MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Least squares dynamics in Newton-Krylov Model Predictive
Control

Knyazev, A.; Malyshev, A.
TR2017-065 May 2017

Abstract
Newton-Krylov methods for nonlinear Model Predictive Control are pioneered by Ohtsuka
under the name ”C/GMRES”. Ohtsuka eliminates a system state over the horizon from
Karush-Kuhn-Tucker stationarity conditions of a Lagrangian using equations of system dy-
namics. We propose instead using least squares to fit the state to the dynamics and some
constraints on the state, if they are inconsistent. Correspondingly modified Newton-Krylov
methods are described. Numerical tests demonstrate workability of our modification.

American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright (© Mitsubishi Electric Research Laboratories, Inc., 2017
201 Broadway, Cambridge, Massachusetts 02139






Least squares dynamics in Newton-Krylov Model Predictive Control

Andrew Knyazev' and Alexander Malyshev?

Abstract— Newton-Krylov methods for nonlinear Model Pre-
dictive Control are pioneered by Ohtsuka under the name
“C/GMRES”. Ohtsuka eliminates a system state over the
horizon from Karush-Kuhn-Tucker stationarity conditions of
a Lagrangian using equations of system dynamics. We propose
instead using least squares to fit the state to the dynamics and
some constraints on the state, if they are inconsistent. Cor-
respondingly modified Newton-Krylov methods are described.
Numerical tests demonstrate workability of our modification.

I. INTRODUCTION

The paper is concerned with Model Predictive Control
(MPCO), see, e.g., [1], [2], [3], [4], for cases, where a model
of a state of a system dynamics contradicts to some state
constrains, making MPC infeasible. The contradictions may
appear, e.g., from uncertainties and inaccuracies. We propose
using least squares to fit the state to both the dynamics and
the contradicting constraints, within a framework of Newton-
Krylov methods for nonlinear MPC (NMPC), pioneered by
Ohtsuka [5] for numerical solution of the MPC problems.

As an illustrating example (also used in our numerical
tests), let us consider a continuous dynamical system where
the state automatically satisfies an equality constraint, e.g.,
the state is on a smooth manifold, e.g., a sphere in [6].
Discretized dynamical models, used for state prediction over
a finite MPC horizon, approximate the continuous model
and may not exactly satisfy the state equality constraint of
the continuous case. When the predictive horizon is long,
the predicted trajectories may deviate far from the manifold
determined by the equality constraint. In [6], we propose
solving optimal control problems over smooth manifolds by
using the so-called “structure preserving integration methods”
[7] within the Ohtsuka’s method [5], [8], [9].

In the present work, we introduce a new prediction
technology, aimed at removing the inconsistency of the state
dynamics with some equality constraint on the state, by means
of the least squares. In our inner-outer approach, the inner
layer is the least squares fit of the state to the dynamics and
the inconsistent constraints on the state, while the outer layer
is NMPC solved by the Newton-Krylov methods of Ohtsuka.

We formulate a theoretical framework of two-level MPC,
develop a numerical method similar to Ohtsuka’s method,
and show numerical results for a test minimum-time problem
describing motion on a unit sphere with constrained controls.
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II. LEAST SQUARES DYNAMICS IN CONTINUOUS MPC

MPC determines a control input u(t) by solving a pre-
diction model on a finite horizon [¢,¢ + T]. We consider
a modified, using unknown disturbance vectors 7y and 7,
variant of the prediction model from [6], where the control
u(7) and a parameter vector p minimize

min J(u, p), (D
u,p

the performance index

t+T
J(u,p) = (&), plrmtsr + / L(r,2(r), u(r), p)dr

subject to uncertain model dynamics

%— = f(r,z(7),u(7),p) + ny.

uncertain constraint on the state

TEt+T], (2)

g(r,z(7),u(r),p) +nyg =0, Te[t,t+T], (3)

and the following certain constraints

o(7)|r=t = z(2), “4)
C(r, I(T):U(T)ap)|‘r€[t,t+T] =0, )
Y(@(7),p)lr=t+7 = 0. (6)

The initial value x(7)|,—; for the time-dependent differential
equation (2) is the current state vector x(t) of the dynamic
system. The control vector v = wu(7), which solves the
prediction problem, is used as an input to control the dynamic
system at time ¢. The components of the vector p(t) are
parameters of the system.

