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Abstract
RGBD SLAM systems have shown impressive results, but the limited field of view (FOV)
and depth range of typical RGBD cameras still cause problems for registering distant frames.
Monocular SLAM systems, in contrast, can exploit wide-angle cameras and do not have the
depth range limitation, but are unstable for textureless scenes. We present a SLAM system
that uses both an RGBD camera and a wide-angle monocular camera for combining the
advantages of the two sensors. Our system extracts 3D point features from RGBD frames and
2D point features from monocular frames, which are used to perform both RGBD-to-RGBD
and RGBDto-monocular registration. To compensate for different FOV and resolution of the
cameras, we generate multiple virtual images for each wide-angle monocular image and use
the feature descriptors computed on the virtual images to perform the RGBD-to-monocular
matches. To compute the poses of the frames, we construct a graph where nodes represent
RGBD and monocular frames and edges denote the pairwise registration results between
the nodes. We compute the global poses of the nodes by first finding the minimum spanning
trees (MSTs) of the graph and then pruning edges that have inconsistent poses due to possible
mismatches using the MST result. We finally run bundle adjustment on the graph using all
the consistent edges. Experimental results show that our system registers a larger number of
frames than using only an RGBD camera, leading to larger-scale 3D reconstruction.
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MonoRGBD-SLAM: Simultaneous Localization and Mapping Using
Both Monocular and RGBD Cameras

Khalid Yousif1, Yuichi Taguchi2, and Srikumar Ramalingam2

Abstract— RGBD SLAM systems have shown impressive
results, but the limited field of view (FOV) and depth range
of typical RGBD cameras still cause problems for registering
distant frames. Monocular SLAM systems, in contrast, can
exploit wide-angle cameras and do not have the depth range
limitation, but are unstable for textureless scenes. We present
a SLAM system that uses both an RGBD camera and a
wide-angle monocular camera for combining the advantages
of the two sensors. Our system extracts 3D point features from
RGBD frames and 2D point features from monocular frames,
which are used to perform both RGBD-to-RGBD and RGBD-
to-monocular registration. To compensate for different FOV
and resolution of the cameras, we generate multiple virtual
images for each wide-angle monocular image and use the
feature descriptors computed on the virtual images to perform
the RGBD-to-monocular matches. To compute the poses of the
frames, we construct a graph where nodes represent RGBD and
monocular frames and edges denote the pairwise registration
results between the nodes. We compute the global poses of the
nodes by first finding the minimum spanning trees (MSTs) of
the graph and then pruning edges that have inconsistent poses
due to possible mismatches using the MST result. We finally
run bundle adjustment on the graph using all the consistent
edges. Experimental results show that our system registers a
larger number of frames than using only an RGBD camera,
leading to larger-scale 3D reconstruction.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a
method used for simultaneously estimating the pose of a
camera and reconstructing a map of its surrounding en-
vironment. SLAM has been widely studied over the past
decades and many methods have been proposed in robotics,
computer vision, and augmented reality communities. Those
methods have utilized various types of sensors such as laser
scanners, monocular cameras, and stereo cameras. Recently,
there has been a wealth of interest in using RGB-Depth
(RGBD) sensors for solving the SLAM problem, mainly due
to the appearance of Kinect. In addition to providing color
information, the Kinect uses a structured light approach for
finding the depth information in a scene (up to a certain depth
limit). Providing color and depth information, in addition to
the affordable price, made the Kinect an attractive and viable
sensor.

Despite the advances in SLAM research, the problem
still remains challenging. Some of those problems could be
attributed to the type and quality of the sensor, whereas other
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problems may occur due to the environment that is being
mapped such as containing limited texture or structure. We
focus on the first of the two aforementioned problems: the
type of sensor that is used to solve the SLAM problem. For
instance, the Kinect has a number of positives as mentioned
above, but the main disadvantages are the limited depth
range, the relatively low resolution (640 × 480), and the
narrow field of view (FOV) (60◦ in the horizontal axis).
The narrow FOV makes registering frames more challenging,
compared to laser scanners which can measure up to 360◦.
This is particularly evident when turning around corners,
since an overlap between two frames is essential in order
to extract and match the same features observed in those
frames. Having a narrow FOV allows the required features to
move out of the image faster, which may result in registration
failure due to not having enough correspondences.

