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Abstract
Multi-modal sensing is increasingly becoming important in a number of applications, pro-
viding new capabilities and new processing challenges. In this paper we explore the benefit
of combining of a low-resolution depth sensor with a high-resolution optical video sensor, in
order to provide a highresolution depth map of the scene. We propose a new formulation
that is able to incorporate temporal information and exploit the motion of objects in the
video to significantly improve the results over existing methods. In particular, our approach
exploits the space-time redundancy in the depth and intensity using motionadaptive low-rank
regularization. We provide experiments to validate our approach and confirm that the quality
of the estimated high-resolution depth is improved substantially. Our approach can be a first
component in systems using vision techniques that rely on high resolution depth information.
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Motion-Adaptive Depth Superresolution

Ulugbek S. Kamilov, Member, IEEE and Petros T. Boufounos, Senior Member, IEEE

Abstract—Multi-modal sensing is increasingly becoming im-
portant in a number of applications, providing new capabilities
and new processing challenges. In this paper we explore the
benefit of combining of a low-resolution depth sensor with a
high-resolution optical video sensor, in order to provide a high-
resolution depth map of the scene. We propose a new formulation
that is able to incorporate temporal information and exploit the
motion of objects in the video to significantly improve the results
over existing methods. In particular, our approach exploits the
space-time redundancy in the depth and intensity using motion-
adaptive low-rank regularization. We provide experiments to
validate our approach and confirm that the quality of the
estimated high-resolution depth is improved substantially. Our
approach can be a first component in systems using vision
techniques that rely on high resolution depth information.

I. INTRODUCTION

One of the important challenges in computer vision appli-
cations is obtaining high resolution depth maps of observed
scenes. A number of common tasks, such as object reconstruc-
tion, robotic navigation, and automotive driver assistance can
be significantly improved by complementing intensity infor-
mation from optical cameras with high resolution depth maps.
However, with current sensor technology, direct acquisition of
high-resolution depth maps is very expensive.

The cost and limited availability of such sensors imposes
significant constraints on the capabilities of vision systems
and has dampened the adoption of methods that rely on high-
resolution depth maps. Thus, the literature has flourished with
methods that provide numerical alternatives to boost the spatial
resolution of the measured depth data.

One of the most popular and widely investigated class of
techniques for improving the spatial resolution of depth is
guided depth superresolution. These techniques jointly acquire
the scene using a low-resolution depth sensor and a high-
resolution optical camera. The information acquired from the
camera is subsequently used to superresolve the low-resolution
depth map. These techniques exploit the property that both
modalities share common features, such as edges and joint
texture changes. Thus, such features in the optical camera data
provide information and guidance that significantly enhances
the superresolved depth map.

To-date, most of these methods operate on a single snapshot
of the optical image and the low-resolution depth map. How-
ever, most practical uses of such systems acquire a video from
the optical camera and a sequence of snapshots of the depth
map. The key insight in our paper is that information about one
particular frame is replicated, in some form, in nearby frames.
Thus, frames across time can be exploited to superresolve
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Fig. 1. Our motion adaptive method recovers a high-resolution depth
sequence from high-resolution intensity and low-resolution depth sequences
by imposing rank constraints on the depth patches: (a) and (b) t-y slices of
the color and depth sequences, respectively, at a fixed x; (c)—(e) z-y slices
at t1 = 10; (f)—(h) z-y slices at to9 = 40; (c¢) and (f) input color images; (d)
and (g) input low-resolution and noisy depth images; (e) and (h) estimated
depth images.

the depth map and significantly improve such methods. The
challenge is finding this information in the presence of scene,
camera, and object motion between frames. Figure 1 provides
an example, illustrating the similarity of images and depth
maps across frames.

A key challenge in incorporating time into depth estimation
is that depth images change significantly between frames. This
results in abrupt variations in pixel values along the temporal
dimension and may lead to significant degradation in the
quality of the result. Thus, it is important to compensate for
motion during estimation. To that end, the method we propose
exploits space-time similarities in the data using motion adap-
tive regularization. Specifically, we identify and group similar
depth patches, which we superresolve and regularize using a
rank penalty.

