MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Efficient Convex Optimization on GPUs for Embedded
Model Predictive Control

Yu, Leiming; Goldsmith, Abraham; Di Cairano, Stefano
TR2017-033 February 05, 2017

Abstract

GPU applications have traditionally run on PCs or in larger scale systems. With the intro-
duction of the Tegra line of mobile processors, NVIDIA expanded the types of systems that
can exploit the massive parallelism offered by GPU computing architectures. In this paper,
we evaluate the suitability of the Tegra X1 processor as a platform for embedded model pre-
dictive control. MPC relies on the real time solution of a convex optimization problem to
compute the control input(s) to a system. Relative to traditional control techniques such
as PID, MPC is very computationally demanding. Quadratic programming algorithms for
the solution of convex optimization problems generally lend themselves to parallelization.
However, until the introduction of the Tegra, there has never been an off-the-shelf embedded
processor that would enable a massively parallel embedded implementation. We investigate
two different gradient based algorithms, ADMM and PQP, for solving the QP that occurs in
a large class of MPC problems. The performance of these algorithms is dominated by the
performance of matrix-matrix and matrix-vector products. Our work focuses on maximizing
the performance of these operations for relatively small matrices of 100 to 1000 elements
per dimension, which are common in the MPC control implementations found in automo-
tive and factory automation applications. Modern BLAS libraries for CPUs and GPUs are
quantitatively evaluated. We create SGEMYV kernels that can outperform the state-of-the-art
cuBLAS by 2.3x on TX1. Different kernel fusion schemes utilizing concurrent kernel execu-
tion and zero copy mechanisms are investigated. For ADMM, our implementation achieves
46.6x speedup over the single threaded CPU version and 2.7x speedup over the optimized
OpenBLAS version. For PQP, we achieve 41.2x speedup over the single threaded CPU version
and 4.2x speedup over the OpenBLAS version.

Workshop on General Purpose Processing with Graphics Processing Units

(© 2017 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall

require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Efficient Convex Optimization on GPUs for Embedded
Model Predictive Control

Leiming Yu *

Electrical and Computer Engineering
Northeastern University
Boston, MA, USA 02115

ylm@ece.neu.edu

ABSTRACT

GPU applications have traditionally run on PCs or in larger scale
systems. With the introduction of the Tegra line of mobile proces-
sors, NVIDIA expanded the types of systems that can exploit the
massive parallelism offered by GPU computing architectures. In
this paper, we evaluate the suitability of the Tegra X1 processor
as a platform for embedded model predictive control. MPC relies
on the real time solution of a convex optimization problem to com-
pute the control input(s) to a system. Relative to traditional control
techniques such as PID, MPC is very computationally demanding.
Quadratic programming algorithms for the solution of convex op-
timization problems generally lend themselves to parallelization.
However, until the introduction of the Tegra, there has never been
an off-the-shelf embedded processor that would enable a massively
parallel embedded implementation.

We investigate two different gradient based algorithms, ADMM
and PQP, for solving the QP that occurs in a large class of MPC
problems. The performance of these algorithms is dominated by
the performance of matrix-matrix and matrix-vector products. Our
work focuses on maximizing the performance of these operations
for relatively small matrices of 100 to 1000 elements per dimension,
which are common in the MPC control implementations found in
automotive and factory automation applications. Modern BLAS
libraries for CPUs and GPUs are quantitatively evaluated. We create
SGEMYV kernels that can outperform the state-of-the-art cuBLAS
by 2.3x on TX1. Different kernel fusion schemes utilizing concur-
rent kernel execution and zero copy mechanisms are investigated.
For ADMM, our implementation achieves 46.6x speedup over the
single threaded CPU version and 2.7x speedup over the optimized
OpenBLAS version. For PQP, we achieve 41.2x speedup over the
single threaded CPU version and 4.2x speedup over the OpenBLAS
version.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems; D.1.3 [Programming Techniques]: Con-
current Programming—~Parallel programming; G.1.6 [Numerical
Analysis]: Optimization—Quadratic programming methods

General Terms

Algorithms, Performance

Keywords

GPU, Convex Optimization, Model Predictive Control, Tegra X1

*This work was done during the internship at MERL.

