling between the resonant mode 1 (2) and the loss object 1n (2n).
(0% 1,041n) = O1n(w) is the mean number of w-photons injected by the nth reservoir (i.e. the cavity-mode pho-
ton of nth reservoir) at T;, into the loss object 1n; (0*,,0_1,) is the mean number of w-photons reflected from the loss
object 1n back to the nth reservoir [8, 24]. The second and fourth lines of Eq. (2) correspond to the flux conservation,
and are illustrated in Fig. 1(c) [35].

The steady-state solution at frequency w, by denoting §; =w —w; +i), Ty, is
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Interchanging 1 <+ 2 gives as and (|as|?). The net number of photons emitted by loss object 1i and 2i are
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Based on Eq. (4), one can define the transmissivity of the radiation energy transfer from ith to jth reservoir [24].



There are four classes of transmissivity describing the radiation energy transfer from loss mechanism a to b:
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The photon transfer rate between loss mechanisms a and b, at a given frequency w, is simply the transimissivity
multiplied by the difference of Planck distributions. For example, the net photon transfer rate between 17 and 1j
at energy hw is €1;,1;(0;(w) — ©;(w)]. The photon energy 7w is multiplied to this quantity to obtain the radiation
power transfer. Between two reservoirs ¢ and j, there are “direct” terms (e1;,1; and €9;,2;) involving only one of the
resonances; “cross” terms (€1;2; and e9;1;) involving both resonances. The total transmissivity from reservoir i to j
is the sum of them. When the coupling between two resonant modes is zero, i.e. k = 0, the “cross” terms vanish, and
the transmissivity between reservoirs can then be computed by summing over contribution from each mode separately
[36].

A few important features of CMT formalism are worth noting. First, in CMT, a resonant mode simply means a
well-defined (long-lived) mode which oscillates many cycles before gradually dying out. Mathematically it corresponds
to a complex resonant energy whose real part is much larger than the imaginary part. The CMT formalism by itself
does not tell the physical origin of the resonant modes, and we have to decide what a resonant mode represents based
on our physics understanding. For the single-mode case, the resonant mode is the eigenmode of the whole system
(including all reservoirs). For the two-mode case, we can choose what the modes are, which will be discussed in
the next section. Second, according to CMT, the energy exchange between reservoirs comes from their couplings
to common resonant modes. In Eq. (2), the coupling between the resonant mode i and nth loss mechanism (i.e.
T';,) tends to thermalize the resonant mode according to nth reservoir (if only I'y,, is non-zero, the photon occupation
number of the resonant mode is given by Planck distribution at the temperature T,), and it is the competition between
different reservoirs that leads to energy exchange. Finally, there exists an optimal set of parameters that maximize
the transmissivity from loss mechanism a to b, which is typically referred to as the “impedance matching” condition
[8, 24, 37]. The CMT analysis thus naturally provides a guide on how to enhance the radiation energy transfer in a
TPV system [27].

C. Determination of CMT parameters

Now we show how to determine the CMT parameters. In essence, it is done by fitting the CMT resonant energies
to those obtained by the system eigen-solver. We first set all source terms 6,;,, to zero in Eq. (2). In the w-space,
% — —iw and we get
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from which the CMT gives the complex eigenenergies of two resonant modes. The obtained resonant energies are
then fit to those obtained by the eigen-solver of the whole system. We are interested in the planar structure shown in
Fig. 1(a), and the equation to determine the (complex) resonant energies is given in Appendix. The same equation is
used to determine the surface plasmon dispersion [38, 39]. For a more complicated structure, an analytical expression
may not exist, and some numerical tool, such as finite-difference-time-domain (FDTD) [40], is needed. We find the
easiest way to determine I';,, is to turn on only loss mechanisms within nth reservoir, and solve for the resonant
energies, from which I'1,, and I's,, can be obtained from their imaginary parts. This will become explicit in the next
section where we work out a few examples. As discussed in the previous subsection, the number of resonant modes
and what they represent (which affects if some of CMT parameters, such x and I';;, are zero or not) are determined
by our physical understanding of the system. Although we only consider two resonant modes here, CMT also works
for systems supporting more resonances [41].