On the other hand, monocular cameras have an advantage
over Kinect-style sensors in that it does not have a limited
depth range. In addition, numerous types of monocular
cameras with varying specifications are available and easily
accessible. The main disadvantage of using monocular cam-
eras for registration is that the generated maps are typically
estimated up to scale, which can be determined by post or
prior measurements. Unfortunately the scale consistency is
hard to maintain and scale drift is unavoidable when mapping
large scale environments, requiring careful handling [1].
Another disadvantage of monocular-based registration is the
lack of 3D information. As such, registration is likely to
fail when registering scenes containing limited textures. In
contrast, RGBD sensors can fallback on methods that use
the geometry of the scenes, such as the iterative closest point
(ICP) algorithm [2].

In this paper, we propose a method that fuses the infor-
mation provided by both an RGBD camera such as Kinect
and a wide-angle monocular camera such as GoPro. We
compensate for the weaknesses in each sensor by using the
strengths from the other sensor. For instance, we overcome
the scale ambiguity problem and the sparse nature of monoc-
ular SLAM using the metric depth information provided by
the RGBD camera. In addition, we overcome the narrow
FOV problem of the RGBD camera by making use of the
wide-angle monocular camera (GoPro has a horizontal FOV
of 120◦). Our goal is to build a system that is able to handle
challenging large-scale indoor sequences where a method
using the aforementioned sensors individually would fail.

Figure 1 shows such an example, where RGBD-to-RGBD
registration failed due to the limited textures in the scene and
the narrow FOV of the RGBD camera. In contrast, RGBD-to-
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Fig. 1. An example scene demonstrating the advantage of using both RGBD-to-RGBD and RGBD-to-monocular registration. (a) For these two RGBD
frames, RGBD-to-RGBD registration failed due to the limited textures and the narrow FOV, leading to an insufficient number of inliers visualized on the
frames. (b, c) Each of the RGBD frames was successfully registered to a single monocular frame using RGBD-to-monocular registration by exploiting the
wide FOV of the monocular camera, resulting in sufficient numbers of inliers. (d, e) The point clouds of the two RGBD frames, which are disconnected
if only the RGBD-to-RGBD registration is used. (f) The two point clouds registered with each other due to the use of the monocular image.

monocular registration was still successful due to the wide
FOV of the monocular camera. Our system exploits both
of these RGBD-to-RGBD and RGBD-to-monocular matches
by using 3D-to-3D and 3D-to-2D RANSAC registration.
For obtaining accurate RGBD-to-monocular matches, we
propose to generate multiple virtual images from each wide-
angle monocular image by using the intrinsic parameters of
the RGBD camera. Computing feature descriptors on the
virtual images improves both feature matching and loop
closure detection results. To compute the poses of the frames,
we construct a graph where nodes represent the RGBD and
monocular frames and edges denote the pairwise registration
results. We compute minimum spanning trees (MSTs) to ob-
tain initial pose estimates, which are used to prune incorrect
edges due to mismatches. We then run bundle adjustment
(BA) on the graph to refine the poses.

A. Contributions

The following list summarizes our main contributions.
• We present a SLAM system that fuses information from

both a monocular camera and an RGBD camera.
• We propose to generate multiple virtual images from

each wide-angle monocular image for improving feature
matching and loop closure detection.

• We present an MST-based algorithm for connecting the
frames and finding a good initial solution, which is later
refined by BA.

