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Abstract
Automatic detection and classification of defects in infrastructure surface images can largely
boost its maintenance efficiency. Given enough labeled images, various supervised learning
methods have been investigated for this task, including decision trees and support vector
machines in previous studies, and deep neural networks more recently. However, in real world
applications, labels are harder to obtain than images, due to the limited labeling resources
(i.e., experts). Thus we propose a deep active learning system to maximize the performance.
A deep residual network is firstly designed for defect detection and classification in an image.
Following our active learning strategy, this network is trained as soon as an initial batch of
labeled images becomes available. It is then used to select a most informative subset of new
images and query labels from experts to retrain the network. Experiments demonstrate more
efficient performance improvements of our method than baselines, achieving 87.5% detection
accuracy.
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ABSTRACT 
Automatic detection and classification of defects in infrastructure surface images can largely boost 
its maintenance efficiency. Given enough labeled images, various supervised learning methods 
have been investigated for this task, including decision trees and support vector machines in 
previous studies, and deep neural networks more recently. However, in real world applications, 
labels are harder to obtain than images, due to the limited labeling resources (i.e., experts). Thus 
we propose a deep active learning system to maximize the performance. A deep residual network 
is firstly designed for defect detection and classification in an image. Following our active learning 
strategy, this network is trained as soon as an initial batch of labeled images becomes available. It 
is then used to select a most informative subset of new images and query labels from experts to 
retrain the network. Experiments demonstrate more efficient performance improvements of our 
method than baselines, achieving 87.5% detection accuracy. 
 
INTRODUCTION 
 
The ageing civil infrastructure (e.g., tunnels and bridges) is a common problem in many developed 
countries such as the United States and Japan. According to (ASCE 2013), one ninth of the 607,380 
bridges in the U.S. are structurally deficient and requires a $20.5 billion annual investment for 
fixing the problems by 2028. While in developing countries like China and India, more civil 
infrastructure is being built. To efficiently monitor and maintain such a large amount of existing 
civil infrastructure is critical yet challenging for both safety and economic reasons. As an important 
part of their maintenance, automatic detection and classification of various types of defects (cracks, 
deposit, etc.) in images of such infrastructure surfaces can potentially relieve the workload of 
manual onsite inspection and largely boost the maintenance efficiency. 
 
Previous studies have investigated various supervised learning methods including decision trees 
and support vector machines (SVM) to approach this task (Koch et al. 2015). These methods 
usually use some fixed rules to select a subset of regions in the image, and then use handcrafted 
features to describe those selected regions as a feature vector before sending them to classifiers for 
supervised training or testing. This process is the so-called feature engineering in machine learning 
and data mining. In these methods, how to design an effective algorithm for such candidate region 
selection and description is the most critical part that can easily influence a system’s detection 
performance. Meanwhile, many of these studies focus on crack detection only, which means that 
for other defects like deposits, new efforts need to be invested to re-design the most suitable region 
selection and description algorithms. Moreover, the same process of investigating the best type of 
classifiers and corresponding hyper-parameters needs to be repeated.  
 



It is then natural to think: is there a unified method that embeds the feature engineering procedure 
inside a learning pipeline? Recent developments of deep learning (DL) in the computer vision and 
artificial intelligence communities are found to be able to address this question efficiently. By 
feeding raw data into a neural network of many layers with various linear or non-linear operations, 
we are in effect transforming these raw data into a feature space before the final classification 
layer. Since this transformation is differentiable, one can use a gradient-descent type of 
optimization techniques to find a good transformation from a random one. This transformation in 
effect models the previous feature engineering. With such frameworks, one can use a deep neural 
network to model very complex input−output relationship, as long as there is an enough number 
of such input−output data pairs. Researchers to some extend can then shift focuses from problem 
dependent feature engineering to less problem dependent neural network architectures. 
 
With a generally applicable neural network, for domain-specific problems, like the defect detection 
problem in this paper, what we need to do is to 1) prepare the data; 2) select an existing deep neural 
network architecture; 3) design a suitable cost/loss function for optimization; 4) tune hyper-
parameters for training to achieve a best performance. In fact, recently, a popular type of deep 
learning methods, the convolutional neural network (CNN), was found to obtain good performance 
in this defect detection task (Soukup and Huber-Mork 2014; Protopapadakis and Doulamis 2015; 
Zhang et al. 2016). 
 
