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Abstract

In this paper, channel estimation in millimeter wave (mmWave) communication systems is
considered. In contrast to prevailing mmWave channel estimation methods exploiting the
sparsity nature of the channel, we move one step further by exploiting the joint AoD-AoA
angular spread. By formulating the channel estimation as a block-sparse signal recovery with
an underlying two-dimensional cluster feature, we propose a two-dimensional sparse Bayesian
learning method without a priori knowledge of two-dimensional angular spread patterns. It
essentially couples the channel path power at one angular direction with its two-dimensional
AoD-AoA neighboring directions. Compared with existing sparse mmWave channel estima-
tion methods, the proposed method is numerically verified to reduce the training overhead
and channel estimation error.
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Abstract—In this paper, channel estimation in millimeter wave
(mmWave) communication systems is considered. In contrast to
prevailing mmWave channel estimation methods exploiting the
sparsity nature of the channel, we move one step further by
exploiting the joint AoD-AoA angular spread. By formulating
the channel estimation as a block-sparse signal recovery with
an underlying two-dimensional cluster feature, we propose a
two-dimensional sparse Bayesian learning method without a
priori knowledge of two-dimensional angular spread patterns. It
essentially couples the channel path power at one angular direc-
tion with its two-dimensional AoD-AoA neighboring directions.
Compared with existing sparse mmWave channel estimation
methods, the proposed method is numerically verified to reduce
the training overhead and channel estimation error.

I. INTRODUCTION

Millimeter wave (mmWave) communication is a promising
technology for future fifth generation (5G) cellular networks.
It has the potential to offer gigabit-per-second data rates by
exploiting the large bandwidth available at mmWave frequen-
cies [1], [2]. However, communication at such high frequen-
cies suffers from high attenuation and signal absorption. To
compensate for the significant path loss, large antenna arrays
can be used at the base station (BS) and mobile station
(MS) to exploit beam steering to increase the link gain. On
one hand, directional precoding and beamforming provide
sufficient beamforming gain for mmWave communications.
On the other hand, the precoding design requires reliable
channel state information (CSI) which is challenging to obtain
due to the large number of antennas and rapidly varying
channel statistics.

The sparse scattering nature of the mmWave channel has
been utilized in [3] and [4] to reduce the training overhead
for mmWave channel estimation. [3] presented a new multi-
resolution beamforming codebook and an adaptive compressed
channel sensing method for the mmWave channel estimation.
The compressed channel sensing scheme divides the training
process into several phases, in which the precoding design
uses the information from previous phases. However, the
requirement of a feedback channel may not be favorable
in certain scenarios. On the other hand, [4] focused on the
compressed channel sensing scheme with significantly less
training signals by taking into account the sparse nature of
the mmWave channel.
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In this paper, we are still interested in the mmWave channel
estimation and move one step further to exploit, in addition
to the sparse channel scattering, the joint angular spread of
path clusters in the angle-of-departure (AoD) and angle-of-
arrival (AoA) domain. The joint angular spread induces a
two-dimensional block sparse pattern in the resulting complex
channel gain matrix, which has been shown in real-world
measurements in urban environments [5]-[7]. Specifically, we
propose a two-dimensional coupled sparse Bayesian learning
(SBL) algorithm to exploit the joint AoD-AoA angular spread.
The coupled SBL algorithm treats the channel gain of each
path as a random variable and imposes a two-dimensional
statistical dependence across the channel path power to favor
block-sparse solutions without knowing the block pattern a
priori. The proposed algorithm encompasses two steps and
iterates between them: the Bayesian estimation of the chan-
nel gain matrix followed by iteratively updating the prior
variance (or, equivalently, the channel path power) by using
the expectation-maximization (EM) algorithm. Compared with
several existing sparse channel estimation methods, the pro-
posed algorithm shows numerical advantages such as reduced
training overhead and lower estimation errors for the mmWave
channel estimation.

The rest of the paper is organized as follows. Section II
introduces the system model and a sparse representation of
the mmWave channel. Section III provides motivations to
exploit the joint AoD-AoD spread and formulates the problem
in a block-sparse signal recovery framework. In Section IV,
we provide the details on deriving the proposed algorithm.
Numerical results are provided in Section V, followed by
concluding remarks in Section VI.