B. Related Work

Monocular SLAM: A body of related work exists in the
field of monocular SLAM, also known as structure from
motion. Davison et al. [3] proposed one of the first extended
Kalman filter (EKF) based monocular SLAM solutions.
They constructed a map by extracting sparse features of
the environment using Shi and Tomasi operator [4] and
matched new features to those already observed using a

normalized cross-correlation. Since an EKF was used for
state estimation, only a limited number of features were
extracted and tracked in order to manage the high com-
putational cost of the EKF. PTAM is another well known
method proposed by Klein and Murray [5], in which they
pioneered the idea of running camera tracking and mapping
in parallel threads. Unlike Davison et al.’s filtering based
method, PTAM was optimization based and utilized BA for
the estimation of its parameters. Despite its success, PTAM
had several limitations, such as the restriction to map small
environments, the lack of a large loop closure detection
system, and the low invariance to viewpoint change since
it is based on the correlation between low resolution images
of the keyframes. Both of the aforementioned methods are
feature based, as they rely on extracting and tracking a
sparse set of salient image features. Most recently, due to
the increase in computational capability, direct methods such
as DTAM [6] and LSD-SLAM [1] have been proposed. The
direct methods exploit every pixel in the image to produce
an estimate of the camera pose relative to a 3D map, but
are still unstable in scenes with limited textures, common in
indoor environments.

RGBD SLAM: Henry et al. [7] developed one of the
first methods in which an RGBD camera was employed to
capture the scenes of an indoor environment and obtain a
3D map. In their implementation, FAST [8] features were
extracted and matched between sequential frames using local
image descriptors. RANSAC was then used to find the
inliers and estimate the camera pose. This estimate was
then refined using an ICP algorithm [2]. Loop closures
were detected by matching the current frame to previously
collected keyframes and BA was utilized in order to achieve
global consistency. Audras et al. [10] presented an optical
flow based direct RGBD SLAM method that does not rely
on the feature extraction and matching steps. Newcombe et
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Fig. 2. Overview of our system.

al. [11] proposed KinectFusion, a GPU-based 3D mapping
approach that employs a truncated signed distance function
(TSDF) to represent the scene geometry. They used an ICP
variant to match the current frame to a full growing surface
model instead of matching sequential frames, resulting in
more accurate registration. The original KinectFusion was
limited to reconstruct a small fixed volume due to the limited
GPU memory, which has been addressed by several recent
extensions [12], [13], [14] to reconstruct large-scale scenes.

Monocular-RGBD SLAM: Hu et al. [16] addressed the
problem of not having sufficient depth information in large
areas due to the limitations of RGBD cameras. Their method
heuristically chose between an RGBD SLAM approach and
an 8-point RANSAC based monocular SLAM depending
on the availability of depth information in the scene, and
merged the two maps generated by the two individual SLAM
approaches. Zhang et al. [17] addressed the issue of using
a heuristic switch and proposed a single method to handle
sparse depth information by combining both features with
and without depth. In their method, depth was associated to
the features in two ways, from a depth map provided by
the RGBD camera and by triangulation using the previously
estimated motion for features lacking depth information.
One of the shortcomings of their method is that it is a
visual odometry method, which lacks a loop closure system
and would not achieve global consistency in large scale
environments. Ataer-Cansizoglu et al. [18] used both features
with and without depth in a SLAM framework as well as
in postprocessing. As opposed to those methods using only
an RGBD camera, we use a separate wide-angle monocular
camera along with the RGBD camera for obtaining more
constraints using RGBD-to-monocular registration.

RGBD-to-monocular registration was exploited in [19] for
calibrating RGB cameras that might have non-overlapping
FOVs using a map obtained with an RGBD SLAM system,
but the map was assumed to be fixed for the RGBD-
to-monocular registration. In contrast, we use RGBD-to-
monocular registration to extend the mapped regions and to
improve the registration accuracy.