Notice that an important assumption for DL to achieve good performance in supervised learning 
is the requirement of having enough labeled data. In our task of defect detection, it means to have 
a large number of images with human experts labeling each image as containing a certain type of 
defect or not. However, in real world infrastructure inspections, labeled data is harder to obtain 
than unlabeled ones, due to the limited labeling resources. Only well-trained experts can correctly 
label images of certain types (e.g., water leakage). Moreover, the accumulation of such a large 
database takes time. Yet we do not want to wait during this time consuming process. 
 
To maximize such a pipeline’s efficiency and performance under the above concerns, we would 
like to introduce an active learning strategy to tackle this problem more efficiently. It is based on 
the observation that sometimes we can be satisfied with a not-so-good system due to lack of 
training data, as long as we know that when more labeled data come we can improve the system’s 
performance. The key question is whether we can use the not-so-good system to help us more 
efficiently send only difficult and thus more “valuable” images to human experts for labeling, 
rather than wasting their time labeling easy and less “valuable” images. For example, at an initial 
phase, we are only given a small set of images with defect labels, resulting in a defect detector 
with poor precision (slightly better than random guesses). Although performing poorly, this 
detector might still be able to filter out many non-defect images. We can then send the currently 
most difficult cases (e.g., images that the detector is not certain of its classification result) to human 
experts for ground truth labels, and thus most aggressively improve the system’s performance. 
 
Related Works 
There are multiple types of defects indicating the status of civil infrastructure, relating to concrete 
surfaces (Cement 2001), steel structure surfaces (Soukup and Huber-Mork 2014), etc. The readers 
are referred to some excellent literature reviews for a comprehensive understanding of existing 
conventional methods that usually requires explicit feature engineering (Koch et al. 2015; Yao et 



al. 2014). Note that in those methods, some uses 3D laser scans (Tang et al. 2010), which is not 
the focus of this paper. 
 
Image-based defect detection. To classify images with cracks, Prasanna et al. (2012) extract 
curves in the images and then use SVM with handcrafted feature descriptors to classify. Later 
Prasanna et al. (2016) combine AdaBoost and random forest to improve their classifier. As CNN 
has shown big success on general image classification (He et al. 2015), researchers also evaluate 
its performances for crack classification (Soukup and Huber-Mork 2014; Protopapadakis and 
Doulamis 2015; Zhang et al. 2016) with different application-specific adjustments. As the training 
of neural network can overfit when dataset is small, Soukup and Huber-Mork (2014) evaluate the 
benefit of regularization when annotated crack images are few. Protopapadakis and Doulamis 
(2015) utilize multiple image enhancement techniques to enhance the curve before the 
classification stage. In addition, none of these CNN-based methods uses residual units (He et al. 
2015). It is important to note that due to a lack of publicly available defect detection dataset, one 
could not quantitatively perform fair comparisons between these different existing methods. 
 
Active learning (AL). For the theory of AL, the readers are referred to a comprehensive literature 
survey (Settles 2010). AL has been used for binary classification tasks (Hsu 2010). In addition, 
multiple binary classifiers are trained correspond to each individual class in (Kapoor et al. 2010), 
and AL is then applied to Gaussian Process model. Freytag et al. (2014) used expected model 
output changes to query unlabeled samples for annotation in image classification task. More 
specifically in civil engineering, the defect detection problem has not been studied previously with 
any AL strategies yet, based on our literature survey. 
 
Our Contributions 
In this paper, we propose a deep AL framework addressing the efficient training and deployment 
of an automatic defect detection system. A deep residual network (ResNet) is designed as the 
classifier for detection and classification of defects in an input image patch. Following an AL 
framework, this network is then trained as soon as the initial set of labeled data becomes available. 
It will then be used to select a most informative subset of subsequent unlabeled data and query 
labels from human experts to more effectively improve the network's detection performance. Our 
major contributions in this paper are the following: 

1. Applying ResNet for general defect detection of three types, with a weighted loss function 
for skewed dataset; 

2. Applying AL for training, with a novel positive-based sampling strategy. 
 
Next, we will explain our method and experiments on more than 600 high-resolution raw concrete 
surface images with ground truth labels of different types of defects to show the performance 
improvement of our system comparing to baseline methods. 
 
METHODS 
 
Data Preparation 
Our data set contains 603 raw images with 4096x4800 pixels. These images are annotated in pixel 
level to indicate whether a pixel is defect free or belong to the following defect types: cracks, 
deposit, and water leakage (purple, cyan, and red regions in Figure 1(a-c)). Note that a pixel can 



belong to more than one type of crack types. The annotation was done by domain experts. To train 
and evaluate our classifier, we split the images into three sets: 60% for training, 20% for validation, 
and 20% for testing. During the training, the training and validation accuracies were regularly 
reported so we can evaluate whether the training start to overfit the training data. 
 