A. Contributions

Our method builds upon prior work on patch-based methods
and low-rank regularization, which were successfully applied
to a variety of practical estimation problems. It further exploits
the availability of optical images which provide a very robust
guide to identify and group similar patches, even if the
depth map has very low resolution. Thus, the output of our
iterative algorithms is robust to operating conditions. Our key
contributions are summarized as follows:



e We provide a new formulation for guided depth super-
resolution, incorporating temporal information. In this
formulation, the high resolution depth is determined by
solving an inverse problem that minimizes a cost. This
cost includes a quadratic data-fidelity term, as well as
a new motion adaptive regularizer based on a low-rank
penalty on groups of similar patches.

o We develop two optimization strategies for solving our
estimation problem. The first approach is based on exact
optimization of the cost via alternating direction method
of multipliers (ADMM). The second approach uses a
simplified algorithm that alternates between enforcing
data-consistency and low-rank penalty.

o We validate our approach experimentally and demonstrate
it delivers substantial improvements. In particular, we
compare several algorithmic solutions to the problem and
demonstrate that: (a) availability of temporal information
significantly improves the quality of estimated depth; (b)
motion adaptive regularization is crucial for avoiding arti-
facts along temporal dimension; (c) using intensity during
block matching is essential for optimal performance.

B. Outline

The next section provides a summary of related work in
the literature. Section III describes the problem formulation
and our regularization approach. Two different algorithmic
strategies for computing the solution are described in Sec. IV.
Extended experimental results validating our approach are
presented in Sec. V. Finally, Sec. VI discusses our findings
and concludes.

II. RELATED WORK

In the last decade, guided depth superresolution has received
significant attention. Early work by Diebel and Thrun [1]
showed the potential of the approach by modeling the co-
occurence of edges in depth and intensity with Markov Ran-
dom Fields (MRF). Kopf et al. [2] and Yang et al. [3] have
independently proposed an alternative approach based on joint
bilaterial filtering, where intensity is used to set the weights of
the filter. The bilaterial filtering approach was further refined
by Chan et al. [4] who incorporated the local statistics of
the depth and by Liu et al. [5] who used geodesic distances
for determining the weights. Dolson ef al. [6] extended the
approach to dynamic sequences to compensate for different
data rates in the depth and intensity sensors. He et al. [7],
[8] proposed a guided image filtering approach, improving
edge preservation. More recently, Lu and Forsyth [9] used
sparse depth measurements to segment the intensity image,
and then used a smoothing filter to reconstruct the depth within
each segment. Their work also exploited samples from nearby
temporal frames in videos.

More recently, sparsity-promoting regularization—an es-
sential component of compressive sensing [10], [11]—has
provided more dramatic improvements in the quality of depth
superresolution. For example, Li et al. [12] demonstrated
improvements by combining dictionary learning and sparse
coding algorithms. Ferstl et al. [13] relied on weighted total
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generalized variation (TGV) regularization for imposing a
piecewise polynomial structure on depth. Gong et al. [14]
combined the conventional MRF approach with an additional
term promoting transform domain sparsity of the depth in an
analysis form. In their recent work, Huang et al. [15] use
the MRF model to jointly segment the objects and recover a
higher quality depth. Schuon et al. [16] performed depth su-
perresolution by taking several snapshots of a static scene from
slightly displaced viewpoints and merging the measurements
using sparsity of the weighted gradient of the depth.

Many natural images contain repetitions of similar patterns
and textures. Current state-the-art image denoising methods
such as nonlocal means (NLM) [17] and block matching and
3D filtering (BM3D) [18] take advantage of this redundancy
by processing the image as a structured collection of patches.
The original formulation of NLM was extended by Yang and
Jacob [19] to more general inverse problems via introduction
of specific NLM regularizers. Similarly, Danielyan et al. [20]
have proposed a variational approach for general BM3D-based
image reconstruction that inspired the current work. In the
context of guided depth superresolution, NLM was used by
Huhle et al. [21] and Park et al. [22] for reducing the amount
of noise in the estimated depth. Lu er al. [23] combined
a block-matching procedure with low-rank constraints for
enhancing the resolution of a single depth image.