III. APPLICATIONS TO SYSTEMS INVOLVING LORENTZIAN DISPERSION
A. DMaterial choice and two elementary configurations

The CMT is successfully applied to the systems involving metal /dielectric interfaces, where surface plasma polariton
is the resonant modes [24, 27]. Here we apply the CMT to another class of materials whose dielectric function can be
approximated by the Lorentz oscillator model. We fix the Lorentz oscillator model [13] as
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er (W) = €x —w2 wéo ks Z.’Yw
w* — Wy + 1w

with €, = 4.67. All frequencies are measured in wro = 0.1616 eV with wro/wro = 0.81, v/wro = 0.0041. We also

define a ko = wro/c, and scale all momentums with respect to kro. wro and wre are frequencies of longitudinal

and transverse optical modes. We also choose an “interband” material, whose dielectric function is governed by the

direct interband transition [42, 43].
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with « = hw/E,. The choice of (A4, B, E4/wro) = (6,10, 0.804) [13]. In the following, we compute the transmissivity
from the bottom Lorentz material to the materials on the top, using both the exact solution and the CMT analysis.
Ounly the TM (transverse magnetic) modes are considered, as the TE (transverse electric) modes have negligible
contribution.

We begin by considering the Lorentz-Vacuum-Interband configuration, with the vacuum gap fixed at 10 nm. In this
configuration, there is only one resonance originated from the Lorentz material. We compute the transimissivity from
Lorentz to interband materials using the exact solution and the CMT procedure. For the exact solution, we compute
the Poynting vector S,(z = 10 nm) using Eq. (1), and identify the e(w, k; 2 = 10 nm) as the exact transmissivity. For
the CMT including only one resonance and two reservoirs, we have
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The eigenenergy of CMT is wy —i(I'11 +I'12), obtained by the non-zero solution with 641, = 0. Once the eigenenergy
is obtained from the system eigen-solver, w; is determined by the real part of the resonant energy; I'y; and I'15 are
determined by the imaginary part of the resonant energy where the v in €y, and imaginary part of €;,4¢, is set to zero
respectively. Once these parameters are determined, the first line of Eq. (5) is used to compute the transmissivity.
As shown in Fig. 2(a) and (c), an almost perfect match between the exact solution and CMT results is seen.

Next we consider the geometry given in Fig. 2(b) — a symmetric Lorentz-Vacuum-Lorentz configuration, with the
vacuum gap 10 nm. Following Ref. [24] for the symmetric geometry, we identify a1 to be the “top” resonant mode,
and as to be the bottom resonant mode. Since they are degenerate in energy, we have wy = ws = wg. Due to the
spatially confined distribution of these modes, a; mode only couples to the top reservoir, so I'y; = T', and I'15 = 0;
as mode only couples to bottom reservoir, so I'so = I', and I's; = 0. With this physical understanding, the CMT
equations without heat sources are

—iway = (—iwg — Na; + ikas = (w —wo + iI)a; = —kas

—iwag = (—iwg — [as + ika1 = (w —wp + i) as = —kay

which have the solutions at wi = wy —¢I' = k. We then find two roots, denoted as w4 from the system eigen-solver for
a given momentum k, and extract the CMT parameters as wp = Re[wy +w_]/2, k = (wy —w_)/2, and I = Imwy.
The fitted parameters for selected momentum is given in Table I. The second line of Eq. (5) is used to compute the
transmissivity. As shown in Fig. 2(b) and (d), a good agreement between exact solution and CMT results is seen.
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FIG. 2: The exact transimissivity from bottom to top for (a) Lorentz-Vacuum-Interband and (b) Lorentz-Vacuum-Lorentz
configurations. For (a), there is only one resonant mode from the Lorentz material; For (b), there are two degenerate resonant
modes coming from two Lorentz materials. (c) The transmissivity from bottom Lorentz to top interband material. (d) The
transmissivity from bottom to top Lorentz materials as a function of w for selected momentums, for Lorentz-Vacuum-Lorentz
configuration (see Table I). The formalism of two coupled resonant modes is used in the CMT, and an almost perfect agreement
is seen.

k/kro ‘wo T K
200 |0.156207 0.0003275 0.0017095
300 |0.156386 0.0003275 0.0007458
400 (0.156420 0.0003275 0.0003290
500 |0.156427 0.0003275 0.0001455

TABLE I: The parameters of dielectric-vacuum-dielectricfor selected momentums. wo, &, and I" are measured in wro.