To augment our dataset, we split each raw image into patches. Each patch has 520x520 pixels, to 
contain enough context for our ResNet to make accurate decisions. The patches are split using a 
sliding window manner starting from the top left corner of the images, with a step size of 214/149 
along the row/column direction respectively. Thus, the 603 raw images are transformed into 
289440 patches with 22.6% positive cases. We assign each patch a positive label if its centering 
480x480 region contains at least one defect pixel (e.g., the yellow patch in Figure 1 (a)). Otherwise 
the patch is considered as defect free with a negative label (e.g., the green patches in Figure 1 (a)). 
These patches and their binary labels are used for the following training and testing of defect 
classifiers. Rough detection as it seems, such patch-wise results are already useful to warn 
inspectors the existence of defects in a very small region. In the future, we could look into denser 
pixel-wise defect detection. 
 

   

 
(a) crack (b) deposit (c) water leakage (d) system diagram 

 
Figure 1 Pixel-wise annotated defect types and the system diagram of our method. 

 
Defect Defection and Classification 
Problem Formulation. Given an image patch, our network will output the probability that this 
patch is a defect or not. This patch  is the input to our network with weights . The 
output  of the network is a non-linear mapping , where  models 
the probability of  being a defect, and . During training,  is randomly cropped from 
a 520x520 patch as a means of data augmentation to enhance the network’s invariance to in-plane 
translation. During testing,  is always cropped from the center of a 520x520 patch. 
 
Loss Function. For a mini-batch of  cropped patches, the commonly used cross-entropy loss is 
defined as: , where is the binary label (defect or non-defect) of the n-th 
patch, is the predicted probability of being a defect if the label is defect, and vice versa. 
Since the number of non-defect patches is often much more than defect patches in a typical dataset, 
a weighted cross-entropy loss is proposed to deal with this skewness. Otherwise if a model is 
trained by the original cross-entropy loss function, it will be biased by the large amount of non-
defect samples. Therefore, we weight non-defect patches more in the loss function. The weighted 



cross-entropy loss is defined as: , where  is the weight of each 
patch, which is decided by its label. For a defect patch, the weight is the portion of non-
defect patches in the training set; for a non-defect patch, the weight is the portion of defect patches. 
 
Deep Residual Network. He et al. (2015) show that stacking more layers directly does not give 
us a better CNN. A deeper network may face the degradation problem, which makes its 
performance worse than a shallow one. ResNet eases the difficulty of training a deeper network 
by using the mapping with a residual unit to replace the original mapping in the network. This 
award-wining ResNet (He et al. 2015) has shown compelling performance not only in image 
classification, but also in image segmentation (Dai et al. 2016), object detection (Ren et al. 2015), 
and machine translation (Wu et al. 2016). Therefore, applying the ResNet to general defect 
detection is proposed, and its architecture is shown in Table 1. Note that batch normalization is 
used after each convolutional layer (stride 1 if not specified) in the network. 
 
Table 1 Architecture of the proposed network. Building blocks (residual units) are shown in 
green blocks, with the numbers of blocks stacked on the right. Down-sampling is performed 
by conv2_1 and conv3_1 with a stride of 2. We use the same notation as in (He et al. 2015). 

Layer name Output size Specification of each layer 

conv0 256×256 7×7, 16, stride 2 

conv1_x 128×128 
2×2 max pool, stride 2 

3×3, 16 
3×3, 16 ×2 

conv2_x 64×64 3×3, 32 
3×3, 32 ×6 

conv3_x 32×32 3×3, 64 
3×3, 64 ×8 

 1×1 average pooling, 2-d fc, softmax 

 
Deep Active Learning 
With the ResNet-based classifier, our system uses AL to reduce the number of images required for 
annotation and thus reduce the effort and cost of annotation by domain experts.  
Figure 1 (d) illustrates a round of AL. Once an initial classifier is trained with a small set of 
annotated images, we continue to collect more new images. Other than annotating all images, AL 
samples a subset of these images for experts to annotate. Once being annotated, these new images 
are added to the training set to re-train the classifier. Note that the key component of AL is the 
sampling of new images. Our sampling is based on two strategies, as described below. Both utilize 
the testing output with the existing classifier, which are probabilities of new image patches 
containing defects. 
 