Abraham Goldsmith, Stefano Di Cairano
Mitsubishi Electric Research Laboratories
201 Broadway
Cambridge, MA, USA 02139
{goldsmith,dicairano}@merl.com

1. INTRODUCTION

Model predictive control (MPC) is a technique for controlling
dynamical systems subject to input and state constraints. MPC has
numerous advantages over traditional control techniques such as
proportional integral derivative (PID) control. Primary among these
are that MPC can handle multiple inputs and outputs, it enforces con-
straints, and it can provide improved control performance. However,
these advantages come at the cost of high computational complexity.

MPC was initially developed for control of large scale industrial
processes such as chemical plants. These applications are charac-
terized by hundreds or more inputs and outputs and slow dynamics.
Over the course of the last 20 years, as microprocessor performance
has improved, MPC has been applied to a growing number of embed-
ded applications such as automotive, aerospace, factory automation,
and robotics [1, 2, 3]. These applications are characterized by rela-
tively small numbers of inputs and outputs but fast dynamics and
high sensitivity to controller cost. Whereas large plant controllers
may need to compute a new set of outputs every few minutes or
every hour, embedded MPC applications may need to compute a
new output in milliseconds or microseconds. The need to solve a
mathematically complex control problem at such high rates presents
a barrier to the deployment of MPC in many applications. Em-
bedded GPU computing is one potential means of overcoming this
obstacle.

In this work we are interested in MPC formulations using linear
prediction models with convex quadratic performance objectives
subject to polyhedral constraints. These types of problems can be
formulated as a constrained quadratic program (QP) [4]. Many
powerful methods exist for solving QPs including active set meth-
ods [5], interior point methods [4], and gradient-based iterative
methods [6, 7, 8]. We study two gradient based methods: Parallel
Quadratic Programming (PQP) and Alternating Direction Method
of Multipliers (ADMM). First, we create single threaded versions
of the two algorithms for the ARM A57 CPU in the TX1. Next,
we create CPU and GPU versions that leverage the openBLAS and
NVIDIA cuBLAS basic linear algebra subroutine (BLAS) libraries.
We then use a number of techniques to create GPU implementations
that outperform the cuBLAS versions. Finally, we demonstrate the
performance of MPC using our optimized implementations of PQP
and ADMM on the Tegra X1 GPU.

The major contributions of this paper include:
e Analysis of the performance of two state of the art BLAS
libraries.

e Efficient SGEMYV kernels for small matrix sizes that achieve
2.3x speedup over cuBLAS on TXI.

e Investigation several kernel fusion schemes, including concur-
rent kernel execution and zero copy for both solvers.

o We demonstrate that for problem sizes greater than approxi-
mately 300 variables, GPU accelerated MPC achieves a higher
control frequency than CPU implementations.

This remainder of the paper is organized as follows. In Sec-
tion 2, we introduce Model Predictive Control, the PQP and ADMM
algorithms, and GPU computing. In Section 3, we present the ex-
perimental systems and strategies. Performance optimization is
discussed in Section 4. Related work is presented in Section 5. We
present our conclusions in Section 6.

2. BACKGROUND

In this section we will briefly describe MPC, the PQP and ADMM
algorithms, as well as GPU computing.

2.1 Model Predictive Control

Linear MPC is based on the prediction model

Trh+1 = Axp + Bug (1a)
yr = Czp+ Duy, (1b)

where © € R"™ is the state vector, u € R™, is the input vector,
y € RP? is the output vector, A € R™ x R" is the state matrix,
B € R™ x R™ is the input matrix, C € R? x R" is the state
constraint matrix, D € R” x R" is the input constraint matrix,
subject to constraints

Lmin S Tk S Tmax, (23.)
Umin < Uk < Umax, (2b)
Ymin S Yk S Ymax, (2C)

where Zmin, Tmax € Rn, Umin, Umax € Rm, and Ymin, Ymax € RP
are lower and upper bounds on state, input, and output vectors, re-
spectively. At step t € Zo4, MPC solves the finite-horizon optimal
control problem

