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Abstract

Motion-prediction algorithms for vehicles often employ historical behavior of a vehicle, rely
on the Markov property of the underlying system, and predict the future behavior of the
vehicle. However, the Markov property alone may lead to conservative predictions and heavy
computational burden. To overcome these drawbacks, this paper develops a method that
uses the notion of similarity among vehicle trajectories. As traffic rules and driver intentions
restrict the motions of a vehicle, the behavior of a road vehicle is typically similar to that of
other vehicles. We hypothesize that if the motion of any two vehicles was similar in the past
for a sufficiently long time span, then it is likely that it will be similar in the future. This
paper introduces an algorithm that exploits this hypothesis to develop prediction methods,
and from the results of numerical simulations, it verifies the effectiveness of the algorithm.
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Abstract— Motion-prediction algorithms for vehicles often
employ historical behavior of a vehicle, rely on the Markov
property of the underlying system, and predict the future
behavior of the vehicle. However, the Markov property alone
may lead to conservative predictions and heavy computational
burden. To overcome these drawbacks, this paper develops
a method that uses the notion of similarity among vehicle
trajectories. As traffic rules and driver intentions restrict the
motions of a vehicle, the behavior of a road vehicle is typically
similar to that of other vehicles. We hypothesize that if the
motion of any two vehicles was similar in the past for a
sufficiently long time span, then it is likely that it will be similar
in the future. This paper introduces an algorithm that exploits
this hypothesis to develop prediction methods, and from the
results of numerical simulations, it verifies the effectiveness of
the algorithm.

I. INTRODUCTION

The safety of self-driving vehicles is to a great extent
governed by the performance of the underlying motion-
prediction and threat-assessment algorithms. Without motion
predictions, path-planning systems, which are oftentimes the
next building step in the design of an autonomous vehicle,
have to assume a static, or perfectly known, environment,
which is unrealistic because the environment is typically
dynamic and highly uncertain. If precise prediction of the
environment is available, path planners can compute safer,
less conservative, and more robust trajectories. Furthermore,
motion prediction plays a key role in the development
of advanced driver assistance systems (ADAS) and semi-
autonomous vehicles, and automobile control researchers
have published several review papers that address the recent
surge of automated driving [1]-[3].

Many preceding automobile motion-prediction methods
assume the Markov property of the underlying system,
which essentially hypothesizes that the future state of a
system is uniquely determined by the current state. With this
assumption, several studies, summarized in [3], developed
methods with Markov chains and hidden Markov models for
predicting the future motion of individual vehicles. However,
as highlighted in [4], real-time prediction of the future
behavior of other vehicles is difficult because the intentions
of the other drivers are uncertain, the range and resolution
of the sensors is limited, and the environment is uncertain
and noisy. Therefore, motion-prediction methods typically
acquire relevant information of each individual vehicle only
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over a short time span, which leads to imprecise predictions.
Furthermore, because predicting each vehicle individually re-
quires a large computational load, the methods have difficulty
in simultaneous motion prediction of multiple vehicles in the
region of interest.

To overcome the problem of inaccurate prediction and
high computational cost, we propose a new method,
which in addition to the Markov property relies on an-
other assumption: the conservation of similarity (CoS).
We define the CoS as follows: Given time-series data
U = [ui, . Uity € R™ and V, =
[U1,...,0j,...,05) T € R™ % where d is the dimension
of a feature vector at each time step, if Uy.; and Vi.; are
similar, then the CoS states that U; 1.5 and Vjiq.5, where
m < m and n < n, are similar as well. The basic idea
of the CoS is that if vehicles A and B behaved similarly
for the previous several seconds, they will move similarly
in the following several seconds, implying the similarity
between the behavior of vehicles A and B is conserved. As an
example, we consider race-car driving. While driving around
a circuit, drivers typically follow similar paths, the racing line
[5], because following the racing line results in the minimum
time. This similarity of driving implies that we can predict
the behavior of race-car vehicles by just observing the racing
line of the track, and the resulting trajectories will be the
racing line plus noise.