The generally nonlinear equation (2) exactly describes
the model system dynamics, while the generally nonlinear
constraint (3) is also exact. But the disturbance vectors 7; and
1y are unknown and, if dropped, may result in inconsistency
for arbitrary u and p, thus leading to an infeasible MPC
problem. Assuming the vector-functions u and p fixed, the
disturbance vectors 1 and 7, can be minimized with respect
to the function = over the horizon via least squares, i.e.

min S(x), @)

where
S(‘E) = ||f(T7 CL’(T)/U(T),])) - dm/dTH?
2

T llg(r. 2(r), u(r). D2
and || - ||y and || - ||; are functional norms, e.g., based
on the weighted Ly norm of a function h as ||hl},_, =
[ R ()W =Y(7)h(r)dr with the weight matrix W ~'(7). We
note that the solution z(7) over the horizon 7 € [t,t + T
has the given fixed initial, when T = t, value x(t).



III. RELAXED DYNAMICS ALTERNATING MINIMIZATION
Our discussion in §II motivates relaxing (2) and (3)
by simply adding the term S(z) minimized in (7) to the
performance index J(u,p) to be minimized in (1), i.e.
min J(u,p) + S(z), 8)

u,p,T

subject to only the certain constraints, i.e. (4), (5), and (6).
Explicitly adding = to the set of minimization variables
in (8), may add computation costs to perform minimization,
compared to the original setup (1). A well known idea of
alternating minimization, see, e.g., [10], may reduce compu-
tations by iteratively minimizing J(u,p) 4+ S(x) alternatively
and separately with respect to u,p and with respect to x.
One can interpret such an alternating minimization as inner-
outer approach, where the inner layer is the least squares fit (7)
of the state to the dynamics and the inconsistent constraints
on the state, while the outer layer is NMPC minimization
(1), solved iteratively. Newton-Krylov methods of Ohtsuka
[51, [9] are examples of interest of iterative minimization (1)
of the performance index. In the next section, we describe
in the discrete case, how the original setup from [5], where
(2) and (3) are treated as exact certain constraints, can be
modified to substitute the least squares minimization (7) for
(2) and (3), formulating the discrete Karush-Kuhn-Tucker
(KKT) necessary conditions of (1) with the relaxed dynamics.

IV. LEAST SQUARES DISCRETE DYNAMICS IN KKT

Continuous formulation of the finite horizon prediction
problem stated above can be discretized on a uniform time
grid over the horizon [t,t + T partitioned into N equal
time steps of size A7, and the time-continuous vector
functions z(7) and wu(7) are sampled at the grid points 7;,
1 =0,1,..., N and denoted by the indexed values x; and
u; respectively. The integral of the performance cost J over
the horizon is approximated by means of the rectangular
quadrature rule. The time derivative of the state vector is
approximated by the forward difference formula.

Before deriving the Euler equations for the NMPC formu-
lation, we discretize = in the least squares minimization (7),

N-1
min Z [(zit1 — @) /AT — f(7i7$i7ui7p)||‘2/yf—1
=0

Z1,22,...TN ~

Hg(Tit1, Tit1, wit1,P) ”?xv;lv

keeping the first component xo = x(t) fixed, where || - ||y -1
denote weighted, using a matrix W, 2-norms of vectors.

When the disturbances 7y and 7, are of random nature,
the covariance matrices Wy and W, may be available. In
our test examples in §VI, we use the covariance matrices of
the form Wy = a1 and W, = 71 with a = 1 and a
suitable scalar 8 > 0, with I being the identity matrix.