II. MONORGBD-SLAM

As mentioned in Section I, our MonoRGBD-SLAM sys-
tem uses both RGBD-to-RGBD and RGBD-to-monocular
registration to estimate the poses of the RGBD and monoc-
ular frames. The pose estimation is performed based on
a graph, where nodes represent the RGBD and monocular
frames and edges represent the pairwise registration between

the nodes. One way to solve this problem would be perform-
ing the registration between all pairs of RGBD-RGBD and
RGBD-monocular frames, adding all the registration results
as edges to the graph, and running BA by assuming some
initial solutions. However, this is computationally expensive
and does not provide globally consistent poses because there
might be several edges corresponding to incorrect pairwise
registration results.

We propose an approach that is (1) computationally feasi-
ble by assuming the sequential capture of RGBD frames and
by using appearance similarities and (2) robust to incorrect
pairwise registration results by checking the pose consistency
in the graph. To achieve the goal, we first add edges by using
sequential RGBD-to-RGBD matches and then consider other
edges obtained from RGBD-to-monocular matches and the
other RGBD-to-RGBD matches proposed by a loop closing
algorithm. An overview of the proposed system is shown in
Figure 2. We detail each step of our SLAM procedure in the
following subsections.

Note that we assume the sequential capture for the RGBD
frames only; the monocular frames do not need to be ordered,
and can even be a sparse set of images captured in regions
where the RGBD-to-RGBD registration has difficulties.

A. Initial Graph Construction Using Sequential RGBD-to-
RGBD Matches

In the first step, we use a sequence of RGBD frames to
construct a graph consisting of nodes corresponding to the
RGBD frames, and edges that connect them and contain
information that is obtained from the matching process
described here. We match each RGBD frame with its 5
neighbors. To match the frames, we first extract SIFT [20]
keypoints and descriptors from each image. We then match
two frames using a mutual consistency check, by finding
the nearest neighbors in the descriptor vector space from the
source frame to the target frame and vice versa. The result
of this matching usually contains outliers (false matches). In
order to find the inlier set, we perform geometric verification
using the RANSAC based on 3D-to-3D registration between
the two frames. One downside of using RANSAC is the
assumption of a fixed error threshold (fixed error band)
in which inliers are selected. Selecting a small threshold
results in an accurate pose, although some inliers may
not be detected and thus their constraints would not be
included later in the BA refinement. On the other hand,
selecting a large error threshold may result in the inclusion
of undesired outliers. As such, we initially select a relatively
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Fig. 3. An example of an initial graph constructed using RGBD-to-RGBD
constraints. This graph is disconnected and consists of 3 segments. The MST
is computed on each segment and shown in red. The MST is constructed
by first sorting all the edges in decreasing order of their weight, followed
by picking the edge with the highest weight (as long as it does not form a
cycle) and repeating this process the number of edges = number of vertices
- 1. This insures that all vertices in the graph are connected using the largest
possible numbers of inliers.

small threshold (10 mm) to find the initial inlier set and an
accurate rigid body transformation between the two frames.
This is followed by performing an MSSE [21] segmentation
step, which is an extension of the robust least K-th order
statistical estimator, to find the final inlier set. An edge is
added between two frames if the number of inliers exceeds a
predefined threshold. All the necessary information obtained
by this matching procedure is stored to the edge, such as
the relative pose between two frames and the inlier set. In
addition, we assign a weight to each edge based on the
number of inliers multiplied by −1.

B. Minimum Spanning Tree

The initial graph contains the relative pose information
between frames. To relate the frames with respect to a single
reference coordinate system, we construct a sub-graph as
the MST using Kruskal’s algorithm. This idea is illustrated
in a simple example shown in Figure 3. MST provides a
simple, yet effective way of connecting all the nodes using
the lowest possible weights (i.e., the largest possible numbers
of inliers), while assuring that no loops are induced in the
graph. Thus no transformation averaging is required when
traversing the tree in order to calculate the global poses of the
frames. Note that some nodes in the original graph may have
been disconnected, since we use a minimum inlier threshold
for accepting an edge between two frames. This may result
in a graph with multiple disconnected components. Thus
we compute an MST for each connected component of the
graph.