In this paper, we target our motion-prediction method to
standard passenger road vehicles, the driving paths of which
are the results of several constraints such as traffic rules (e.g.,
speed limits, traffic lights, and lane boundaries) and comfort
and safety margins of drivers. These requirements result in
similar automotive behaviors in similar environments, or at
least a finite set of different behaviors. Thus, we conjecture
that it is possible to assume that CoS holds to predict future
behavior of passenger road vehicles.

II. NOTATION AND PRELIMINARIES

We refer to a vehicle that uses the proposed method
as an “ego vehicle” (EV). Suppose that an EV wants to
compute the threat of another vehicle in its neighborhood,
the region of interest (ROI). The ROI corresponds to the
range of sensors such as radars, cameras, and lidars. All the
other vehicles in the ROI are denoted by “other vehicles”
(OVs) (see Fig. 1). Note that OVs can be autonomous,
semi-autonomous, or completely human-driven. We assume
that the EV can measure the current state of the OVs
longitudinal and lateral position and speed. This information
can, for example, be extracted from onboard sensors, such as
cameras, radars, and positioning systems (GPS). In addition,



we assume the existence of a map of the road; for example,
given by a car-navigation system.
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Fig. 1. The EV is the white vehicle in the center, and the OVs are the blue
vehicles. Each state of OV is mapped to the road-aligned coordinate, and
the shape of the ROI is not affected by the number of lanes or curvature of
the road.

Our proposed method is based on the following line
of thought. First, we assume a database of stored vehicle
behavior. This database is either created iteratively online as
vehicles enter the ROI, or is given a priori. Second, when a
new OV enters the ROI, the algorithm checks the database for
vehicles that share the history with such new OV. Third, after
finding the similar vehicles in its database, the EV, using the
history of the vehicles, predicts the future motion of the OV.
If there is no similar vehicle in the database, the observed
behavior with associated prediction information is added to
the database.

A. Methods to Compute Similar Vehicles from Traffic Flow

The similarity computation algorithm entails the following
two requirements. First, the algorithm can determine that
each pair of points is similar. Second, the algorithm can
identify that no similar vehicles are present in the database.
To compute similarities among driving behaviors, we have
explored three ways: clustering [6], [7], classification [8],
and anomaly detection [9]. The first requirement rejects
clustering algorithms, since belonging to the same cluster
does not necessarily mean one behavior is similar to every
other behavior in the same cluster. The second requirement
rejects the classification algorithms since we do not have
datasets of anomalous trajectories a priori or we cannot
assume that the majority of a dataset is unfamiliar in the
case of online data collection, especially in the early phase.

Because of these two requirements on the similarity
computation algorithms, we employ an anomaly-detection
method for our similarity-computation algorithm. The pro-
posed method is inspired from an anomaly-detection algo-
rithm in [9], which is a grid-based method. We, however,
are not able to employ grid-based methods to evaluate simi-
larities between vehicle trajectories, since vehicle-trajectory-
similarity computation requires much finer grids than the
problem setting in [9]. Thus, we need modifications as
explained in Section III.

III. DYNAMIC TIME WARPING FOR SIMILARITY
COMPUTATION

This section explains the algorithm we employ to find
similar behaviors in database. The algorithm for similarity
computation is based on dynamic time warping (DTW) [10],
a classical approach for speech recognition. DTW normalizes
time and computes the similarity between two time-series
data.

A. Dynamic Time Warping

Assume that we want to compare two time-series data U
and V. DTW aligns U and V,, by minimizing the warping
function W = {wy,...,wk,...,w; }, where wg = (ix, ji)
Each pair (¢, j) € W indicates that u; and v; are aligned, and
minimizing W corresponds to minimizing the total distance
between U and V,, defined as Dy, 2 34, duv, (ik, jk),
where dyv, (ik, ji) is a distance measure between u;, and
vj,,. We employ the Euclidean distance, but other metrics
can be used. Since computing all possible combinations
of alignments is expensive, it is common to compute the
minimum path with dynamic programming:

D(i, j) = d(i,j) + min D, (n

where D(i,j) is the cost of the minimum cost path from
(1,1) to (4,7) with D(1,1) = d(1,1), and

min D = min (D(i,j —1),D(i — 1,5),D(i — 1,5 — 1)).
2

Note that for simplicity we omitted the subscript here and
D(i,j) = Duyyv,(i,7). The path can be calculated by
computing backwards from (i,7) = (m,n).