For convenience, we introduce the block bidiagonal matrix

I

and the vectors

T f(T(),ZCU,'LLO,p)"‘l'O/AT
T2 f(T]_,CU]_,Ul,p)

R: B . - . 9
TN f(TN—1,2N—1,uN—1,D)

g(Tlaxhul?p)

9(72,3?2711/2717)
G = .

g(TN:xNauNap)

In this notation, the discrete version of the least squares
minimization (7) takes the following form,

min R"W; 'R+ GW,'G.
The gradients with respect to x of the vectors G and R equal

(Vaeg(Ti,21,u1,p)
VIQ(TQ,:L'Q,UQ,[))

VG = . )
L Vag(Tn, TN, uN, D)
I 0
va:f(Tlaxlaul)p) 0
VR=B-

sz(7'271’27u27p) 0

Vef(tn-1,2n-1,un—1,p) O

Hence the solution z;, i« = 1,... N, of the discrete least
squares minimization satisfies the equation

(VR)"W; 'R+ (VG)"W,'G = 0. )
The discretized optimal control problem NMPC is then

formulated as follows:

mln xNa Tul‘laula )AT )

)+ Z
subject to the system (9) for x; and the equality constraints

O(Tiyxhuivp):(]) 7::0717"'7N_15 (10)
Y(zn,p) =0. (11

Necessary optimality conditions for the discretized finite
horizon problem can be derived by means of the discrete
Lagrangian function

N-1
‘C(Xa U) Z'N, + Z L Tlaxiauiap)AT
=0

+ A8 [wo — x(t)]

I ARVR) W R+ (VG) T W, GlAr
N-1

+ Z /%TC(Tz',-Tz‘, ui, p)AT + v (N, p),
i=0

[zi AT,
i=01,...,N—1

where we gather the variables into vectors X =
i=0,1,...,N,and U = [u; p; v p]7,



Here, A\ = [AT...\T]7 is the costate vector, and y is the

Lagrange multiplier vector associated with the constraint (10).

The terminal constraint (11) is relaxed by the aid of the
Lagrange multiplier v.

Calculating the derivatives of the Lagrangian £ we obtain
the necessary optimality KKT conditions, £y, =0, £, =0,
i=01...,N, Ly, =0,L,, =0,i=0,1,...,N — 1,
L, =0, L, =0.

We further convert the KKT conditions into a nonlinear
equation F[U,z,t] = 0, where the vector U combines the
control input u, the Lagrange multiplier p, the Lagrange
multiplier v, and the parameter p, all in one vector:

Ut)=[d,...,uk_pud, . w07 pT)T.
The vector argument z in F[U,x,t] denotes the current
measured or estimated state vector, which serves as the initial
vector x( in the following procedure, which eliminates the
state variables x; and costate variables \;.

1) Having the current state x(, measured or estimated, we
compute z;, ¢ = 1,2..., N, by solving least squares
equations (9) instead of the forward Euler method
Tiv1 = i + f (73, 24, us, ) AT of [5].

Then compute the costates A\;, ¢ = N, N—1,...,1,
from the system of linear equations

oL
—(X,U)=0.
81’( )
The value Ay is defined by the differentiation of the
term v 4 (2, p) with respect x.
2) Calculate F[U, x,t], using just obtained z; and \;, as
[ FE(X,0) ]

8u0

e (X.U)

oL (X, U)

Oun_1

0(7.07 Zo, U07p)AT
F[le'vt] = .

C(Tia T,y ui,ap)AT

C(TN-1,TN—-1,UN—1,P)AT

w(xNap)
% (x,U)

The equation with respect to the unknown vector U ()
FlU®@),z(t),t] =0 (12)

gives the required necessary optimality conditions.