Our paper extends prior work on depth supperresolution by
introducing a new variational formulation that imposes low-
rank constraints in the regularization. Furthermore, our formu-
lation is motion-adaptive, resulting in substantial improvement
of the quality of the estimated depth. This paper extends [24]
to include more details on the formulation and algorithms, as
well as more extensive experimental results.

III. MOTION-ADAPTIVE REGULARIZATION

Our approach estimates the high-resolution depth map
by minimizing a cost function that—as typical in such
problems—combines a data-fidelity term and a regularizer.
Specifically, we impose a quadratic data fidelity term that
controls the error between the measured and estimated depth
values. The regularizer groups similar depth patches from mul-
tiple frames and penalizes the rank of the resulting structure.
Our method implicitly adapts to motion by using patches at
different positions in multiple frames. Thus, by effectively
combining multiple views of the scene, it yields improved
depth estimates.

A. Formulation

The depth sensing system collects a set of measurements
denoted {%;}ic1...7)- Each measurement is considered as
a downsampled version of a higher resolution depth map
¢; € RY using a subsampling operator H;. Our end goal
is to recover this high-resolution depth map ¢, for all ¢.

In the remainder of this work, we use N to denote the
number of pixels in each frame, 7" to denote the number of
temporal frames, and M to denote the total number of depth
measurements. Furthermore, ¢ € RM denotes the vector of
all the measurements, ¢ € R™7 the complete sequence of
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Fig. 3. Illustration of the way a rank penalty can improve the resolution and quality of the measured depth data. Left: A reference patch is selected from
the region of interest of a dynamic sequence. Right: Collection of patches consisting of the reference patch as well as its similar patches in a 3D space-time
neighborhood. The bottom row shows principal components extracted from the group of similar depth patches in the middle row. Note how most of the signal
is in the first few components, which suggests that the rank penalty can effectively preserve important signal features while discarding most of the noise.

search area|

reference
patch

Fig. 2. Illustration of the block matching within a space-time search area.
The area in the current frame ¢ is centered at the reference patch. Search is
also conducted in the same window position in multiple temporally adjacent
frames. Similar patches are grouped together to construct a block 3, = Bp¢.
Since patches from multiple frames are used, the final regularizer is implicitly
motion adaptive.

high-resolution depth maps, and H € RM*NT the complete
subsampling operator. We also have available the sequence
of high-resolution intensity images from the optical camera,
denoted x € RN7'.

Using the above, a forward model for the depth recovery
problem is given by

p=Ho +e, (1)

where e € RM denotes the measurement noise. Thus, our
objective becomes to recover high-resolution depth given the
measured data v and x, and the sampling operator H.

As typical in such problems, we formulate the depth esti-
mation task as an optimization problem

P
¢ = argmin %H'z,b —Ho[7, + ZR(BP¢) , @
PERNT =1
where £||9p—Ha||7, enforces data fidelity and 25:1 R(B,¢)
is a regularization term that imposes prior knowledge about the
depth map.

We form the regularization term by constructing sets of
patches from the image. Specifically, we first define an op-
erator B, for each set of patches p € [1,..., P|, where P is
the number of such sets constructed. The operator extracts L
patches of size B pixels from the depth image frames in ¢.
As illustrated in Fig. 2, each block 8, = B,¢ € RE*L is
obtained by first selecting a reference patch and then finding
L — 1 similar patches within the current frame as well as the
adjacent temporal frames. Our method is motion adaptive since

matching patches at different locations from multiple temporal
frames are used. Thus our method automatically takes into
account the motion of a patch, and its corresponding content,
through the camera frames.

To determine similarity and to group similar patches to-
gether we use the intensity image as a guide. To reduce
the computational complexity of the search, we restrict it
to a space-time window of fixed size around the reference
patch. We perform the same block matching procedure for the
whole space-time image by moving the reference patch and
by considering overlapping patches in each frame. Thus, each
pixel in the signal ¢ may contribute to multiple blocks.