B. Asymmetric Lorentz-Vacuum-Lorentz configuration

We now consider an asymmetric Lorentz-Vacuum (10 nm)-Lorentz configuration, where the wro and wro on the
top is 1.01 times larger than those on the bottom. We first choose the resonant modes described in the previous
subsection: each resonance couples to one of the reservoirs only. The CMT equations without heat sources are

—a; — —iwa1 = (—iwl — Fl)al — iHLLQ

dt

%ag — —ilwag = (—iwg — FQ)bQ — 1Kaq.
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than those of top one. (a) The exact result of e(w, k). (b) The selected momentum cuts. The CMT with independent modes
generally underestimates the emissivity between peaks, but is a good approximation overall. The CMT with coupled modes
(see Table II) gives practically the same results.

Here I'y describes the damping of mode a; to the 1st reservoir; I'y the damping of as to the 2nd. Writing &1 = wy —il'y,
e = wy — il'9, the complex eigenenergies are
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The superscript (1+2) means both damping rates to both reservoirs (I'; and I's) are both included. We also compute
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Here w)’, wy’ are eigenenergies keeping the damping rate to 1st, 2nd reservoir only; wf ) are eigenenergies of no

damping at all. We go on to express wy, wo, I'1, I'y, £ in terms of w(ii) obtained from the eigen-solver. Denoting
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For the fitting procedure in Eq. (9), we assume that the wy, we, and k stay unchanged when “deactivating” I'; and/or
T'o, which is approximately true. Typically, the changes of w1, ws, and x are less than 0.1%. The CMT parameters
for selected momentums are given in Table II. The second line of Eq. (5) is then used to compute the transmissivity.
As shown in Fig. 3(a) and (b), a good agreement between the exact solution and CMT results is achieved.

k’/k‘Lo‘uh w2 ‘Pl FQ 112
40 10.953660 0.944202(0.0020264 0.0020264 6.529699e-05
100 |0.970081 0.960468|0.0020266 0.0020266 1.744244e-05
300 [0.977628 0.967946|0.0020266 0.0020266 1.09060e-07

TABLE II: The parameters of dielectric-vacuum-dielectric(1.1) for selected momentums. w’s and I'’s are measured in wro, K2
: 2
in wig.

We can also choose two uncoupled resonances for the CMT computation. In this case, the CMT gives

%lh — —iwby = (—iw; —T11 —Ti2)by

d

%bQ — —iwbg = (—iw2 — F21 — F22)b2.

The two resonant energies are wy — i(I'1; + I'12) and wy — ¢(T'a; + T'e2). Similar to the case discussed previously, w;
and wy are determined from the real part of the resonant energies; I'1; and I'y; are obtained from the imaginary part

of w(il ), and T'y; and T’y from the imaginary part of wf ). The sum of the first and fourth lines of Eq. (5) is used
to compute the transmissivity. As shown in Fig. 3(a) and (b), it works quite well when |w; — ws| > T, and is still
reasonable when |w; — wsy| ~ T

One key difference between these two choices is emphasized here. The coupled resonances a; and ag are spatially
confined to one of the reservoirs only, and this is the underlying reason why a1 /ag decays only to the 1st/2nd reservoir.
The uncoupled resonances b; and by are, on the other hand, the resonances of the whole systems, so all I'17, 'y, a1,
T'35 are non-zero. Note that, we actually use more physics information for the coupled resonances, so there are fewer
parameters to determine. In the configuration studied here, the choice of coupled resonances turns out to be better,
implying that the assumption of coupled resonance captures the key physics. The choice of uncoupled resonances
still give reasonably good results, although it generally does not describe the behavior between resonant energies
accurately.

C. Three-interface structure

We now investigate systems of three interfaces. We first consider a system of Lorentz-Vacuum-Interband-Lorentz
configuration, which contains three interfaces. As shown in Fig. 4, the thickness of the vacuum and the interband
material are chosen to be 10 nm. We consider the radiation transfer from the bottom Lorentz material to (i)
the combined top interband and Lorentz materials, and (ii) to the interband material only. The exact solution of
transmissivity is €(w, k; z = 10 nm) in case (i); and is e(w, k; z = 10 nm) —e(w, k; z = 20 nm) in case (ii), with e(w, k; 2)
defined in Eq. (1). We consider two uncoupled resonant modes, and CMT equations without the heat sources are

d . .
%bl — —iwb; = (—iwy — 11 — T2 — T13)by
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%bz — —iwby = (—iwy — T'ap — T'ag — Ta3)bo.
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FIG. 4: The exact solution for dielectric-vacuum-interband-dielectric configuration. (a) The exact transmissivity ¢(w, k) from
bottom Lorentz material to the combined Interband-Lorentz absorber. (b) The exact transmissivity e(w, k) from bottom
Lorentz material to the Interband material only. (c) and (d) The CMT result using two independent resonant modes (see Table
I11).