C. Addition of RGBD-to-Monocular Constraints

In the next step, we add more edges to the graph by
matching RGBD frames to wide-angle monocular frames.
Our aim to add the edges using the monocular frames is
twofold:

• In the case of having several MSTs, connect them via
RGBD-to-monocular edges.

• Add more constraints to the graph in order to improve
the camera pose and map estimates using BA.

In this paper, we used a GoPro Hero 3 camera to capture
the monocular frames. Note that the GoPro camera uses
a wide-angle fisheye lens and the images are distorted. In
addition, the GoPro camera has a resolution of 1920×1080
pixels, while the RGBD camera has a resolution of 640×480
pixels. To achieve accurate feature matching between the
RGBD and monocular frames, we compensate for those
differences by generating multiple virtual images from each
monocular frame as described below.

Virtual Image Generation: The resolution and FOV
differences between the RGBD and monocular cameras can
reduce the matching accuracy as mentioned above. If we
were to generate a single undistorted monocular image (as
shown in Figure 4 (b)) from the wide-angle image so that it
can cover the entire FOV, then the peripheral regions have
perspective distortions1 and the features in those regions
do not match well with those in the RGBD images due to
having different descriptors. We propose to generate multiple
virtual images from a monocular frame, each of which has
the same camera intrinsic parameters as the RGBD camera.
This idea is illustrated in Figures 4 and 5. We define multiple
virtual cameras, each of which is placed at the camera center
of the original monocular frame but has different viewing
directions to cover the entire FOV of the original monocular
frame (shown in Figure 4 (a)). In this paper we used 9 such
virtual cameras (shown in Figure 4 (c)). Using the same
intrinsic parameters generates similar appearances between
RGBD and monocular images and improves their matching
accuracy, as we will show in Section III-C.

Finding RGBD-to-Monocular Match Candidates: In the
next step, we extract SIFT keypoints and calculate SIFT
descriptors from each virtual image. We then describe the
appearance of each virtual image using VLAD [22]. For
every virtual image, we find n most similar RGBD frames by
finding the nearest neighbors in the VLAD descriptor vector
space. Those matches are candidates for potential constraints
that may be added to the graph. For each candidate, we per-
form geometric verification using 3D-to-2D (P3P) RANSAC
registration followed by MSSE segmentation. Note that al-
though the keypoint locations and descriptors are computed
on the virtual images, the corresponding 2D rays used in the
3D-to-2D registration are defined in the original coordinate
system of the monocular frame. Note that it is possible that
a matched keypoint is viewed by multiple virtual images. In
this case, we only use a single keypoint to avoid duplicates.
If the RANSAC is successful, then a new node representing
the monocular frame and an edge between the monocular
frame and RGBD frame are added to the graph.

1Perspective distortions occur when the perspective projection is used for
generating a wide FOV image. Although the straight lines remain straight
(i.e., lens distortions are corrected), the peripheral regions are stretched and
occupy more pixels than the central regions.
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Fig. 4. (a) The original wide-angle monocular image. Straight lines in the scene are distorted due to the fisheye lens distortions. (b) A single undistorted
monocular image generated to cover the entire FOV of the original image. Although the straight lines remain straight, the peripheral regions are stretched
compared to the central regions due to the perspective distortions, resulting in different feature descriptors in different regions. (c) Nine virtual monocular
images generated to cover the entire FOV of the original image. (d) Example RGBD images of the same scene, whose appearance is similar to the virtual
images (c) compared to the single undistorted image (b).
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Fig. 5. An illustration of the virtual image generation. In this example, 3
Kinect-style virtual images at different viewing directions are generated.

D. Addition of Loop Closure RGBD-to-RGBD Constraints

In addition to the constraints added by the sequen-
tial RGBD-to-RGBD matching and VLAD-based RGBD-to-
monocular matching described in the previous sections, we
also use VLAD to find the n most similar RGBD-to-RGBD
frames that are not included in the sequential matching step.
This accounts for large loop closures. To accept an edge, we
apply the same RANSAC inlier threshold verification step
described previously.