The adjoint Bg of B, simply corresponds to placing the
patches in the block back to their original locations in ¢. It
satisfies the following property

P
Z B'B, =R, (3)
p=1

where R = diag(ry,...,ry) € RVTXNT and r,, denotes the

total number of references to the nth pixel by the matrices
{B,}p=1,...,p. Therefore, the depth image ¢ can be expressed
in terms of an overcomplete representation using the blocks

P
¢=R"') B]B,¢. 4)

p=1

B. Rank regularization

Dynamic image sequences consist of continuously vary-
ing objects with many similar features in adjacent temporal
frames. This is illustrated in Fig. 3, where a reference patch
is selected from the region of interest of a dynamic data-
set containing both intensity and depth sequences. The top
row shows a collection of patches within a 3D space-time
neighborhood that are similar to the reference patch. As men-
tioned before, similar patches are found via block-matching,
which is similar to block-matching algorithms used in motion
estimation. The self-similarity within blocks can be effectively
exploited to remove noise or subsampling artifacts in the depth
data. For example, the bottom row in Fig. 3 shows principal
components extracted from the group of similar depth patches.
Note that most of the signal features are included in the first
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Fig. 4. Tllustration of the v-shrinkage operator 7,  for a fixed A = 1 at two
values of v. For v = 1 the shrinkage is equivalent to soft-thresholding, while
for v — 0O it approaches hard-thresholding

few components, with other components containing noise. This
suggests that a rank penalty applied on the block of similar
patches can be used to capture the geometric information in
the depth data.

Each block, represented as a matrix, contains multiple
similar patches, i.e., similar columns. Thus, we expect the
matrix to have a low rank, making rank a natural regularizer
for the problem

R(B) = rank(B).

By seeking a low-rank solution to (2), we exploit the
similarity of blocks to guide superresolution while enforcing
consistency with the observed data. However, the rank regular-
izer (5) is of little practical interest since its direct optimization
is intractable. The most popular approach around this, first
proposed by Fazel in [25], is to convexify the rank by replacing
it with the nuclear norm:

(B € RPXE) Q)

min(B,L)

R(B) =Bl 2 1) ow(B), (6)
k=1

where oy, (3) denotes the kth largest singular value of 3 and
A > 0 is a parameter controlling the amount of regularization.

In addition to its convexity, the nuclear norm is an appealing
penalty to optimize because it also has a closed form proximal
operator:

A .1
procsy 1. (9) 2 argmin { 110 Bl + Al }
BER

=un(o() v’ ™

where 19 = uov’ is the singular value decomposition (SVD)
of ¥ and 7, is the soft-thresholding function applied to the
diagonal matrix o.

Recent work has shown that nonconvex regularizers con-
sistently outperform nuclear norm by providing stronger de-
noising capability without losing important signal compoe-
nents [26]-[28]. In this paper, we use the nonconvex general-
ization to the nuclear norm proposed by Chartrand [26]

min(B,L)

R(B) =200u(B) 2 A gau(ok(B),  ®
k=1
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Here, the scalar function gy, is designed to satisfy

(1
min {QIw —y?+ /\gx,u(x)} = ha(2), )

where h) , is the v-Huber function

||

i 1/(2-v)
I () 2 { ) if |z] < A

b i > ave, 1Y

with § £ (1/v — 1/2)A¥/(2=¥), Although gy, is nonconvex
and has no closed form formula, its proximal operator does
admit a closed form expression

proxsg, ,(8) £ angmin {511~ Bl + 261,.(6)

,BE]RBXL
=uTs (o) v, an
where 7, is a poitwise v-shrinkage operator defined as
Taw(@) £ max(0,]al ~ Mol (12)

]

For v = 1, v-shrinkage (12) is equivalent to conventional
soft thresholding (See illustration in Fig. 4). When v — 0,
it approaches hard thresholding, which is similar to principal
component analysis (PCA) in the sense that it retains the
significant few principal components.

Thus, the regularizer (8) is a computationally tractable
alternative to the rank penalty. While the regularizer is not
convex, it can still be efficiently optimized due to closed form
of its proximal operator (11). Note that due to nonconvexity
of our regularizer for n < 1, it is difficult to theoretically
guarantee global convergence. However, we have empirically
observed that our algorithms converge reliably over a broad
spectrum of examples presented in Section V.