The fitting procedure is similar to what we described in the Section III.C, and the CMT parameters of selected
momentum are given in Table III. Fig. 4 shows the exact solution and CMT results for both transmissivity, and a
reasonably good agreement is again achieved.

As a final example, we consider the Lorentz-Vacuum-Lorentz-Interband configuration, where the thickness of the
vacuum and the Lorentz material are chosen to be 10 nm and 4 nm respectively (see Fig. 5). We consider the
radiation transfer from the bottom Lorentz material to the interband material, whose exact solution of transmissivity
is €(w, k; 2 = 14 nm), with e(w, k; 2) defined in Eq. (1). We consider two uncoupled resonant modes [Eq. (IITC)], and
the CMT parameters of selected momentum are given in Table IV. Fig. 5 shows the exact solution and CMT results
of the transmissivity, and a reasonably good agreement is observed.



10

k/kLo|w w2 T JRP) I3 |T21 o [ag
40 10.95469 0.93009|0.0015666 0.0029925 0.0004394 |0.0004285 0.0023994 0.0015894
100 ]0.95920 0.8754410.0020068 0.0004422 1.9443e-05|1.6570e-05 0.0046585 0.0020075

TABLE III: The CMT parameters of Lorentz-Vacuum-Interband-Lorentz for selected momentums. w’s and I'’s are measured
in w LO-

Interband -

Lorentz model I do = 4 nm
Vacuum I dy = 10 nm
Lorentz model

For “interband” absorber

. b [Zwi=10
0.8 {‘, k< =80
. :
. k/k =150 (x2)

[ 1 k/k =300 (x5)
i -+ CMT 2 ind. modes |

w/wro

LLGIDILIOOLY ILY
—

150 200

k/kro

FIG. 5: The exact solution for Lorentz-Vacuum-Interband-Lorentz configuration. (a) The exact e(w, k) from the bottom Lorentz
material to the top interband material. (b) The CMT model based on two independent resonant modes for selected k cuts (see
Table IV). The agreement is better when two resonant energies are more separated.

For the structures studied in this subsection, we do not find a model of coupled resonances which gives better results
than those of decoupled resonances, therefore only the results of decoupled resonances are shown. Actually, we think
the use of decoupled resonances is the big advantage of the CMT analysis, because without prior knowledge of the
system, the assumption of two decoupled resonances is the most natural one. A reasonably good agreement to the
exact result means that we do not need to know the spatial profile of each resonance to have a good approximated
answer.

IV. APPLICATIONS TO ELECTRONIC SYSTEMS
A. Formulation of problem and Landauer’s exact expression

The CMT, as it is formulated, does not concern the type of energy carriers. In this section we apply it to the
simple electronic systems. The purposes are two-fold. First it demonstrates the generality of CMT analysis. Second,
we shall discuss the limitation of CMT, as a numerical solver, in the electronic systems. The configuration of interest
is illustrated in Fig. 6 (a) — a left and a right lead which can be regarded as electronic reservoirs characterized by
different temperature, chemical potential, and voltage; a small junction, the “scattering region”, is coupled to both
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k/kLo|w w2 T JRP) I3 |T21 o a3
40 ]0.99863 0.93009{0.0002076 0.0018190 4.3137e-06|0.0018081 0.0002180 0.0011902
80 10.99549 0.94777(0.0003136 0.0017130 2.1284e-05|0.0017070 0.0003196 0.0005160
150 ]0.98874 0.95917(0.0003670 0.0016595 6.1971e-05{0.0016571 0.0003696 0.0001851
300 [0.97718 0.96600|0.0003074 0.0017189 9.0109e-05|0.0017187 0.0003080 3.7831e-05

TABLE IV: The CMT parameters of Lorentz-Vacuum-Lorentz-Interband for selected momentums. w’s and I'’s are measured
in wWLo-