Ohtsuka in [5] proposes solving (12) using Newton-Krylov
methods applied a forward-difference approximation to the
Jacobian Fy as described in [11]. In the next section, we
repeat the necessary details, following [5], [9], [12], only
slightly modified to take into account the relaxed dynamics.

V. NEWTON-KRYLOV METHODS TO SOLVE KKT

Let us assume that the dynamic system, which is controlled
with the MPC approach, is sampled on a uniform time grid
tj = jAt, j =0,1,... and denote x; = x(t;). Equation (12)
must be solved at each time step ¢; online on the controller
board, which is the most computationally challenging part of
an NMPC implementation for systems with fast dynamics.

The nonlinear equation F[U;,z;,t;] = 0 with respect to
the unknown variables U, approximating U (t;) is equivalent
to the following equation

F[Ujvxjvtj} - F[Uj—lvxjvtj] = ij

where

bj = —F[Uj,l,xj,tj]. (13)

Using a small scalar A > 0, which is, in general, different
from the time steps At and A7, we introduce, as, e.g., in
[11], the forward difference operator

aj(V) = (FlUj-1 + hV,z;,t;] — F[Uj-1,25,t5]) /b (14)

approximating the derivative Fyy[U;_1,z;,t;](V') along the
direction V. We remark that the equation F[U;,z;,t;] =0
is equivalent to the operator equation a;(AU;/h) = b;/h,
where AU; = U; — Uj_;.

Let us introduce an m X m matrix A; with the columns
Ajer, k=1,...,m, defined by the formula A e, = a;(ey),
where m is the dimension of the vector U and e;, denotes the
k-th column of the m X m identity matrix. The matrix A; is an
O(h) approximation of the Jacobian matrix Fy;[U;_1,z;,%;],
which is symmetric by Theorem 1.

Theorem 1: The Jacobian matrix Fyy[U, x,t] is symmetric.

Proof: The equation Lx(X,U) = 0 is solvable with
respect to X due to the solvability of the least squares
minimization for x; and a system of linear equations for \;.
The rest of the proof is identical to that in [12] for the case
of the exact dynamics and is provided here for completeness.

Let us denote the solution to Lx (X,U) =0by X = g(U).
Then F[U] = Ly (g(U),U) and

Fy = Luu(g(U),U) + Lux(9(U),U)gu-

Differentiation of the identity Ly (g(U),U) = 0 with respect
to U gives the identity

Lyu(g(U),U) + Lux(9(U),U)gu(U) = 0.

Differentiation of the identity £x (¢(U),U) = 0 with respect
to U gives the identity

Lxu(9(U),U)+ Lxx(9(U),U)gu(U) = 0.
Hence g = — L (9(U),U)Lxu(g(U),U) and
FylU] =Luu(g(U),U) (15)
— Lux(g(U), U) L (9(U), U)Lxu(9(U), V),

which is called the Schur complement of the symmetric
Hessian matrix of £ at the point (X,U) = (g(U),U). The
Schur complement of any symmetric matrix is symmetric. B



Suppose that an approximate solution Uy to the equation
F[Up, x0,t0) = 0 is available. Finding sufficiently accurate
approximation Uy is crucial for success of Newton-like
methods and search for it is usually a challenging operation.
However, we omit descriptions of suitable methods for finding
the starting value Uy here because it is unrelated to, although
needed for, the “warm-start” procedure described below.

The first block entry of Uj is taken as the input control
ug at the state xo. The next state 2y = x(¢1) is measured by
sensors or estimated.

At the time ¢;, j > 1, we have the state x; and the vector
U;_1 from the previous time ¢;_;. Our goal is to solve the
following equation with respect to V:

a; (V') =b;/h. (16)

Then we set AU; = bV, U; = U;_ + AUj and choose the
first block component of U; as the control u;. The next system
state 241 = x(tj41) is measured by sensors or estimated.