IV. ALGORITHMS

We consider two approaches to solve the problem and
recover the signal. The first exactly optimizes (2) using the
alternating direction method of multipliers (ADMM). The
second approach uses a simplified algorithm that alternates be-
tween enforcing data-consistency and low-rank penalty. While
an approximation of (2), it often performs better because it
provides robustness to the choice of A in (6). At the end of this
section, we also provide a brief discussion on the complexity
of the algorithms.

A. Iterative optimization

To solve the optimization problem (2) under the rank regu-
larizer (8), we first simplify notation by defining an operator
B £ (By,...,Bp) and a vector 3 £ Bo = (B1,...,08p).

The minimization is performed using an augmented-
Lagrangian (AL) method [29]. Specifically, we seek the critical
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points of the following AL

sl -
L(¢.B,9) = 5llv—HBIE, +>_R(B,)  (132)
p=1
+ 28— Boll7, + s™(8 - Bg)
1 P
= 5l% ~HelZ, + > R(5,) (13b)
p=1

P 2 1 2
+ 5”13 -Bo+s/plly, — 2*/)”3”@2,

where p > 0 is the quadratic parameter and s is the dual
variable that imposes the constraint 3 = B¢. Traditionally,
an AL scheme solves (2) by alternating between a joint
minimization step and an update step as

(¢".8") «  argmin  {L(¢.B,s")}  (l4a)
¢€RNT“[3€]RP><BXL
st "1 4 p(BF — Boh). (14b)

However, the joint minimization step (14a) is typically compu-
tationally intensive. To reduce complexity, we separate (14a)
into a succession of simpler steps using the well-established by
now alternating direction method of multipliers (ADMM) [30].
The steps are as follows

¢F « argmin {E(q{),ﬂk—l,sk—l)} (15a)
¢€RNT

B* « argmin {£(¢k,,87sk_1)} (15b)
BERPXBXL

s* — "1 4 p(BF — Boh). (15¢)

By ignoring the terms that do not depend on ¢, (15a) amounts
to solving a quadratic problem

.1 _
¢ e argmin { 110~ HoIE, + 51Bo — 22, |
PERNT

— (H"H + pB"B) "' (Hy + pBTz" 1), (16)

where z"~' £ k-1 4 sk=1/p Solving this quadratic

equation is efficient since the inversion is performed on a
diagonal matrix. Similarly, (15b) is solved by

p
B* « argmin {g”,@ - yk>||§2 + ZR(,@p)} , A7

BERPXBXL p:l

with y* £ B@* —s*~1 /p. This step can be solved via block-
wise application of the proximal operator (11) as

By Proxy g, (Bpd" — 557" /p), (18)

forall p € [1,...,P].

B. Simplified algorithm

The algorithm in Section IV-A can be significantly sim-
plified by decoupling the enforcement of the data-fidelity
from the enforcement of the rank-based regularization. The
simplified algorithm reduces computational complexity while
making estimation more uniform across the whole space-time
depth image.

In particular, Danielyan [31] has argued that, due to in-
homogeneous distribution of pixel references generated by
matching across the image, using a penalty with a single
regularization parameter highly penalizes pixels with a large
number of references. The resulting nonuniform regularization
makes the algorithm potentially oversensitive to the choice of
the parameter \. Instead, we rely on the simplified algorithm

. 1
gt argmin {318, - By IR+ R(8,) | 19w

,Bp ERB XL

(1 P, o
¢ argmin {1 - HIR, + Do - 612 | a9
HERNT

where ¢¥ £ R-'BT3*, and X\ > 0 is the regularization and
p > 0 is the quadratic parameters.
To solve (19a) we apply the proximal operator

,6'5 < prox,g, , (Bp¢k_1), (20)

for all p € [1,..., P]. Next, (19b) reduces to a linear step

¢* — (H'H + pI) " (H ¢ + pg"). @1)
There are substantial similarities between algorithms (15)
and (19). The main differences are that we eliminated the dual
variable s and simplified the quadratic subproblem (16).

C. Computational Complexity

To conclude this section, we described two methods for
improving the resolution of depth data in a motion adaptive
fashion. While our approach has nontrivial complexity, it is
easily manageable.