E. Updating the MSTs

Once the additional edges are added, we can update the
MSTs by performing another MST that takes into account the
additional edges. For instance, let us assume that there are
two disconnected segments Sub Graph 1 and Sub Graph 2
in the original MSTs as shown in Figure 3. If an edge
that connects a monocular frame node Gi and Sub Graph 1
exists, and another edge connecting the same monocular
frame node and Sub Graph 2 is also available, then the two
segments can be connected in the updated MSTs. Using the
updated MSTs, we compute the global poses of all the nodes
in each MST by traversing the tree and concatenating the
relative pose assigned to each edge.

F. Edge Consistency Check

The graph includes many edges other than the edges
included in the MSTs due to all of the sequential RGBD-
to-RGBD, VLAD-based RGBD-to-monocular, and VLAD-
based RGBD-to-RGBD matches. Those edges provide addi-
tional constraints in the pose estimation, but some of them
might be incorrect due to incorrect pairwise registration. We
prune the incorrect edges by comparing the relative pose
assigned to the edge and that computed based on the MSTs.
Specifically, we compute

Tdiff = (T−1
A TB)T−1

relative, (1)

where TA and TB are the global poses of frames A and
B obtained from the MSTs, and the term T−1

A TB is the
predicted relative pose between frames A and B. Trelative
is the measured relative pose between the two frames and
was estimated using RANSAC. We threshold the translation
component of Tdiff to prune the inconsistent edges.

G. Bundle Adjustment

Bundle adjustment (BA) jointly optimizes the camera pose
and the 3D structure parameters that are viewed and matched
over multiple frames by minimizing a cost function. BA can
be performed by using measurements obtained as 2D pixels
(minimizing reprojection errors) or 3D points (minimizing
3D point-to-point distance errors). We found that the results
obtained by the 2D-based BA were underwhelming, con-
stantly converging at incorrect local minima. We therefore
employed a 3D-based BA. However, the monocular frames
do not provide 3D measurements. In order to associate each
inlier point in the monocular frame with 3D information,
we propose the following method. Each monocular frame
is matched with an RGBD frame, and their relative pose
is available. Thus, in order to associate 3D information to
all inlier points in monocular frames, we simply transfer
the corresponding 3D points from the RGBD frame to
the monocular frame. In cases where an inlier point from
the monocular frame has multiple matches from different



RGBD frames, we transfer all associated 3D points to the
monocular frame and then average their coordinates. The
inlier point from the monocular frame is then assigned to
the averaged 3D point. In our experiments, we found that
the extra dimension provides valuable information that helps
the convergence of BA. The cost function to be minimized
can be formulated as

arg min
Xi,Ck

∑
k

∑
i

ν
i
k||X̂i

k−C−1
k Xi||2, (2)

where ν i
k is either 1 if the i-th 3D landmark point Xi

is observed by the k-th frame or 0 otherwise. X̂i
k is its

corresponding 3D measurement point observed by the k-th
frame and Ck is the global pose of the k-th frame. We used
the Ceres Solver [23] for the optimization.

H. Obtaining 3D Model

The 3D landmarks that BA optimizes are a sparse set of
keypoints which results in a sparse 3D reconstruction. In
order to obtain a dense model of the environment, we simply
transfer a sub-sampled set of the 3D points provided by each
RGBD frame into a global frame using the optimized camera
poses.

III. EXPERIMENTS

We evaluated the performance of the proposed SLAM
method by mapping an entire floor of a typical office
building. We used an Asus Xtion (640×480 pixel resolution)
for capturing RGBD data and a wide-angle GoPro Hero
3 (1920× 1080 pixel resolution) for capturing monocular
images. The two cameras were placed side by side on a
tablet PC, although we assume neither synchronization nor
fixed relative pose between the two cameras in our method.
The sequence involved moving the hand-held cameras around
the large office and eventually returning back to the starting
location. The sequence consisted of 3222 RGBD frames and
2656 monocular images.