N-1
T%iﬂ oy Poye + kzo 21016 Qn)t + Wy Ru)e (3a)
St Zpyrr = Azg)e + Bug (3b)
Yele = Cxrpe + Dugy, (o)

Zk|t = El’k\t (3d)

Ymin < Yt < Ymaz, ke Z[N(JvNcy] (e)

Tmin < Thjt < Tmawy k € Z[1,N,,) (3D

Umin < Ukl < Umazy K € Zo,Noy—1] (32)

Uge = KNTrpe, k € Zin, N-1] (3h)

Svenye < T (3i)

wo|r = (1), 3y

where N € Zo+ is the prediction horizon, z € R? is the perfor-
mance output vector, £ € R? x R"™ is the performance matrix,

Q € R? x RY, @ > 0 is the performance cost weight, R €
R™ x R™, R > 0 is the input cost weight, P € R" x R", P >0
is the terminal state cost weight, Ky € R™ x R", is the terminal
controller, Sy € RN xR", is the terminal constraint matrix, 7n €
R°N, is the terminal constraint vector, Ny € {0, 1} is the beginning
of the constraint horizon, N, € Zo,n—1) is the control horizon,
Nc € Ziny,n—1) is the constraint horizon, and Ney € Zjg n—1] is
the input constraint horizon.

2.2 Parallel Quadratic Programming

PQP is an iterative, gradient based algorithm for solving convex
optimization problems with quadratic objective functions. Given x:,
(3) is formulated as the QP

1 1
min Jp(U) = iUlQpU + U + > My (4a)
st. GpU < K, (4b)

where U = U, Qp, € R"™*™ n, = Nm, Q, > 0, G, €
R"e*™ K, € R™, M, € Ros.

In order to solve 4, the PQP algorithm requires that it be converted
into dual form. The dual problem of (4) is

min Ja(Y) = %Y’QdY +EY + %Md (5a)
s.t. Y >0, (5b)

where Q4 = G,Q;, G, Fu = (Kp + GpQ,'Fp), and Y €
R™4, i.e., the number of variables in (5) is equal to the number of
constraints in (4).

The actual mathematical basis of the algorithm is beyond the
scope of this paper. For a detailed treatment please see [9]. Hence-
forth we concern ourselves primarily with the types of matrix opera-
tions that occur at each stage of the PQP algorithm and the number
of FLOPs required to perform those operations as a function of the
problem dimensions.

The PQP algorithm, shown in Figure 1, is separated into two
parts: initialization and iteration. In later sections we will refer
to these as PQP-init and PQP-iter respectively. At every sample
time k, the problem matrices are initialized using a combination
of matrix-matrix, matrix-vector, and inner products. Overall, the
initialization step requires 2n2n, + 2n§nu +n2 4+ Tngn, — 1
FLOPs, where n,, is the number of variables in the primal QP (4),
and n is the number of variable in the dual QP (5).

The iterative part of the PQP algorithm is itself divided into
two parts: update and acceleration. The update step is the normal
execution path during iteration. The update step iteratively improves
the solution, Y, to the dual QP (5), in the direction of the optimal
solution Y* according to

(Qq + &)Y + Fy i
Y, ;= Yyl 6
B N L

(6) is composed of two matrix vector products, two vector sums,
an element-wise division, and an element-wise multiplication, for a
total of 2n.ng + 5n§ + Tng — n. FLOPs.

The purpose of the acceleration step is to improve the rate of con-
vergence when certain numerical conditions arise. The acceleration
rate, or what percentage of PQP iterations use acceleration, is prob-
lem dependent but usually falls between 0% and 10%. The number
of FLOPs required varies depending on the numerical condition of
the problem but in the worst case it is 4n2 + 6nq — 1.

When the solution Y has converged to within some threshold of
the global optimum Y™, the algorithm terminates. Testing for this
convergence requires 247, + 4n§ + 8n4 FLOPs in the worst case.
In practice, testing for convergence after every iteration is wasteful.
In some implementations convergence is only tested every p iter-
ations, where p can be as high as 100 or even 1000 depending on
the problem, and in other implementations the algorithm is always
allowed to run for the same fixed number of iterations, such that the
convergence only needs to checked once, after the final iteration.