Specifically, the main sub-units of our algorithm are block-
matching and iterative optimization. Among the two, block-
matching is the costlier, involving pairwise comparisons of
patch differences within a search window. It is performed
only once per frame and requires O(PW B) floating point
operations, where P is the total number of patches in the
frame, W is the number of patches in the search window,
and B is the size of the patch. The cost is similar to stereo
matching, with the caveat that some algorithms might use
heuristics to limit the search scope, i.e., W.

The main cost of each iteration is an SVD computed on
each block generated for each patch, with cost O(B2L + L3),
where L is the number of patches included in each block.
The total iteration cost is P times that, and the method needs
approximately 10-20 iterations to converge.

Furthermore, both block-matching and iterative optimization
operate independently on each block. They can thus be easily
parallelized, which is something our implementation does not
exploit. Of course, GPUs can further speed up computation
and exploit parallelism, for example, by performing real-time
block-matching [32]. Also, note that there is no need to store
matrices H and B explicitly in the memory, since they are
implemented as a subsampling and an extraction operators,
respectively.
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Flower Lawn Road
2X 3% 4x 5X 2% 3x 4x 5X 2% 3% 4x 5X
Linear 25.62 22.81 21.07 20.15 28.32 25.89 24.32 23.05 25.44 22.78 21.16 20.18
Guided filter | 23.72 22.57 21.32 20.52 27.15 25.81 24.58 23.45 24.19 22.76 21.43 20.62
TV-2D 26.52 23.17 21.30 20.32 29.97 26.56 24.70 23.31 26.30 23.21 21.44 20.38
WTGV-2D 26.73 23.54 21.68 20.66 30.16 26.87 24.94 23.66 26.44 23.20 21.38 20.57
WTV-3D 26.84 23.56 21.69 20.72 30.45 27.00 25.09 23.68 26.54 23.49 21.69 20.73
GDS-2D 27.76 23.91 21.78 20.58 31.27 27.58 25.36 23.88 27.39 23.89 21.87 20.70
DS-3D 28.00 23.82 21.79 20.64 31.37 27.34 25.23 23.69 27.30 23.92 21.75 20.56
ADMM-3D 29.76 25.07 22.58 21.26 33.06 28.62 26.07 24.39 28.58 25.18 22.74 21.39
GDS-3D 30.04 25.34 22.79 21.42 | 32.54 28.51 26.02 24.36 29.10 25.52 22.96 21.66
TABLE I

QUANTITATIVE COMPARISON ON THREE VIDEO SEQUENCES WITH ADDED NOISE OF 30 DB. THE QUALITY OF FINAL DEPTH IS EVALUATED IN TERMS OF
SNR FOR FOUR DIFFERENT DOWNSIZING FACTORS OF 2, 3, 4, AND 5. THE BEST RESULT FOR EACH SCENARIO IS HIGHLIGHTED.

Ground truth

Intensity

Input depth

Linear: 22.78 dB DS-3D: 23.92 dB GDS-3D: 25.52 dB

BB

Fig. 7. Visual evaluation on Road video sequence. Estimation of depth from its 3x downsized version at 30 dB input SNR. Row 1 shows the data at time
instance t = 9. Row 2 shows the data at the time instance ¢ = 47. Row 3 shows the t-y profile of the data at = 64. Highlights indicate some of the areas
where depth estimated by GDS-3D recovers details missing in the depth estimate of DS-3D that does not use intensity information.

V. EXPERIMENS

To verify our development, we report results on extensive
simulations using our guided depth superresolution algorithms.
In particular, we compare results of both the ADMM approach
(denoted ADMM-3D) and its simplified variant (denoted GDS-
3D) against six alternative methods.

As the first and the simplest reference method, we con-
sider standard linear interpolation (Linear). Another baseline
method is the guided image filtering approach (Guided filter)

weighting is computed using the guiding intensity image, thus
promoting edge co-occurrence in both modalities.