To make the results consistent, the computation of DTW
has several constraints on the warping function: monotonic-
ity, continuity, boundary conditions, adjustment window, and
slope constraints. The monotonicity and continuity con-

straints are defined as
Tht1 = Uk, Jot1 = Jo- 3)
tp1 < ip + 1, Jey1 < je+ 1. 4)

Vk € [1,m — 1],V¢ € [1,n — 1]. Boundary conditions are
introduced as
(Z'17j1) = (17 1)? (5)
(ir, j1) = (m,m). (6)
The adjustment window condition is defined as
|is _js| <r @)
with window length r > 0. Finally, the slope constraints are
defined as
T =¥ ®)
is, — isq is, — lsg

where ¢ > 0 and p > 0 are the maximum allowed number
of steps in the x- and y- direction, respectively.



B. End-Free/lterative Dynamic Time Warping

The standard DTW explained above compares two time-
series data assuming that the entire sequence is available.
However, we wish to find similar trajectories in the database
before observing the entire trajectory of the vehicle of inter-
est. Therefore, we cannot directly employ the standard DTW
in our vehicle trajectory similarity computation. Several
researchers have proposed ways to improve standard DTW
[11], [12]. In this subsection, we introduce two modified
DTW approaches that meet our specific requirements.

To have more closely aligned paths for partial time-series
data comparison, we disregard some of the constraints of
the standard DTW: the terminal constraint in the boundary
conditions (6), the adjustment window conditions (7), and
the slope constraint conditions (8). We refer to our two
approaches as “end-free DTW” and “iterative DTW”. The
end-free DTW computes similarity between two trajectories
without fixing the terminal point at (m,n). The iterative
DTW is a computationally more efficient method than end-
free DTW if the similarity of trajectories at the previous time
step is given.

1) End-Free DTW Algorithm: In end-free DTW, we
change the starting point of the back propagation of dynamic
programming, that is, (m,n) for standard DTW. Here, we
assume that U with length m is one of the data that the EV
already has, and V,, with length n < m is the query data. We
calculate the minimum of dy v, (:,n), which corresponds to
finding the closest data point in U to V;,(n).

fendfree = argmindy v, (i,n). 9)
1<i<m
Then, we regard this point as the new terminal constraint
and the starting point of dynamic programming: w; =
(fendfree, m). The rest of the process is as in (1) and (2).

2) Iterative DTW Algorithm: If we already have the
minimum cost path W (U, V,,) and receive a new data point
Unt1, then the computation of the cost path W (U, V;,41),
where V41 = [V,;'—,’URH]T, from the beginning is redun-
dant. Instead, we propose an iterative method to compute
W (U, Vp+1). One of our preliminary results shows that the
computational speed of iterative DTW is up to 60 times faster
than that of the end-free DTW.

Suppose that we employed end-free DTW and already
have W (U, V,,), which is mapped as a trajectory on an m xn
grid as shown in Fig. 2a. If we obtain new data v,,4;, then we
need to find the path that leads from (1, 1) to the minimum
of the (n+1)th row as described in Fig. 2b. The algorithm is
as follows. First, we compute the minimum of the (n + 1)th
row of the grid.

iIterative = argmin dU,VnJrl (27 n+ ]-) (10)

1<i<m
Then, we perform dynamic programming (1) and (2) starting
from (irterative, # + 1). If the path collides with W (U, V,,),
then we stop calculation, and add the rest of W (U, V;,) to
the path. Since we already have the minimum-cost trajectory
from (1,1) to the point where W (U, V,,) and W (U, V1)
collides, we can reduce computational cost.

n+l

(b)

Fig. 2. Iterative dynamic time warping. The red area is the minimum path
between U and V;, only. The blue area is the minimum path between U
and V41 only. The yellow area is the shared portion of the two minimum
paths.

IV. SIMILARITY-BASED VEHICLE MOTION PREDICTION

Having modified the DTW methods to our purposes,
we introduce our similarity-based vehicle motion prediction
algorithm, whose structure is shown in Algorithm 1. The
framework is similar to the algorithm in [9], but it differs
mainly in two ways: the map function (Line 10) and the
hasPath function (Line 16).