Operation Summary

‘ Matrix Veector |

Matrix Viector

o]

1 Memary Copy |

IMamx Wector, \md.m'|

| Vector, Reduction l

Operation Summary

MM, MY

MM, MV, Reduction

Element-wise

- Initialization »

MV, Ve, Reduction

MV, Reduction

MV, Vector

Iteration

]

|
=
=

MV, Reduction

Figure 1: Block diagram of the ADMM and PQP algorithms, showing the linear algebra operations that occur at each step. MM, MV, and
Vector stand for Matrix-Matrix multiplication, Matrix-Vector multiplication and Vector operations (such as addition and division), respectively.

2.3 Alternating Direction Method of Multipli-
ers
ADMM [10] is another iterative algorithm for solving convex op-
timization problems with quadratic objective functions. For ADMM,
the finite horizon optimal control problem in (3) is formulated as
the following QP:

1

min J,(€) = 28t (7a)
st. Gt =K, (7b)
£<E<e (7c)

where & = [X; U, Y{ SiJ', Xi =[x, ...]

Ye = [Yoe -+ - Yn—1pe)» St = STy, s0 that € € R™ now with
ny = N(m+p+n), and G, € R"*" K, € R", with n,
usually different from that of (4). In order to simplify the problem,
a “copy” (of the optimization vector ¢ is used to enforce bound
constraints

. 1,
min Ip(€) = SE Q€ (8a)
st. Gpé =K, (8b)
£<¢<¢€ (8¢)
¢(=¢ (8d)

The equality constraint is dualized by the augmented Lagrangian
form with a vector of Lagrange multipliers A € R™*,
min Jp(6) = SEQuE+ Sle—C AP 0
gc P 2> P> T 9
st. Gpé =K, (9b)
£<¢<¢ 9

where [3 is a stepsize parameter. The ADMM the algorithm itera-
tively adjusts)\ to seek the values of £, ¢ that solve (9) and such that

at optimum ¢ = £. It was shown in [11, 12] that this corresponds to
evaluating the iterations

gD M + 2P ¢ NKg (10a)
¢V = projegeg €TV AW (106)
A(k+D) AF) g O (Rt (10c)

where M, N are matrices computed from the matrices in (9), and
proj denotes the projection, i.e, in this case clipping within the box
determined by &, £. The iterations in (10) update the values of &, (,
and), respectively, while keeping the remaining variables fixed.

A flowchart for the ADMM algorithm is presented in Figure 1
along with the matrix operations that occur at each step. The ADMM
algorithm is divided into an initialization phase and an iteration
phase. In later sections we will refer to these as ADMM-init and
ADMM-iter respectively. The initialization phase occurs once per
call to the solver. The initialization computations require two matrix
vector products and several vector and scalar operations for a total
of 2n2 + 2n,,n, FLOPs. The iteration part of the algorithm consists
of a single matrix vector product and several vector operations for a
total of Qnﬁ +5n,, FLOPs. Similar to PQP, in order to save processor
cycles, the ADMM algorithm does not check for convergence every
iteration. Rather, the algorithm checks for convergence every p
iterations, where p is problem dependant. The convergence check
itself requires only vector and reduction operations totalling 9n.,, + 1
FLOPs.

2.4 GPU Computing

Modern graphics processing units (GPUs) feature hundreds or
thousands of parallel processing cores that support general pur-
pose processing as well as traditional graphics applications [13][14].
GPUs can sustain a much higher arithmetic computing throughput
and streaming memory bandwidth (e.g. 8873 GFLOPs and 320
GB/sec for GP104) than their CPU counterparts (e.g., 354 GFLOPs
and 68 GB/sec for Intel 17 5960X) [15]. More and more computa-
tionally intensive applications, such as molecular dynamics, deep

Table 1: CPU Specifications

CPU Intel Core i7-4790K | 64-bit ARM A57
Lithography 22 nm 16 nm
Cores 4 4
Threads 8 4

Core Clock 4.0 GHz 1.9 GHz
Memory Bandwidth 25.6 GB/s 25.6 GB/s
Cache 8 MB 2 MB
Memory Size 32 GB 4GB
Memory Types DDR3-1333 LPDDR4
TDP 88 W 10W

learning, and cryptography, are being ported to GPUs and GPUs are
deployed in 68 of the Top5S00 supercomputer systems [16].