Finally, we consider a weighted-TV formulation which
includes time, i.e., multiple frames (WTV-3D), with weights
computed using the guiding intensity image, as before. Specif-
ically, the depth image is computed by solving an optimization
problem

~

1
¢ = argmin {§||d; —Ho|7, + Rrv((i))} ) (22)
¢€RNT

by He et al. [8]. Additionally, we consider methods relying where

in some form of total variation (TV) regularization, one of NT

the most widely used regularizers in the context of image R A WD bl + 1w, Dbl + w,: Dyl
reconstruction due to its ability to reduce noise while pre- w(¢) ;( il Do il Dyl il Deli) -

serving image edges [33]. Specifically, we consider depth
interpolation using TV-regularized least squares on a frame-
by-frame basis (7V-2D) [34]. We also consider the weighted-
TV formulation proposed by Ferstl et al. [13] (WTGV-2D),
also operating on a frame-by-frame basis. This formulation
uses a weighted anisotropic total generalized variation, where

(23)
Here, the linear operators D,,D,, and D; are the for-
ward finite-difference operators along the horizontal, ver-
tical, and temporal directions, respectively. The weights
Wz, Wy, and w; are specified using the camera image,
wg; = Aexp(—v|[Dax];|) with d € {z,y,t}, thus promoting
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Intensity Ground truth Input depth

Linear: 22.81 dB DS-3D: 23.82dB GDS-3D: 25.34 dB

Fig. 8. Visual evaluation on Flower video sequence. Estimation of depth from its 3 downsized version at 30 dB input SNR. Row 1 shows the data at time
instance ¢t = 10. Row 2 shows the data at the time instance t = 40. Row 3 shows the ¢-y profile of the data at = = 64. Highlights indicate some of the areas
where depth estimated by GDS-3D recovers details missing in the depth estimate of DS-3D that does not use intensity information.

Intensity Input depth

-
y - -

WTV-3D: 19.01 dB GDS-3D: 19.29 dB

Fig. 9. Visual evaluation on KITTI dataset. Estimation of depth images of size 192 x 512 with 64 time frames from 247794 lidar measurements, which
corresponds to a measurement rate of just 3.94%. Row 1 shows the data at time instance ¢ = 20. Row 2 shows the data at the time instance ¢ = 53. Row 3
shows the t-y profile of the data at x = 96. Highlights indicate some of the areas where depth estimated by GDS-3D recovers details missing in the WTV-3D

estimate.

edge alignment between the camera image and the depth-map,
as controlled by the regularization parameters A,y > 0. The
history of space-time application of TV goes all the way to
the seminal works for optical-flow estimation in video [35],
[36], with more recent applications in video deconvolution,
denoising, and disparity refinement [37], [38]. The minimiza-
tion (22) is solved with the fast iterative shrinkage/thresholding
algorithm (FISTA), which is particularly well-suited for such
large-scale optimization problems [39], [40].

We also compare these methods to two variations of our
algorithm. To illustrate the potential gains of our method due
to temporal information, we run our simplified algorithm on
a frame-by-frame basis (GDS-2D), i.e., using no temporal
information. Similarly, to illustrate the gains due to inten-
sity information, we also run the simplified algorithm by

performing block matching on the low-resolution depth as
opposed to intensity (DS-3D). This last approach conceptually
corresponds to denoising the initial depth using our motion
adaptive low-rank prior.

To improve convergence speed, we initialized all the itera-
tive algorithms with the solution of linear interpolation. The
parameters of the Guided filter, TV-2D, WTGV-2D, and WTV-
3D were optimized for the best signal-to-noise ratio (SNR)
performance. Similarly, the regularization parameters A for
GDS-2D, DS-3D, ADMM-3D, and GDS-3D were optimized
for the best SNR performance. However, in order to reduce the
computational time, the selection was done from a restricted
set of three predetermined parameters. The methods TV-2D,
WTV-3D, GDS-2D, DS-3D, ADMM-3D, and GDS-3D were
all run for a maximum of ¢, = 100 iterations with an
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Fig. 5. Quantitative evaluation on Road video sequence. Estimation of depth
from its 3x downsized version at 30 dB input SNR. We plot the reconstruction
SNR against the video frame number. The plot illustrates potential gains that
can be obtained by fusing intensity and depth information in a motion-adaptive
way.
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Fig. 6. Quantitative evaluation on Flower video sequence. Estimation of depth
from its 3 X downsized version at 30 dB input SNR. We plot the reconstruction
SNR against the video frame number. The plot illustrates potential gains that
can be obtained by fusing intensity and depth information in a motion-adaptive
way.