AnAAAAN

|
/ / R M\ L
@ O:0 O OO O 0:0
-1 0 1 2 3... N N+1

Exact
Coupled Mode

Exact
Coupled Mode

Transmission Coeff
Transmission Coeff.

energy energy

FIG. 6: (a) Schematic representation of electron transport across an arbitrary 1D junction. Sites of ¢ < 0 represent a “left”
lead; whereas sites of ¢ > N represent a “right” lead. The scattering region represents a junction that provides the electric
resistance. (b) and (c) Transmission coefficient comparison between exact and coupled mode theory for four representative
cases. The scattering region contains five sites, and the electron hopping amplitude on the left lead, which serves as the energy
unit, is fixed as -1. The on-site potential is site-dependent in the scattering region and is given in the figure. The CMT results
become closer to the exact Landauer results when the resonances are sharper.

leads. The current across the junction can be expressed
I =~ [ dBT(E) [ne(E: T Vi i) = g (B T2 Vi), (10)

with the Fermi distribution ng(F;T,V,u) = m T, V, p are respectively temperature, voltage, and
chemical potential. Like the transmissivity, the transmission coefficient T'(E) is independent of the thermodynamical
parameters T, V', u of the reservoir, but does depend on the electronic structure of the reservoir. This equation plays
the same role as Eq. (1) for the radiative energy transfer.

To proceed, we consider the 5-site scattering region as a concrete example. The goal is to compute the transmission
coefficient at a given energy F using Landauer formalism [44]. We outline the computation procedure here. An
effective energy-dependent Hamiltonian for this 5-site is defined as

Vo+SL(E) =t 0 0 0
—t Vi -t 0 0
H(E) = 0 —t Vy —t 0 (11)
0 0 —t Vs —t
0 0 0 —t Va+3g(E)

The left/right self energies ¥y, /X r provide all the required information for the coupling between the scattering region
and the lead. —t is the hopping within the scattering region, and V; specifies the on-site potential. We assume the
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left and right leads have the tight-binding dispersion
Ep(k) = —2tcosk; Egr(k)=—2tcosk.

In Eq. (11), the energy-dependent self energies are given by

E ,
cos(kr) = 5 YL(E) = —tetthra
(12)
E .
cos(kgr) = 5 Yr(E) = —tetthra,

By defining G(E) = [E — H(E)] ™", the retarded and advanced Green’s functions are G'(E) = [(E + in) — H(E)] ™'
and G4(E) = [G"(E)|" respectively. The transmission coefficient is by [45, 46]

T(E) = 4(ImXg) [G"], , (ImXr) [G*] 4 (13)

Eq. (13) gives the exact results.

B. CMT results and discussion

Now we give the transmission coefficient using CMT. The CMT needs the complex eigenvalues of H(E) defined
in Eq. (11). We note that because H(F) has an E dependence, it is not the standard eigenvalue problem. Also, as
self energies are generally complex, H(FE) is not a Hermitian and the eigenvalues obtained by Det[z; — H(z — )] = 0
are complex. We denote the eigenvalues as z; = E; + ¢I'; with ¢ labeled the resonance. To obtain the transmission
coefficient, we solve two eigenvalue problems: one which sets Im[X ] = 0, and one which sets Im[Xg] = 0. They are

zir=E;r+il';R with Im[ZL] =0

e (14)
zir, = By, + 10 1, with Im[ZR] =0

Generally F; p = E; = E;. Assuming these resonances do not couple, the transmission coefficient is given by the
sum over all resonances as

AT rI's 1
T(E) = ’ ’ .
(E) Z (E—E)?+Tir+T;1)?

%

(15)

CMT is particularly useful when the resonances are separate in energy. In this case, the transmission coefficient as a
function of energy is the sum of Lorentzian profiles [Eq. (15)]. When the real part of the resonant energy difference
is comparable or even smaller than the imaginary part of the resonance, CMT becomes less useful.

As an example, we consider the case where the scattering region contains five sites, and the electron hopping
amplitude on the left lead, which serves us the energy unit, is fixed as -1. Two representative results are given Fig. 6
(b) and (c). In Fig. 6 (b), the on-site potential next to two boundaries are set to +2, whereas In Fig. 6 (c) , they are
set to 5. As expected, the CMT results become closer to the exact Landauer results when the resonances are sharper.
We have tested many cases, including different left and right leads, or different on-site potentials. Generally, we find
if the energy difference is about 10 times (or more) larger than the imaginary part, CMT gives reasonable answers.
We emphasize that, by computing the ratio between the energy difference and the imaginary part, a CMT calculation
by itself gives an estimate how good the CMT approximation is. Therefore when CMT works, an exact calculation
is not needed. Finally, without providing the results, we point out that the above CMT procedure also applies to the
phonon energy transfer.