Mapping of the trajectory: To directly compute behavioral
similarity, we need the shape of the ROI to be unchanged
depending on the geometry of the road. The mapping func-
tion in our algorithm maps trajectories from the EV-fixed
Cartesian coordinate frame from to a road-aligned coordinate
frame (see Fig. 1). The sensors of the EV can obtain position
(z,y) of the vehicle of interest. Having a map of the road, the
EV can measure the distance to OV along the path OV a1,
and deviation from the center line d.

Existence of similar paths: The hasPath function returns
a set of similar trajectories to the incoming trajectory. We
evaluate this similarity with the methods introduced in Sec-
tion IIT as follows:

(1)

where 6, denotes the threshold for trajectory similarity
computation. If the output of the DTW function is less than
this threshold, we regard the trajectories as similar. The DTW
function employs either end-free or iterative DTW depending
on where the data window w starts (see Algorithm 2). If the
StartPoint, where the distance between U and w(1) is the
minimum, is the same as before, then the warping function
W (U,w) at the previous time step is available to compute
the warping function at the current step. Because of such
availability, iterative DTW is employed. Otherwise, end-free
DTW is used.

Evaluating the Similarity: The support function on
Line 16 in Algorithm 1 evaluates the similarity of the query
trajectory to the trajectories in the database. It calculates
how much of the database the incoming trajectory is similar
to; for example, one possibility is to define similarity as
support(U;,U;—1) = |U;i—1|/|U;|, where |-| is the cardi-
nality. If the output of this support function is less than
the specified threshold 6, the algorithm resets the database

hasPath(U,w) = {U C U|DTW(w, U) < Osim },



Algorithm 1 Similarity-based Motion Prediction.
U: database of mapped trajectories; 6: anomaly threshold;
ws: window size.

1: Uy <= U % Initialize similar-trajectory database

2: w + ) % Data window in V' to compute similarity

3: fort < 1toT do
4 if A new incoming trajectory V appears then
5 1<+ 0
6: end if
7
8
9

if V' is not completed then

1—1+1
: 0; < map(v;)
10: if © > ws A fixed window size then
11: w+ {w(2:end),v;}
12: else
13: w4 {w,;}
14: end if
15: U; + hasPath(U;—1,w)
16: if support(U;—1,U;) < 6 then
17: U+~ U
18: if fixed window then
19: W U;
20: end if
21: Predict future trajectory using method in
Section IV-A
22: else
23: Predict future trajectory with U,
24: end if
25: end if
26: t—t+1
27: end for

Algorithm 2 DTW function used in hasPath

Input: w: query trajectory; U: one trajectory in the database;
oldStartPoint, oldWarpingFunction
Qutput: Similarity measure 6, newWarpingFunction, new-
StartPoint
1: StartPoint < argmin,||U(i) — w(1)|?,
if StartPoint equals oldStartPoint then
3: [é,newWarpingFunctionk—

| IterativeDTW (w,U ,oldWarpingFunction)
else

[é, newWarpingFunction] < EndFreeDTW(w,0)
6: end if

»

AN

and the starting point of the window in the adaptive-window-
size case. Note that when the window size is fixed, since the
StartPoint always changes, we only use the end-free DTW.

A. Intention Recognition and Motion Prediction for Unfa-
miliar Vehicles

When the database is not rich enough, which can happen
in the early stage of executing the algorithm, there might
not be any similar trajectories in the database. Hence, CoS
cannot be used for predicting the future motion of a new
vehicle. We solve this problem by building a hybrid system

with an intention recognizer and a subsequent sampling-
based motion-prediction method.

Hence, when there are no trajectories in the database that
are similar to the one we are currently interested in, we
activate an intention-recognition method, based on random
forests [13], a supervised-learning algorithm. The available
intentions are driving straight, turning left, or turning right;
and brake, accelerate, or maintain velocity. We label the data
for training the algorithm, and then let the algorithm output
the two intentions.