II. SPARSE MMWAVE CHANNEL MODEL

Consider a mmWave communication system with N trans-
mitters at the BS and Ny receivers at MS. At time instant &,
the BS applies a precoder/beamformer p,, to transmit a symbol
s. Without loss of generality, s = 1. Correspondingly, the MS
applies a combiner qy to generate the received signal yy:

where p is the average transmitted power, H € CN7*Nr jg
the channel matrix, and v is the white Gaussian noise with an



unknown variance o2, and K is the number of training signals.
Here, we consider to use either phase shifters or switches. For
the phase shifter, p; and q; are selected from the elements
{£1, 45}, while py and qj are binary selection vectors with
a few ones (e.g., a single one) and zeros elsewhere for the
switch.

Assuming a geometric channel model with N, scatterers
between the BS and the MS, the channel matrix H can be
expressed as

N
H = Z aiaBs(Qi)aﬁs(@) @)
i=1

where «; is the complex path gain associated with the ¢-th
path, 6; and ¢; are the associated angular AoD and AoA,
respectively, aps(6;) and ans(¢;) denote the array response
vectors associated with the BS and the MS, respectively. In
the case of a uniform linear array (ULA), the steering vectors
can be written in terms of the spatial frequency w and

1 ; e qT
aps(0) = aps(w) = Mo {1,(31“,--- L eI(NT 1)w} 7
T
aMS((/)) = aMS(d)) = ! {1 ejw . ej(NRfl)il’}T (3)

where w = 2mdsin(f)/A and ¢ = 2wdsin(¢)/A with d
denoting the inter-element spacing of the array and \ the wave-
length. In this paper, we consider the problem of estimating
the channel path gain «; and its associated spatial frequencies,
i.e., w and v from the K measurements yi, k =1,2,--- | K.

This sparse channel feature can be utilized to formulate
the channel estimation problem as a sparse signal recovery
along with the channel sensing scheme in (1). To see this, we
decompose the channel matrix into an overcomplete virtual
channel model

H=AyH,AL 4)

where Ays = [ams(¥1), -+, ams(¥n, )] is an overcomplete
matrix (i.e, No > N;) with each column representing the
steering vector at a pre-discretized AoA spatial frequency,
Aps = [aps(wy), - - , aps(wny, )] represents the steering ma-
trix at pre-discretized AoD spatial frequencies with Np > N,
and H, is a sparse matrix with Ng non-zero entries corre-
sponding to the channel path gain in (1). The overcomplete
virtual channel representation of (4) further assumes that
the spatial frequencies of the N scatterers fall into the
pre-discretized grids of the AoD (wy,- - ,wn,]) and AoA
(W1, o).

Note that vec(H) = (Ajg ® Af{s) h with h = vec(H,) €
CNoNax1 denoting the sparse vector with N, non-zero entries.
Plugging (4) back to (1) yields

e =P (pr ®ay ) vee(H) +ai'v, k=12 K,

= Vo (pk @ ai’) (Ajs @ Afis) h+ qi'v
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Fig. 1. Channel path power profiles in two scenarios of joint AoD-AoA
angular spread: (a) Scenario 1: two separated path clusters with AoA spreads
larger than AoD spreads; (b) Scenario 2: two intersecting path clusters with
one spreading over the AoD and the other spreading along the AoA. Colors
represent the average power.

where ¥ = A} ® Alls. Grouping all K measurements, we
have

Y1 p! ®qf af'v
Y P ®qf as'v
y = . = \/ﬁ qlh + .
Yrc Pk @ qff apv
— Ah +e. (6)

To recover the sparse vector h, existing solutions such as the
greedy methods (e.g., orthogonal matching pursuit (OMP))
and the ¢;-norm regularized least square solutions (e.g., the
LASSO and BPDN) [8] can be utilized to exploit the sparsity
in h while reducing the number of training signals K.

III. EXPLOITING JOINT AOD-AOA SPREAD AS
TwO-DIMENSIONAL BLOCK-SPARSE RECOVERY

In this paper, in addition to the sparse channel scatter-
ing, we further exploit the joint AoD-AoA spread of the
mmWave channel. Several real-world measurements in dense-
urban propagation environments reveal that mmWave channel
may spread in the form of cluster of paths over the angular
domains including the AoD, AoA and elevation [S]-[7]. The
angular spread may exacerbate as the spatial resolution be-
comes finer when the number of antennas at the BS and MS