V. CONCLUSION

To conclude, we apply the coupled mode theory to study the radiative heat transfer involving Lorentz materials
whose dielectric functions can be approximated by Lorentz oscillator model. Each Lorentz material provides a res-
onance between wro and wrp, and the CMT gives a generally good approximation for this class of materials. This
is established by comparing the transmissivity computed by the exact solution to that computed by CMT. Based on
CMT, the heat transfer between reservoirs originates from their couplings to common resonant mode(s). For a system
sustaining only one resonance, the resonance represents the a quasi-eigenmode (quasi in the sense of the non-zero
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imaginary part) of the whole system. For systems sustaining two resonances, we can choose if the two resonances are
coupled or not based on our understanding. Generally, the choice of two decoupled modes is good, especially when
two resonances are separated in energy. We regard this as a big advantage of the CMT analysis, in the sense that one
does not need to know the spatial distribution of resonance to get a good approximation of radiation energy transfer.
However, when the system does not support resonances, CMT analysis is not numerically useful. To demonstrate
the generality of CMT analysis, we also apply our CMT procedure to electronic system, where the transmissivity
between left and right 1D leads are computed. The similar behavior as the radiative energy transfer is seen. The
CMT parameters can be obtained by the complex eigen-solver of the whole system. For the planar structure, the
condition of resonances is identical to that used in the surface plasmon calculation. Compared with the exact solution,
the CMT provides a simple and clear framework to analyze the radiation energy exchange between reservoirs, and
can therefore help the design that aims to maximize the radiative heat transfer from one reservoir to the other.
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1. Resonance condition for general layered structures

In the Appendix, we consider the general layered structure: Each layer has its thickness d;, and we define d; =

Z;zl d,, (and dy = 0), so the material of ¢; ranges from z = d;_; to z = d;. At z = d;, the boundary condition needs

to be considered. The general solution of a TM mode is
Aget Koz, 2<0
Apyefiz 4 A B2 0<z<dy
F(Z) = A27+€K22 + A27_67K22 Jl <z < (ZQ (16)

Ap ez 4 A, e Bnz g, <2<,

where A; = ¢;E, (the electric displacement field along 2) and k2 — K? = ¢;(w)(w/c)?. We define v; = K;/¢; and

yi = 2—. At the interface z = d;, the continuity of E| and H (or F(z)) lead to [39]

Yit1

Ai+1,+ _ % Az‘,+ B e Kiv1d; 0 i %(1 +y¢) %(1 _ yz) et Kid; 0 i Ai,+ (17)
Aipr,— | T A 0 etKimdi| | 5(1—y;) 5(14y:) 0 e Kidi i—|
For an n-interface configuration (n + 1 materials specified by €q, €1, ... to €,), we get
Ant| _ 3 o o v Ao+ | _ [Yi1 Yio| [Ao+
|:An:| = anl Ce X2X1X0 |:A0} = }/21 }/22 A077 (18)

For a bounded solution, Ag— = A,+ =0, i.e.

0 | _ |Yuin Yiz| Ao+
Ap,— Yor Yo 0 |-

Therefore the condition of eigenmodes are Y31 = 0 in this case. For the three-interface (four materials) configuration,

by defining e; = eX191 and ey = X292 we have

Y1z o (14 y2) (1 + 1)1+ yo)ezer + (1 +y2)(1 = y1)(1 — yo)ezey '
+ (1= y2) (1 =y)(T+wo)es er + (1= y2) (1 + 1) (1= po)e; ey
The roots gives the resonant energies. If eo = €3, yo = 1 and

Y11 o 2e2[(1+y1)(1+go)er + (1 —y1)(1 — yo)ey ']- (20)

The condition (14y1)(1+yo)e1+(1—y1)(1—yo)e; * = 0 gives the resonant energies for any two-interface configurations.
Finally if €1 = €3, y1 = 1 and 1 + yo = 0 gives the resonant energies for any one-interface configurations.
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