A direct way to solve the operator equation (16) is forming
the matrix A; explicitly and then solving the system of linear
equations A;AU; = b;; e.g., by the Gaussian elimination.

A faster alternative is solving (16) by Krylov iterative
methods (such as GMRES [5], [11], or MINRES [13],
possibly with preconditioning [12]), where the operator a,; (V)
is used without explicit construction of the matrix A;; cf,,
[5], [11]. Krylov methods, applied to a finite difference
approximation (14) of a Jacobian, are call “Newton-Krylov
methods” in [11].

VI. PROOF OF CONCEPT NUMERICAL EXAMPLE

We numerically simulate a minimum-time motion from
an initial state zo to a terminal state x; over the unit two-
dimensional sphere in R3. The system dynamics is governed
by the system of ordinary differential equations

0 0 cosu
T = 0 0 sinu | x,
—cosu —sinu 0

where the control input « is subject to the inequality constraint
|u — ¢| < r, which we relax with the equality constraint

(u—c)* +ui—r*=0.

The variable u4 is fictitious and controlled by the scalar wy
introduced below.

The cost function is J = p — f:f wqug, where p=ts —t
is the time to destination, and wq is a small positive constant.

We choose the receding horizon coinciding with the interval
[t,ts]. The horizon is parameterized by the dimensionless
time 7 € [0, 1] by means of the linear mapping 7 — t + 7p.
The normalized interval [0, 1] is partitioned uniformly into the
grid 7; = iA7,i=0,1,..., N, with the step size A7 = 1/N.
The discretized variables include the state x; and costate \;,
the control input w; and slack variable uq;, the Lagrange
multipliers p; and v, the parameter p.

The uncertain predictive model of the dynamical system
on the receding horizon is the forward Euler method

Tiy1 — Xy _ A(ui):ci,

PAT an

where
0 0 COS U;
Au;) = 0 0 sin u;
—cosu; —sinu; 0

The truncation error of the Euler methods is the disturbance
7 in (2). We remark that 7 is not random here and highly
correlated with the state function z(7).

It is directly verified that the continuous system dynamics
& = A(u)z satisfies the equality constraint on the state
x¥z; —1=0,i=1,...,N. Hence the constraint (5) has
g(x;) = 2Tx; — 1 and n, = 0. The goal of the least squares
minimization is to satisfy the constraint (5) “softly.” We note
that for this test problem it is possible to satisfy the state
constraint z7 z; — 1 = 0 exactly by projecting ;41 onto the
unit sphere after every step of (17); see, e.g., [6].

Yet another way in this example to satisfy the equality
constraint 7' z; — 1 =0 is to use the so-called exponential
integrator x;41 = exp (A(u;)z;), which preserves the norm
lz;]l2. We use this exponential integrator for numerical
simulation of the system dynamics replacing measurements.

The discretized cost function is

N—-1
J:p<1—A7deudi>.

i=0

We choose our least squares approximation of the state x;,
with the fixed initial value xy and a scalar parameter 3 > 0,

N
Hillnz i — i1 — ATpA(ui_1)x; 1|3 + B2 |laT 2 — 12
i=1 (18)
The parameter 3 determines the force of satisfying the equality
constraint z7 x; — 1 = 0: the larger the constant 3 the larger
the enforcement.
The least squares minimization problem is equivalent to
the system of nonlinear equations

(x{xl - l)I T
BT B + 2532

(2 an — 1)1 TN

(ATpA(ug) + 1) xo
0
- = S(z,u,p) =0,

where

—AmpA(un—1)—1 T

The corresponding discrete Lagrangian function then has



the following form

N-1
L=p|1l-ATwy Z ud,¢> + M'S(z,u,p)
i=0
N-1
+ > pd [(ui =) +ug, — ]+ v @y — xy).
=0

The costate \ satisfies the formula

A
A=|: | =(B"B+28D)"! 0 :
AN _,
where C' is the block diagonal matrix given by
D = blockdiag{(z z; — 1)I + 2z;27 }.
The function F'(U, xo, t), where

U=lug,...,un—1,Ud,0,--

1o, - "a:U’N—hVap]T’

<y Ud,N—1,

has the following rows from the top to bottom:

to(uo — ) A’ (ug)xo
2 — Arp(BN)T
pn—1(un—1 —c) A(uy-1)rn-_1
0 T
A’(ul))\l
- ATp . (B.’I})7

HoUd,0 1
2 — Atpwg | 1] ;
N —1Ud,N—1 1
(ug — c)? + uflz —r?