GPUs execute programs in the Single Instruction Multiple Thread
(SIMT) style. Hundreds or thousands of threads can be launched
and concurrently executed. These parallel threads are organized into
grids of blocks that get scheduled to the streaming multiprocessors in
the device'. Each block executes instructions in groups of 32 threads,
also known as warps, in the SIMD fashion. A warp scheduler
dispatches two independent instructions to increase the instruction
level parallelism. The high latency of memory loads and stores can
be tolerated by warps running independent arithmetic operations.
A brief overview of NVIDIA's Maxwell architecture is shown in
Figure 2.

[Registers |

Iimterl.l l:ar_he" Shared Memary I

L] 1
[lmm]

[Global Memory I

Figure 2: An overview of NVIDIA’s Maxwell architecture.

3. METHODOLOGY

3.1 Experimental Systems

In this work we utilize two seperate experimental setups. The
first is an Intel Core i7 4790K with an NVIDIA GTX 970 graphics
card. The second is the NVIDIA Jetson TX1 development kit which
includes the Tegra X1 mobile processor. The Tegra X1 processor
includes 4 ARM Cortex A57 cores, 4 ARM Cortex A53 cores, and
a 256 core Maxwell GPU. We use the ARM A57 CPUs inside
the X1 as a reference processor that we will benchmark our GPU
implementations against. This choice represents a compromise.
Although the A57 is a RISC machine like most processors used in
embedded controllers, it has significantly higher performance than
is typical in such systems. However, using the A57 as the reference
processor allows us to perform all of our work using a common
platform, toolchain and code base. Although we are primarily
interested in the performance of ADMM and PQP on the TX1 CPU
and GPU, we make use of the Intel i7 / GTX970 system as well.
This is because we want to explore the performance differences
between the Maxwell GPU in the GTX 970 and the Maxwell GPU
in the TX1. All of the development platforms run Ubuntu 14.04
and CUDA 8.0. The detailed specifications for these platforms are
shown in Tables 1 and 2.

3.2 Implementation Strategy
Our baseline for evaluating the performance of the PQP and
ADMM algorithms is a single threaded implementation for the ARM

"The CUDA terminology is applied since NVIDIA GPUs are used
for the work.

Table 2: GPU Specifications

GPU GeForce GTX 970 | NVIDIA Tegra X1
Architecture Maxwell Maxwell
CUDA Cores 1664 256
Multiprocessors 13 2
CUDA Cores / SP 128 128
Core Clock 1317 MHz 1000 MHz
Memory Clock 3505 MHz 1600 MHz
Memory Bus Width 256-bit 64-bit
Global Memory 4095 MB 3994 MB
L2 Cache 1792 KB 256 KB
Constant Memory 64 KB 64 KB
Shared Memory per Block 48 KB 48 KB
Register per Block 64 K 32K
copy engines 2 1
Integrated GPU sharing Host Memory No Yes

A57 core of the TX1. We will refer to this version as cpu-1. We
utilize g++ 4.8.4 with the —O3 and —march = native —mcpu =
native compiler flags set to turn on optimization. To investigate
how well the algorithms mapped to a traditional parallel program-
ming paradigm we created a 4 threaded version for the A57 using
GNU OpenMP, which we refer to as cpu-4. Because we know that
both of these algorithms are fundamentally composed of elementary
linear algebra operations, it seems natural to begin our performance
optimization by evaluating some standard BLAS libraries. We cre-
ate BLAS optimized versions for both the CPU and GPU because
comparing the performance of a BLAS optimized GPU version to
that of a non-BLAS CPU version would not be informative. For the
ARM CPU we evaluate ATLAS and openBLAS and then choose
the one with the best performance for our application and architec-
ture. This version is referred to as cpu-openblas We then implement
initial versions of the algorithms for the TX1 GPU using Nividia’s
cuBLAS library. This version is referred to as gpu-cublas. Finally,
we tested a variety of custom CUDA kernels in order to find the best
method for achieving optimal performance for each algorithm. The
final version of each algorithm is referred to as mpcGPU.