A. Disconnected Graph vs. Connected Graph vs. Optimized
Graph

As we described in Section II, we first use RGBD-to-
RGBD sequential registration to construct the initial graph.
This graph may be disconnected due to rejected constraints.
We then find an MST for each disconnected segment. Figure
6 shows an example of the disconnected MSTs which were
initially obtained by performing the proposed method on the
sequence. In this experiment, the map was disconnected into
14 segments, although the frames in 5 of those segments
(segments 1, 2, 3, 4 and 14) accounted for ≈ 95% of all
frames and are the ones shown in Figures 6 (a) to (e). In the
next step, we calculated a new set of MSTs by adding the
RGBD-to-monocular constraints that were found by VLAD
and RANSAC geometric verification. The largest MST is
shown in Figure 7 (a), demonstrating that the five main
segments are now connected as a single MST. Note that
although the MST contains a little drift, it provides a good
initial solution which will be later refined using BA. Figure

7 (b) shows the 3D reconstructed map after taking into
account all RGBD-to-RGBD constraints and applying 3D-
3D BA optimization. It can be seen that the drift has been
significantly reduced and the result is a globally consistent
map. We also note that the remaining 9 segments that were
not included, contained very limited texture. As such, neither
RGBD-to-RGBD nor RGBD-to-monocular constraints were
able to connect them. Two examples of those segments are
shown in Figures 6 (f) and (g).

B. Proposed Method vs. RGBD Only Method

We compared the proposed method with a method that
only uses RGBD frames for registration and mapping. The
process is identical to our method except that only RGBD-
to-RGBD constraints are used to connect the MSTs. The
qualitative results can be seen in Figure 7 (d). The statistical
results of this experiment are summarized in Table I. The
RGBD only approach connected two segments (1 and 14).
These two segments accounted for 1689 RGBD frames out
of a total 3222 frames. In comparison, the proposed method
connected 5 segments (as mentioned above) containing a
total of 3060 RGBD frames. In addition, 26762 RGBD-
to-monocular constraints were added to the graph, which
resulted in a better optimized graph as can be seen in Figures
7 (b) and 7 (d). The RGBD-to-monocular matching also
recorded a higher average number of inliers (almost double)
when compared to RGBD-to-RGBD matching.

C. Multiple Virtual Monocular Images vs. Single Undis-
torted Monocular Image

In this experiment, we compared the mapping results of
the proposed method with an identical method except that
it uses a single undistorted monocular image instead of
the proposed multiple virtual images. The results of this
experiment are summarized in Table I. The method using
a single undistorted monocular image added only 6213
constraints to the graph, compared with 26762 constraints
that were added by the proposed method. In addition, this
method was only able to connect 2 segments (1 and 14),
compared to the 5 segments connected via the proposed
method. We also note that at a first glance, it might seem
that the matching performance of both methods is even, since
the average number of RGBD-to-monocular inliers is roughly
the same. However, the average number alone does not reveal
the full truth and after analysis, we found that the matching
performance was not even. The reason is that the proposed
method adds many more constraints that are not added by
the method using a single undistorted monocular image, and
many of those constraints contain a relatively low number of
inliers. As such, the average number of inliers is reduced. The
same constraints that resulted in reducing the average are also
responsible for connecting more segments (5) in comparison
to a single monocular image (2). To fairly compare the
matching performance, we calculated the average number
of inliers on the edges connecting the same frames. There
were a total of 4726 of those frames, out of a possible 6213.
The average number of inliers using the proposed method
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Fig. 6. Examples of disconnected MSTs obtained using sequential RGBD-to-RGBD registration. The segments (a) to (e) are later connected using
RGBD-to-monocular matches, while (f) and (g) are not due to the limited textures.