As a motion predictor, we employ sequential Monte-Carlo
[14]. In previous work we have developed a sampling-based
motion planner based on particle filtering [15], in which task
specifications y were used to guide the motion planner to the
relevant parts of the state space. Particle filters numerically
estimate probability distributions p(zx|yo.x) by generating
N random states {z%}¥ | at each time step k and assigning
a probability weight w?, which reflects how well the state
explains the observations yj. In this work, the random
states are generated by sampling the conditional distribution
q(Tps1]2h, Ypy1) = p(Axk+1|1'§€,yk+1).lThi‘s choice leads
to the weight update wj, ; o< p(yx+1|z})wy,. For a linear,
Gaussian measurement relation in the form y, = Hxy + ek,
where ey, is the Gaussian measurement noise, the expression
is analytic,

p($k+1|$;¢a yk-i—l) =N ($k+1|552+17 (224-1)_1) (12)

where N (z|p, ) is the Gaussian density given mean y and
covariance Y,

Fhr = (@) + L (W1 — Jisn)s (13)
o = (DR HL+ Q) (14)
L, = Qu(Hy) T (HiQu(H) " + Riy)™', (15)

i1 = Hif(z},), (16)
Hi = % . (17)

f(x3)

and @ is the process-noise covariance. The likelihood in
the weight update is given as

Prslzh) =N (Unr1 101, HEQr(HL) " + Riyr), (18)

where R is the measurement-noise covariance.

Now, our intentions define desired locations and velocity
profiles in the road-aligned coordinate frame we employ. For
instance, the intention of turning left implies an intended
lateral position equal to the middle lane of the lane left to
our current lane, and similar for the other options. Also,
intention of braking implies a desired deceleration profile.
Hence, transforming intentions to actual expressions on the
road gives us a measurement relation y; = Hxy, + ey, which
is linear because we model everything in the road-aligned
frame (Fig. 1). The () and R matrices are tuning parameters
in the current setup, but future work is to learn these online.
We will show the effectiveness of this hybrid method in
Section V-B, and refer to an upcoming paper for details about
the intention recognition and motion prediction.



Remark 1: When there is no database a priori, the in-
tention recognition and sampling-based motion prediction
must be activated for at least one trajectory. Thus, a prob-
ability distribution is associated with each trajectory that
is outputted from Algorithm 1. Hence, our algorithm does
not only provide a predicted path of the OV, but also a
measure of the threat level of the OV relative to the EV.
This implies that when motion prediction has been activated
and the resulting observed trajectory added to the database,
the motion prediction does not need to be invoked for new
trajectories, as long as they are similar to one in the database.
Note that since we eventually will have observed a whole
trajectory, we can leverage smoothing techniques to adjust
the predicted probability distribution, which can be applied
to later observed vehicles.

V. SIMULATION

This section evaluates the performance of the proposed
algorithm in three numerical simulations. The first scenario
clarifies the concept of our method. In the second example,
we build a hybrid system with a sampling-based method to
overcome a weakness of similarity-based motion prediction
methods The last example demonstrates the lower com-
putational cost of our algorithm than conventional motion
prediction methods.

A. Motion Prediction only with Similarity-based Method

Suppose that the EV has observed ten vehicle trajectories
(see Fig. 3a), and the EV has a new vehicle on the right
lower edge of its ROI (Fig. 3c). The new vehicle will follow
a trajectory depicted in Fig. 3b. As five of the trajectories
in the database start from the bottom right of the ROI, these
five trajectories can be possible future behaviors for the new
vehicle, as depicted in Fig. 3b. The other five trajectories,
starting from the bottom left of the ROI, are not similar.
These trajectories are denoted by dashed lines. As time
passes, the number of candidate paths decreases since the
observed data will deviate from some of the trajectories in
the database (Fig. 3d). Eventually, only one trajectory in the
database remains similar to the path of the new vehicle (see
Fig. 3e). As the new vehicle remains similar to one of the
trajectories in the database, the EV does not have to activate
classical motion prediction algorithms, which predict with
less data and offer a shorter prediction time horizon.