increases, which is highly likely when the massive MIMO is
fused with the mmWave transmission. In [6] and [7], spatial
channel models have been statistically proposed from real-
world measurements at 28 and 73 GHz in New York city,
and they provide a realistic assessment of mmWave micro-
and pico-cellular networks in a dense urban deployment.
Specifically, the angular spread (or angular dispersion) of
path clusters has been explicitly studied in terms of the root
mean-squared (rms) beamspread in the different angular (AoA,
AoD, and elevation) dimensions. The measured (rms) angular
spreads at 28 GHz and 73 GHz are listed in Table 1 of [7].
The AoA spreads are 15.5° and 15.4°, respectively, for the
two carrier frequencies, while corresponding AoD spreads are
10.2° and 10.5°, respectively. Fig. 1 shows the path cluster
power profiles of two scenarios generated using the proposed
statistical channel model with fitted large-scale parameters in
[7]. Fig. 1 (a) shows a case of two separated path clusters with
the AoA angular spread relatively larger than the AoD spread,
while Fig. 1 (b) shows a scenario where two path clusters are
intersected with one cluster spreading over the AoD and the
other spreading over the AoA.

To explore the angular spread in H, (and, subsequently,
h), [9] first looked at the one-dimensional AoA spread in
H, for the mmWave channel estimation. To further exploit
the two-dimensional joint AoD-AoA spread, the channel
estimation can be straightforwardly formulated as a two-
dimensional block-sparse signal recovery problem, where the
block-sparsity is now in the joint AoD-AoA domain. Block-
sparse signal recovery has been studied recently in the lit-
erature [10]-[14]; for instance, the group LASSO [10], the
mixed {5 /¢ program [11], and the block OMP [12]. However,
these methods require a priori knowledge of block patterns
including the block size and its location. For the problem
concerned here, such information is usually not available in
advance.

Adaptive block-sparse signal recovery algorithms [13],
[14] with capability of learning the block pattern are more
suitable for the problem here. These algorithms introduce
block/graphical priors to model the statistical dependencies
between atoms. However, these priors usually lead to in-
tractable posterior distribution and computationally intensive
sampling methods have to be used. In [15], we proposed a
simple yet flexible coupled sparse Bayesian framework for
the one-dimensional block-sparse signal recovery. It introduces
statistical dependencies among bases (i.e., atoms) via a hier-
archical Gaussian prior model and allows deriving a closed-
form Bayesian MAP/MMSE estimator for the signal parameter
estimation and an approximated closed-form EM algorithm
for automatically updating the hyperparameters. This has been
recently extended to the two-dimensional block-sparse signal
recovery for the inverse synthetic aperture imaging [16].

IV. PROPOSED CHANNEL ESTIMATION METHOD

In the section, we first formulate the joint AoD-AoA chan-
nel estimation problem with a hierarchical Gaussian signal

model with coupled prior variances, and then derive Bayesian
inference algorithms.

A. Two-Dimensional Coupled Hierarchical Signal Model

1) Hierarchical Gaussian Model: Recall the signal model
in (6) where A € CK*NpNa 1 is the vectorized complex
channel gain matrix

h=[hy, -, hy]T =vec{H,}, H,ecCNNo  (7)

with N = NpNy, and e € CE*! is the noise vector. Then
a standard hierarchical Gaussian prior model is assumed for
the channel gain vector h [17]. First, the entries of h, i.e.,
the complex channel gain h,,, are assumed to be, conditioned
on its variance, independently Gaussian distributed with zero
mean and variance \,,:

Bl ~ CN(0, 0, h). ®)

where «,, = 1/, denotes the precision (i.e., the reciprocal of
the variance) of h,,. It is worthy noting that the prior variance
An, represents the channel gain power associated with the n-
th path. It is also seen from (8) that the channel path gain
h,, becomes zero when its corresponding «;,, goes to infinity
(or the corresponding variance \,, goes to zero). Invoking the
independence across the entries, we have

N
p(hla) = [] plhnlan). ©)
n=1

To allow statistical learning on «,,, the hierarchical Gaussian
prior model further assumes that the prior precisions are also
random variables that follow the i.i.d. Gamma distribution

1
plag|p,v) = ) V“aﬁfle*”a",with ay > 0. (10)

(o9}

where T'(u) = [)7 t# te~'dt is the Gamma function, i is
the shape parameter, and v is the inverse shape parameter.
We might fix these small values to the hyper-hyperparameters:
e.g., . = v = 10~* to make these priors non-informative. It
is easy to show that, with the Gamma distribution on «,, of
(10) and the conditional Gaussian distribution of (8), the prior

distribution of h,, reduces to the Student-t distribution [17]

p(hn> = /p(hn|an)p(an>dan ~ e(“""hi,

/2)(7114»0.5), (1 1)

which inherently promotes a sparse solution on h.