4. PERFORMANCE OPTIMIZATIONS

4.1 Baseline

For the CPU implementation, we compare the performance of
single-threaded and four-threaded versions. Four threads can lever-
age all the physical CPU cores available. As shown in Figure 1,
many operations for the solvers can be expressed in linear algebra
subroutines. To leverage the full potential of the CPU, we opti-
mize the implementations with BLAS libraries on the CPU. The
ATLAS and OpenBLAS are two of the most popular CPU BLAS
libraries [17][18].

e The ATLAS is a BLAS library which can be tuned automati-
cally at the compilation time for the target CPU architecture. It
provides interfaces to both BLAS and LAPACK routines [19].

e The OpenBLAS library supports optimized linear algebra
kernels on a variety of CPU architectures such as MIPS64,
SPARC, POWER, x86/x86-64, ARM.

We utilize ATLAS-3.8.4-arm becuase it supports ARM architectures.
The performance of ATLAS and OpenBLAS on the ARM A57 is
illustrated in Figure 3. On the ARM CPU, for SGEMV, ATLAS is
faster than OpenBLAS when the matrix is smaller than 300x300. For
SGEMM, OpenBLAS outperforms ATLAS for all the test cases. On
average, OpenBLAS is 1.2x and 2.9x faster than ATLAS for SGEMV
and SGEMM, respectively.

For the GPU implementation, we compare two widely used GPU
BLAS libraries, cuBLAS [20] and MAGMA(Ver 2.1) [21]. Their
performance on SGEMV and SGEMM are plotted in Figure 4. On

——— ATLAS ————— OnenBLAS ——— ATLAS _———— OpenBLAS
16 250
14 /) .
_ 12 —
T | A e /
=08 3 E
Egg Pl @ 100 - /]
£ A = .// /
04 v £
o2 —0 ‘K/ & Ié::
o T T T T T 0 At

100 200 300 400 500 600 700 E00 900 1000
Matrix Size (NxN)
(b) SGEMM on ARM AS7

100 200 300 400 500 600 700 BOO 900 1000
Matrix Size (W)
(&) SGEMV on ARM AS7

Figure 3: Performance of the ATLAS and OpenBLAS libraries on
ARM AS57. The SGEMV uses ChlasRowMajor and CbhlasTrans.
The SGEMM uses CblasRowMajor and ChlasNoTrans. Smaller the
runtime indicates better performance.

C—=—wom —— cmwss T T——T
0zs
X |
02 = Y
2 s+ 2\ -y ¥
Zo - - —]
g X z
g 01 - E
g
3 -}
s @
s T T T T T T T

100 200 300 400 SO0 600 700
Matri: Size (M x N)

(a) SGEMV on TX1

BOO 900 1000 100 200 300 400 500 600 700 800 900 1000

Matrix Size (MxN)
(b) SGEMM on TX1

Figure 4: Performance of GPU BLAS libraries, MAGMA and
cuBLAS on TX1. No transposition is applied to the column ma-
jor matrices. Smaller the runtime indicates better performance.

the TX1, MAGMA achieves 1.2x better performance, on average,
than cuBLAS for SGEMV. On SGEMM, cuBLAS is 1.6x better than
MAGMA on average.

We selected OpenBLAS becuase it consistantly outperformed A7-
LAS in our testing. The results for the GPU were not as clear cut. We
ultimately selected cuBLAS because of its superiour performance
on the SGEMM operation. The performance of our baseline im-
plementations on the TX1 is illustrated in Figure 5 for a 500x500
matrix.