B. Overtaking by Similar Vehicles

In the first scenario, we showed the concept of the
proposed method. The second example clarifies the benefit
of our method with a more realistic driving scenario. The
dynamics of each vehicle in this scenario is a single-track
vehicle model [5]. Suppose the EV and one OV (OV1) drive
on a straight road at 60km/h, and another OV (OV2) has just
entered the ROI of the EV from behind at 70km/h. Since
OV2 is faster than the EV and OV1, OV2 will overtake
the EV and OV1 in the near future. Suppose that the EV
has never observed a vehicle behavior similar to that of
OV2, implying the EV cannot predict the motion of OV2
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Fig. 3. Example of similarity-based motion prediction. Based on the
database (a), the EV predicts the future motion of the vehicle in (c). The
true path for the OV is in (b). Based on the observation, five trajectories
become the future path candidates of the new vehicle as depicted in (c).
As time passes, the number of path candidates decreases to three (d) and
eventually one (e).

from the database. The EV can predict the future behavior
of OV2 by activating a motion prediction algorithm with a
relatively shorter time horizon, depicted in Figs. 4a-c. The
dots in magenta are predicted OV2 positions in the near
future, generated by a sampling-based prediction algorithm
introduced in Section IV-A

Now suppose that another OV (OV3) appears at the bottom
of the ROI, and the EV finds that the behavior of OV3
is similar to that of OV2. Then, the EV does not perform
a motion prediction algorithm on OV3, but assumes that
OV3 will behave similarly to OV2. Figure 4d shows this
situation. The magenta dots are predictions of the future
behavior of OV2, and the green line is the predicted path
that OV3 follows and that corresponds to the past trajectory
of OV2. Once the OV2 exits the ROI, the EV no longer
has to activate motion prediction, as shown in Fig. 4e. The
EV predicts that OV3 will follow the trajectory drawn by
OV?2 with the same probability distribution estimated by the
motion predictor since they remain similar.

C. Road Test

The last scenario demonstrates that as time passes, the
number of new vehicle behaviors decreases, implying that
classical motion prediction is not necessary. In this scenario,
we simulate 16 vehicles on a stretch of an actual road.
This course simulates a sub-urban asphalt road, and the
minimum radius of curve is 60 meters. Again, we employ
a single-track vehicle model, and each vehicle is controlled
by a proportional controller that takes the deviation of the
direction angle relative to the road angle as a reference. All
the vehicles drive at a constant speed, and the EV is the
fastest among all of the vehicles.

We simulate one hour driving of the EV to determine if the
algorithm can distinguish the vehicle as one in the database
(a familiar vehicle) or not in the database (an unfamiliar
vehicle). Since the dynamics and the controller of each OV
do not change, it is expected that as time passes the number
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Fig. 4. Example of our motion prediction algorithm, a hybrid of similarity-based and sampling based. The EV (red) and OV1(blue on the left in (a)) are
driving at relative speed zero. Another OV (OV2) (blue on the bottom in (a)) comes from behind at a faster speed and overtakes the EV and OV1. The
EV conducts motion prediction of this motion of OV2 with a sampling-based method as depicted in (b) and (c). However, for the next OV3 (blue on the
bottom of (d)), which behaves similarly to the OV2, the EV does not employ a sampling-based method but instead, a similarity-based method to predict
the future motion ((d) and (e)). Please note that the scale on the x- and y-axes is different.
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Fig. 5. Cumulative sum of the number of unfamiliar/familiar vehicles
detected. As time passes, unfamiliar vehicles are not detected, but more
familiar vehicles are detected.

of unfamiliar vehicle detections decreases, and the number
of familiar vehicle detections increases.

Figure 5 shows the cumulative sum of the number of
familiar/unfamiliar vehicles detected at each time step. As
expected, unfamiliar vehicles are detected at first, but as time
passes, their behavior is recorded in the database, and their
detection becomes rare. By contrast, familiar vehicles are not
detected at first since the number of vehicles recorded in the
database is small. As the number of vehicles in the database
increases, the detection of familiar vehicles occurs, indicating
that motion prediction is conducted with a similarity-based
method. All predictions are eventually performed by the
similarity-based method.

VI. CONCLUSION

This paper addressed a new approach to predict future
behavior of vehicles based on a similarity measure. The
proposed method differs from preceding research because
of the assumption that some vehicles behave similarly due
to restrictive constraints such as traffic rules. We exhibited
the effectiveness with three numerical simulations.

Future research direction may include compressing
database size with trajectory clustering, investigating fast
algorithms to find similar trajectories, and leveraging the

proposed framework to design robust motion planners [15].
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