2) Two-Dimensional Coupled Building Block: To exploit
the statistical dependencies across entries, we can introduce a
coupled pattern on the hyperparameters, i.e., prior precisions.
More precisely, the prior of each entry not only involves
its own hyperparameter, but also the hyperparameters of its
immediate neighbors on the 2-D AoD-AoA grids. Specifically,
we have

N

n=1

12)
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Fig. 2. The building block of (a) 2-D coupled pattern and (b) its equivalent
1-D coupled pattern for the clustered sparse mmWave channel estimation. N 4
is the number of discretized grids in the AoA domain.

where N(n) denotes the indices of a defined neighboring grids
to the grid n and

hn|an7 AN(n) ™~ CN(07 (an + /if(aN(n)))_l)

where [ is the coupling coefficient and f(-) is a function
of the prior precisions at the neighboring grids N(n) of the
index n. For instance, for a given grid n, we define its
neighboring grids in the AoD-AoA domain as the four step-
one grids (numbered from 1 to 4) in Fig. 2 (a). Due to the
vectorization, the neighboring index set in the vector h is,
hence, N(n) = {n — Na,n—1,n+1,n+ N}, as shown in
Fig. 2 (b). The coupling coefficient 5 quantitatively describes
the statistical dependence between each entry h,, and its 2-D
neighboring entries hy(,). When 3 = 0, the coupled building
block reduces to the conventional uncoupled model of (8).

The choice of the coupling function f(-) can be flexible.
One choice of f(-) is a simple summation over the neighboring
precisions [15], [16],

(13)

f(aN(n)) = Qp—Ny + QN4 +ap_1 + (077 e (14)

To further capture the smooth decay of the channel power
along the AoD and AoA domains, one may use the following
coupled total variation functions

f(O‘N(n)) =lan-Ns — Wi Na| + |1 — angal, (15)
f(aN(n)) :|an*NA - an‘ + |an - an+NA|
+ |an—1 - an| + ‘an - Oén+1|7 (16)

where |, N, — apn| captures the channel power variation
along the AoD domain, |a,—1 — | along the AoA domain,
and the summation between these two terms imposes the
dependence of the four neighboring grids on the current grid.

B. Coupled Sparse Bayesian Channel Estimation

With the above signal model, we use the SBL framework
in [17] to develop the channel estimation algorithm which is
capable of exploiting the joint AoD-AoA spread. In general,
the SBL framework has two steps. First the inference on the
basis coefficient vector h is derived from the measurements y,
provided that the hyperparameters (the prior precision a,, and

the noise variance o?) are known. Then the inference on the
hyperparameters can be obtained by using the EM algorithm.

1) Bayesian Estimation of h: First, one can compute the
posterior distribution of h as

p(hly, @) o< p(y|h)p(h|e)

where y|h ~ CA(Ah,o?I) according to (6) and p(h|a) is
given by (14). It is easy to infer that the posterior distribution
of h is a complex Gaussian distribution given by

a7

hly,a ~ CN(p, %) (18)
where
p=0""SA"y,
N=(cAYA+A)" (19)

with A is a diagonal matrix with its n-th diagonal entry given
as

[A]nn = oy + ﬁf(aN(n))'

From (18), the Bayesian MAP estimate of h, also the
MMSE estimate here, is given by the posterior mean

(20)

h=p=02ZAly, 1)

provided that the prior precisions « (via A in X)) and the noise
variance o2 are known.

2) An EM Update of Hyperparameters: The second step
is to derive an update rule for the prior precisions'. To
this purpose, we adopt the EM algorithm to estimate the
hyperparameters {c, }2_;, which maximizes the posterior
probability p(a]y) by treating the channel vector h as a
hidden variable and maximizing the expected value of the
complete log-posterior of . Specifically, it has two steps:
the expectation (E) step and the maximization (M) step.