4.1.1 Baseline ADMM Performance

On the CPU, running four threads (cpu-4) only results in a 30%
improvement over the single-threaded version (cpu-1) during the
ADMM-Init step, whereas no performance benefit is achieved for the
ADMM-Iter. Since the input matrix (1MB) fits into the CPU cache,
running more threads doesn’t improve performance beause of the
fork-and-join overhead. After adopting OpenBLAS, more than 2.6x
speedup is obtained for the preparation and prediction step, relative
to the single threaded CPU version.

On the GPU, the cuBLAS version (gpu-cublas) performs slightly
better than cpu-1 with 1.2x improvement for ADMM-Init. It per-
forms worse than cpu-1 for ADMM-Iter. There are three important
factors contributing to the poor performance:

e Not every step in the ADMM algorithm can be mapped to a
BLAS subroutine.

e Breaking down the computation into several kernel calls in-
troduces more kernel launch overhead.

e Data movement is expensive the between CPU and GPU,
especially for small data sizes.

For instance, Equation (11) is used for the updateQp during the
iterative computation of ADMM.
M * (w_prev — lam_prev x betalnv) + af fineTerm (11)

where M is a square matrix, w_prev, lam_prev and a f fineTerm
are vectors, and betaInuv is a scalar. To implement this equation in

cuBLAS, four kernels calls are needed, including two cublasScopy,
one cublasSaxpy and one cublasSgemv.

4.1.2 Baseline PQP Performance

On the CPU, cpu-4 runs 1.9x faster than cpu-1 for PQP-Init and
1.6x for PQP-Iter. The OpenBLAS implementation improves the
initialization steps by 34.5x and the iteration steps by 1.9x. Matrix
multiplication is the most intensive computation for PQP-Init. On
the GPU, the cuBLAS version of PQP-Init has achieved 248.2x and
7.2x speedup over cpu-1 and cpu-openblas, respectively. This is
due to the highly efficient SGEMM implementation on the GPU.
However, during the iteration step which is less computationally
intensive, the improvement after using cuBLAS is less than 10%.

4.1.3 Summary

As Figure 5 illustrates, the Nbeq step in ADMM-Init and the
updateQP in ADMM-Iter are the largest contributors to overall
runtime in the ADMM algorithm. For POP, the matrix multiplication
required to compute d2pGain and Qd are the largest contributors to
runtime, while the pgp and accel steps limit the performance during
the iteration steps.

4.2 Efficient SGEMY on TX1

Both ADMM and PQP use the iterative scheme to make predic-
tion. The most intensive routine inside the loop is matrix-vector
multiplication. Therefore, we focused most of our effort on develop-
ing a more efficient SGEMYV kernel that can outperform the cuBLAS
library on the TX1 GPU.

4.2.1 Implementation

We propose three different implementations for matrix-vector
multiplication, 2d-bs128, 2d-bs1024, and 1d-bs1024. The first two
versions use a 2D grid for the kernel and the third uses a 1D grid.

For 2d-bs128, the block dimension is set as (32, 4, 1), where the
x dimension, mapped to the columns of the input matrix, uses 32
threads (the size of a warp) and the y dimension, mapped to the rows
of the input matrix, uses 4 threads. In this case, the total number
of threads per block, 128, matches the number of CUDA cores per
streaming multiprocessor for the NVIDIA Maxwell GPU architec-
ture (see Figure 2). To increase the instruction level parallelism,
each warp quadruples the work along the x dimension and double
the work along the y dimension. Hence, we have a batch size of
128 along the column and 8 along the row of the input matrix, as
illustrated in Figure 6 (a).

For 2d-bs1024, the block dimension is set as (1024, 1, 1), which
means launching a 1024-thread block for each row of the input
matrix. Each block is responsible for the consecutive 8 rows, as
shown in Figure 6 (b). In this case, the workload for each thread
has been increased 8x. This technique has been used previously for
tuning the dense linear algebra kernels [22].

For 1d-bs1024, a block of 1024 threads is launched to execute
the entire SGEMV computation. These threads are grouped as a
32x32 2D grid, as presented in Figure 6 (c). After thread-mapping,
each warp is responsible for one row of the input matrix and iterates
along the column. These 32 warps of the block marshal along the
row of the input matrix, in a batch size of 32.