additional stopping criterion based on measuring the relative
change of the solution in two successive iterations

6 = 6"y _
=@ Nz 5 24
P @9

where § = 1074 is the desired tolerance level. We selected the
neighborhood size parameter of Guided filter to 5 x 5, which is
the default value provided in the implementation by MATLAB.
Similarly, other parameter of WTGV-2D were selected as
suggested in the code provided by the authors; in particular,
we run the algorithm for a maximum of 1000 iterations with
the stopping tolerance of 0.1. In all experiments, the patch
size was set to b X 5 pixels, the space-time window size to
11 x 11 x 3 pixels, and the number of similar patches was
fixed to 10. Parameters v and p were hand selected to 0.02
and 1, respectively.

For quantitative comparison of the algorithms, we rely on
the data-set by Zhang et al. [41], which consists of three
video sequences Flower, Lawn, and Road, containing both
intensity and depth information on the scenes. We considered
images of size 128 x 128 with 50 time frames. The ground
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truth depth was downsized by factors of 2, 3, 4, and 5, and
was corrupted by additive Gaussian noise corresponding to
SNR of 30 dB. Table I reports the SNR of superresolved
depth for all the algorithms and downsizing factors. Figures 5
and 6 illustrate the evolution of SNR against the frame number
for Road and Flower, respectively, at downsizing factor of
3. The effectiveness of the proposed approach can also be
appreciated visually in Figs. 7 and 8. For these experiments,
our unoptimized MATLAB code required about 8 seconds per
frame for block matching, and about 5 seconds per frame
per iteration for reconstruction. As mentioned in Section IV-C
these times can be substantially reduced by code optimization
and by exploiting the inherent parallelism of the algorithm.

For additional validation, we test the algorithm on the
KITTI dataset [42]. The dataset contains intensity images
from PointGray Flea2 cameras and 3D point clouds from
a Velodyne HDL-64E, which have been calibrated a priori
using specific known targets. We consider a region of interest
of 192 x 512 pixels with 64 time frames. The 495588 total
lidar measurements are randomly and uniformly split into a
reconstruction and a validation sets. Note that this implies a
depth measurement rate of just 3.94%. We then estimate depth
from the reconstruction set using WTV-3D, as well as GDS-
3D, and use the validation set to evaluate the quality of the
results; these are illustrated in Fig. 9. Here, our MATLAB code
required about 50 seconds per frame for block matching, and
about 28 seconds per frame per iteration for reconstruction.

The examples and simulations in this section, validate our
claim: the quality of estimated depth can be considerably
boosted by properly incorporating temporal information into
the reconstruction procedure. Comparison of GDS-2D against
GDS-3D highlights the importance of additional temporal
information. The approach we propose is implicitly motion
adaptive and can thus preserve temporal edges substantially
better than alternative approaches such as WTV-3D. Moreover,
comparison between DS-3D and GDS-3D highlights that the
usage of intensity significantly improves the performance of
the algorithm. Note also the slight improvement in SNR of
GDS-3D over ADMM-3D. This is consistent with the argu-
ments in [31] that suggest to decouple data-fidelity from the
enforcement of prior constraints when using block-matching-
based methods.

VI. CONCLUSION

We presented a novel motion-adaptive approach for guided
superresolution of depth maps. Our method identifies and
groups similar patches from several frames, which are then
supperresolved using a rank regularizer. Using this approach,
we can produce high-resolution depth sequences from sig-
nificantly down-sized low-resolution ones. Compared to the
standard techniques, the proposed method preserves temporal
edges in the solution and effectively mitigates noise in practi-
cal configurations.

While our formulation has higher computational complexity
than standard approaches that process each frame individ-
ually, it allows us to incorporate a very effective regular-
ization for stabilizing the inverse problem associated with
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superresolution. The algorithms we describe enable efficient
computation and straightforward implementation by reducing
the problem to a succession of straightforward operations.
Our experimental results demonstrate the considerable benefits
of incorporating time and motion adaptivity into inverse-
problems for depth estimation.
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