The E-step computes the expected value of the complete
log-posterior of «, also defined as the ()-function, over the
hidden variable h, provided the measurements y and the
current estimate of a(¥) from the previous iteration. From the
above signal model, the )-function is given as

Q(a) = Eyy a» log p(alh)
x / log [p(hla)p(ax)] p(hly, a)dh

With p(h|a) of (14), p(«,,) of (10) and the posterior distri-
bution of (17) and defining 7,, = a, + Bf(ann)) We have

(22)

N
Qe xlogple) + Y [logn, 1, [ plbly,c)ln, an

n=1

N
(a)
X Z [(:U’ - 1) log oy — vau, + log n, — nn(|un|2 + [E]nn)]
n=1
(23)

where (a) is due to the Gamma distribution of « in (10) and
the posterior distribution of h|y, c in (18).
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Fig. 3. Scenario 1 — 2 path clusters and 57 paths: the estimated channel gain
matrix over the two-dimensional AoD-AoA domain with K = 205 training
signals and SNR = 30 dB.
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Next, the M-step is to maximize the above ()-function to
find a new estimate of «, i.e.,

oY = arg max Q(ala®) (24)
(o7

Due to the coupled structure in (23), i.e., log(cn, +58f (anm)))
the maximization of the ()-function cannot be decoupled into
a number of separable optimizations as the traditional SBL
[17]. Even for the simple coupled function of (14), an exact
solution to (24) cannot be found in closed form. As a result,

For better exposure of our derivations, we focus here on the derivation for
updating the prior precisions only. The derivation can be straightforwardly
extended to the case when the noise variance is unknown.
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Fig. 5. Scenario 2 — 2 path clusters and 67 paths: the estimated channel gain
matrix over the two-dimensional AoD-AoA domain with K = 205 training
signals.
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gradient descend methods can be used to search for the optimal
solution?.

V. NUMERICAL RESULTS

We now present simulation results to compare the proposed
channel estimation algorithm with existing algorithms. Partic-
ularly, we consider a) the basis pursuit denoising (BPDN) or
the LASSO with the SPGLI1 solver [8], [19] and (b) the group
LASSO (implemented by using the SPGL1-Group solver) with
given block patterns. We consider a system model consisting of
64 ULA antennas at the BS and 32 ULA antennas at MS. The

2 Alternatively, the coupling among different a’s in each iteration may be
approximately untangled with an iferation decoupling scheme by replacing
those variables involving «, by their estimates from the previous iteration
[18].



mmWave channel is assumed to follow a geometric channel
model with the AoAs and AoDs distributed in [—7/2,7/2].
To illustrate the performance, we run 100 independent Monte-
Carlo simulations for the two scenarios with angular path
power profiles given in Fig 2. For each Monte-Carlo run,
the two-dimensional channel gain matrix H, (and hence the
corresponding channel vector h) is generated as a complex
sub-Gaussian matrix with zero mean and variance given by
the angular path power specified in Fig. 1. The signal-to-noise
ratio (SNR) is defined as SNR = ||Ah||3/(Kc?) where o2 is
the variance of the noise vector e.

First, we consider the scenario in Fig 2 (a), referred to as
Scenario 1 here, with two separated path clusters spreading
in the AoA domain. Fig. 3 shows the estimated channel gain
matrix by averaging the result from 100 Monte-Carlo runs with
K = 205 training signals and SNR = 30 dB. In this case, the
number of significant paths is 57. It is clear to see that the
proposed method is able to preserve the two-dimensional path
clusters better than the existing channel estimation methods as
the proposed channel estimation method favors the clustered
solution. Then we vary the number of training signals /K and
the normalized MSE is shown as a function of K in Fig. 4.

Next, we consider the scenario in Fig 2 (b) referred to
as Scenario 2 here. Fig. 5 shows the estimated channel gain
matrix over the two-dimensional AoD-AoA domain from 100
Monte-Carlo runs when K = 205. The number of significant
paths is 67 in this case. Again, it is seen that the proposed
method gives the more clustered channel gain matrix than the
other considered methods. Fig. 6 shows the performance in
terms of the MSE as a function of K. Compared with the
result in Fig. 4 for Scenario 1, Fig. 6 shows slightly higher
MSE with the same number of training signals due to the
slightly higher number of significant paths.

VI. CONCLUSION

In this paper, we have proposed a sparse channel estimation
for mmWave communication systems and exploits the joint
angular spread of the mmWave channel matrix over the two-
dimensional AoD-AoA domain. By formulating the sparse
channel estimation as a block-sparse recovery problem with
an underlying two-dimensional coupled structure, we proposed
the coupled sparse Bayesian learning which, building on a
hierarchical Gaussian prior model, uses the Bayesian inference
for the channel matrix estimation and makes use of the
EM algorithm to update the hyperparameters associated with
the hierarchical signal model. Compared with existing sparse
mmWave channel estimation methods, the proposed method
can further reduce the training overhead and improve the
channel estimation error.
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