(a) 

(d) 

(b) 

(c) 

Fig. 7. (a) The updated MST after connecting the segments using the virtual monocular images. (b, c) The reconstructed maps after adding all RGBD-
to-monocular and RGBD-to-RGBD constraints and optimizing using (b) 3D-3D BA and (c) 3D-2D BA. (d) The reconstructed map using the RGBD only
approach.

TABLE I
STATISTICAL COMPARISON BETWEEN THE RESULTS OBTAINED WITH THE PROPOSED METHOD, A METHOD THAT ONLY USES RGBD FRAMES, AND A

METHOD THAT USES SINGLE UNDISTORTED MONOCULAR IMAGES WITHOUT GENERATING MULTIPLE VIRTUAL IMAGES.

Method No. of No. of No. of segments No. of frames Avg. no. of Avg. no. of
RGBD-RGBD edges RGBD-mono. edges in largest MST in largest MST RGBD-RGBD inliers RGBD-mono. inliers

RGBD-mono. (virtual images) 27950 26762 5 3060 33.0 60.7(93)

RGBD only 27143 N/A 2 1689 32.9 N/A

RGBD-mono. (single image) 27950 6213 2 1689 33.0 60.2(64)

was 93.2 whereas the method using the single undistorted
monocular image recorded an average of 64. In addition, we
selected a number of similar RGBD and monocular images,
and compared the matching between RGBD and monocular
images using virtual images vs. using a single monocular
image. The matching results can be seen in Figure 8, demon-
strating that there are significantly more inliers using the
proposed method than using a single monocular image. The
number of inliers for the two examples using the proposed

method were 64 and 112 respectively, whereas using a single
monocular image resulted in 16 and 33 inliers only.

D. 3D-3D Bundle Adjustment vs. 3D-2D Bundle Adjustment

We proposed assigning 3D information to the monocular
image keypoints using the corresponding RGBD images in
order to perform 3D-3D BA. We found that BA using a 3D-
3D cost function performs significantly better than BA using
a 3D-2D cost function. This is illustrated in Figures 7 (b) and



(a) (b) 

(c) (d) 

Fig. 8. (a) and (c) show the inlier correspondences between a monocular
image and an RGBD image using the virtual images. (b) and (d) show the
inliers of the same images using a single undistorted monocular image.

(c). The figure shows that the global consistency of the map
is significantly worse when using 3D-2D BA in comparison
to 3D-3D BA.

IV. CONCLUSIONS

In this paper, we presented a SLAM system that employs
both an RGBD camera and a wide-angle monocular camera
for combining the advantages of the two types of cameras.
The proposed system is able to handle large-scale indoor
environments by using both RGBD-to-RGBD and RGBD-to-
monocular registration. We generate multiple virtual images
for each wide-angle monocular image in order to compensate
for the difference of FOV and resolution of the cameras.
We construct a graph consisting of nodes which represent
the camera frames, and edges which denote the pairwise
registration results between the frames. We then compute
MSTs and traverse them to calculate the initial global poses
of the cameras, which are used to prune edges from the
original graph that have inconsistent poses. We finally run
bundle adjustment on the graph using consistent edges. We
showed in our experiments that the proposed SLAM method
performs well in reconstructing large-scale indoor environ-
ments. The experiments showed that the RGBD only ap-
proach struggled to reconstruct the whole sequence, mainly
due to its limited FOV. We also showed that our method using
multiple virtual images performs better than using a single
undistorted monocular image, both in terms of the mapping
results and the average number of RGBD-to-monocular
inliers. Currently, the main limitation of our system is the
time it takes to fully complete the process. For instance, the
computational time required to map the sequence described
in Section III is approximately 4 hours on a standard desktop
PC. Improving the efficiency of this method is possible by
using keyframes instead of every frame. Additionally, it is
possible to use faster feature extraction techniques, which
could vastly improve the speed of the matching algorithm.
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