(un—1 =) +ufy_ —1°

TN — Tf;

N-1 Aluo)wo
1— Atwy Z Udi — AT(BN)T

=0 A(un—1)zN-1

0 T

A(Ul)/\l

— AT . (Bz).
A(un—1)AN-1

The example is chosen here for historical reasons—one of
tests from our prior work [6]. It is not the most beneficial
one illustrating effectiveness of the proposed least squares
fit of the state with uncertain dynamics and constraints over
the horizon, because in this example the state constraint to
the sphere can in practice be actually certain, and satisfied
with high accuracy by other means; e.g., [6]. The role of this
example is a proof of concept.

Remark. A very important circumstance arises in the
problems with the state constraints derived from the system
dynamics. The number of terminal constraints must be
reduced to the dimension of the smooth manifold determined
by the equality constraint on the state. In our case, the
dimension of the sphere equals 2, and, therefore, the Lagrange
multiplier » must contain only 2 components instead of 3. In
our MATLAB implementation, we keep the components of
v corresponding to the x and y coordinates of the terminal
state, but the last component of the right-hand side in the
equation for the costate is set to zero. If the above described
reduction of the terminal constraint is not fulfilled, then the
subsequent computations lead to singular Jacobians in the
Newton-type iterations.

VII. NUMERICAL RESULTS

We perform several preliminary numerical experiments in
MATLAB with the test problem from § VI. Problem (18) is
solved by the MATLAB function 1sgnonlin for nonlinear
least squares problems. The operator equation (16) is solved
by the gmres function of MATLAB. The relative error
tolerance for the GMRES iterations is tol = 1075, The
number of grid points on the horizon is N = 10, the sampling
time of the simulation is At = 1/200, and h = 1075.

Other constants are as follows: ¢ = 0.5, » = 0.1, wy =
0.005, g8 = 10.

The initial value for Uy is computed by the MATLAB
function fsolve, which finds a solution to nonlinear
equations by Newton-type methods. We note that finding
good initial approximation for fsolve may be non-trivial.

The trajectory satisfying the system dynamics & = A(u)z
has been computed by the simple exponential integrator
xj+1 = exp (A(uj)z;) substituting the measurements.

Figure 1 shows the computed trajectory (x,y,z) on the
sphere for the test example. Figure 2 left panel shows the
(z,y)-projection of the computed trajectory. Figure 2 right
panel shows the input control variable with the constraints.
Figure 3 displays the number of GMRES iterations at the grid
points. Finally, Figure 4 displays the 2-norm of the residual
function F[U] that is supposed to vanish.

Since our implementation is not optimized, we do not
provide the timing. However, we note that computations
by the function 1sgnonlin are relatively time consuming.
We also observe numerically that a successful execution of
Newton-type iterations requires solution of the least squares
minimization problem with sufficiently high accuracy.

Comparison with other relevant numerical methods based
on, e.g., multiple shooting [8] is a subject for future research.

CONCLUSIONS

A novel concept of least squares relaxation of state dynam-
ics and some constraints in NMPC calculations of control
over the horizon is proposed via alternating minimization and
implemented in Newton-Krylov iterative methods. Numerical
results for a proof of concept example demonstrate feasibility
of computer implementations of the proposed technology.
Future research is needed to design numerically efficient
algorithms and to test our techniques for large uncertainties.
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