Uncertainty-based Sampling. The first strategy is based on the uncertainty of the classification 
result. This has been applied to different learning models like SVMs (Tong and Koller 2001), and 
GPs (Kapoor et al. 2010). We measure the uncertainty based on the class probabilities  output by 
the classifier. Given an image patch, if the probability of one class dominates the output, it means 
that the classifier is very certain about the class of this patch. Otherwise, if multiple classes have 
similar probability, it means that the classifier is unsure which class to choose, and thus this image 
patch should be annotated by humans for future retraining. For binary classification, the probability 



function has only two scalars for defect or not. In such a case, we can simply check whether the 
probability of no defect is close to 0.5. If the probability is close to 0.5, the probability of defect is 
close to 0.5 as well, implying high uncertainty. 
 
Positive-based Sampling. An issue of the uncertainty measure is that all classes are treated 
equally. As the patches with defects are usually much fewer than the defect-free patches, we also 
revise the uncertainty measurement such that it can focus more on the class of defect, which is the 
main interest of our system. This simply means that we rank new images with their estimate defect 
probability from high to low, and send some top ones for expert annotation. Since we are always 
selecting new patches that the classifier currently believes to be positive, we term this strategy as 
positive-based sampling. 
 
EXPERIMENTS 
 
Training using All Data 
 
Implementation Details. We train our network with 4 NVIDIA TITAN X GPU in standard Caffe 
using a stochastic gradient descent solver with the following hyper-parameters: effective mini-
batch size of 480; max iteration of 60 epochs (1 epoch iterates through the whole dataset for once); 
learning rate of 0.1 with a decreasing factor of 10 after 50% and 75% max iterations; momentum 
of 0.9; weight decay of . The training is performed on the training set and the trained weights 
with the highest validation accuracy across all iterations are adopted finally for testing. Training 
losses are shown in the left image of Figure 2. 
 

   
 

Figure 2 Training Losses, Testing ROC, and Testing PR curves of the four defect detectors. 
 

         
Figure 3 Example “any” detection results. Yellow: detected defects (using a threshold of 0.5); 
purple: crack ground truth; cyan: deposit ground truth; red: water leakage ground truth. 
 
We trained four classifiers with the same network architecture focusing on four types: “crack”, 
“deposit”, “water leakage”, and “any” (meaning the presence of any of the previous three defects 
in an input image patch). The testing results are shown in the middle (receiver operating 
characteristic curve) and right (precision-recall curve) images of Figure 2. More specifically, when 



using  to decide a patch being positive (i.e., has defect), during testing we obtain a true-
positive-rate of 15.7%, true-negative-rate of 71.8%, false-positive-rate of 4.1%, false-negative-
rate of 8.4%, meaning a precision of 79.5%, and recall of 65.0%. Some example detection results 
are shown in Figure 3. 
 
For comparison, we also tested our data with SVM. We incrementally train the SVM batch by 
batch, due to CPU memory limitations in face of the large training set. The batch size is empirically 
specified as 1000. Our SVM was trained with the stochastic gradient descent solver of scikit-learn 
in Python. Note that this SVM implementation also supports the weighting of classes (similar to 
the above weighted loss function). The accuracy with or without class weighting is 74.6% and 
75.4% respectively. One can see our ResNet performs much better than SVM in this case as 
expected, since no feature engineering is performed before SVM. This supports our reasoning in 
the introduction, and clearly demonstrates the power of CNN. 
 
Training using Active Learning 
 
Our AL experiments follows the same implementation details as mentioned above, except that we 
train 40 epochs to save computation time. In these experiments, we combined the training and 
validation set (type: “any”) together for training (235200 patches). To simulate the actual AL 
process, we start with only 1/5 of training data (47040 patches), and perform 4 cycle of AL (Figure 
1 (d)). In each cycle, 47040 patches are firstly sampled from the data unknown to the classifier yet, 
and then added for retraining. We compare the uncertainty-based and positive-based sampling with 
random sampling. The left image in Figure 4 shows the testing accuracy (y-axis) of resulting 
network at each cycle (x-axis). The right image in Figure 4 shows the relative saving of labeled 
images for achieving the same testing accuracy as random sampling. Clearly, positive sampling is 
better and saves about 30% labeled images to achieve the same testing accuracy of about 87.5%. 
 

  
Figure 4. Sampling strategy comparisons. 

 
CONCLUSION 
 
We applied ResNet for general defect detection of different types, with a weighted loss function 
for skewed datasets; we then applied AL for training, and proposed a novel positive-based 
sampling strategy. Experiments verified their effectiveness in civil infrastructure defect detection. 
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