In these implementations, the SHFL instructions are used to ex-
change data within the warp [23]. They can reduce the demand on
shared memory and limit the usage of local barriers without neutral-
izing the performance. The read-only cache is enabled for global
memory access. Using the constant memory or texture memory
slows down the performance since moving data to the large cache is
expensive for small data sizes.

o atineTerm & minusMgBetainy @ Nbeg |

=3
=

g g

o s

El El

g E

= = 2.6x

o1 01

cpu-1 cpu-4 cpublas gpublas cpu-1 cpu-4 cpublas gpublas
(@) ADMM-Init (b) ADMM-Iter

B checkTenm O updatelagrange B updatoPioiSoln B uptateQp

[B FoNegPos B QdNegAbs @ KdB FdD QoE d2pCnsim d2pGain] | updateKeepGoing® feasibility D pimalSoluton® pap® accel]

1000 10
T.9x
1.1x

100 - 1.6x 1.9x
g 34.5x g
210 g1
§ 248.2x | §
[=

01 01

cpu-l cpu-4 cpublas gpublas cpu-1 cpu-4 cpublas gpublas
(c) PQP-Init (d) PQP-Iter

Figure 5: The runtime for baseline implementations, cpu-1, cpu-4, cpublas (OpenBLAS), gpublas (cuBLAS) on Jetson TX1. The speedup over
single-threaded (cpu-1) version is shown in bold text. The y-axis is in logarithmic scale.

miocki

- |
s I
4 warps o
-'::. > Next 128

<

(a) 2d-bs128

Bt 22 rowes

32 warps = 1024 theeads.

w{ s

22 warps = 1024 threads

mnn{ 8

(c) 1d-bs1024

<

{b) 2d-bs1024

Figure 6: The implementation diagrams for the mpcGpu SGEMV kernels.

4.2.2 Analysis

To help with tuning our kernels, four performance counters are
extracted using the NVIDIA’s command line profiler nvprof. These
performance counters include occupancy, instructions per cycle
(ipc), global memory load throughput (gld_throughput) and global
memory store throughput (gst_throughput) [24]. Two sampling
points (N=500, 1000) are studied since the cuBLAS switches ker-
nels depending on the data size. The statistics are illustrated in
Figure 7. We noticed that cuBLAS achieves better performance
with a lower occupancy level. The 2d—bs128 always achieves a
higher occupancy level than the other three. Although the ipc for
the 2d—bs1024 is 4.5x higher than the 2d—bs128, its throughput
is 5% less than 2d—bs128 on average. In the authors’ opinion, ipc
is not a good metric for evaluating the GPU performance. Since
SGEMYV is a memory-bound kernel, its performance is tightly cor-
related to the throughput of the global memory. The combined
throughput, gld_throughput and gst_throughput, of 2d—bs128
is the highest for N=>500. For N=1000, the combine throughput
of 2d—bs2014 is the highest among all the kernels.

In addition to the throughput-oriented metrics, we investigated
the top-3 stalling reasons for these implementations (see Table 3).
Increasing the workload per thread in cuBLAS introduces more
stalls due to the instruction latency, as indicated by stall_exe.
With a larger matrix, the primary stalling reason for 2d—bs1024
changes from local synchronization (stall_sync) to memory la-
tency (stall_mem). The performance of 1d—bs1024 heavily relies
on memory latency. For 2d—bs128, the stalling reasons are evenly
balanced among the different factors.

As shown in Figure 7, cuBLAS boosts the SGEMV throughput
from 1.14 to 3.76 Gflop/s, when N increases from 500 to 600.
This is due to a more efficient high-performance, low-occupancy
implementation. It reaches a peak of 5.65 Glop/s when N=1000.
For the cuBLAS SGEMV kernel, no transposition is applied to the
input matrix. When the row number NN is no larger than 900, the
2d—bs128 achieves the best performance, with an average of 2.3x
speedup compared to cuBLAS. 2d—bs1024 outperforms 2d—bs128

afterwards, by a margin of 7%. 2d—bs1024 outperforms cuBLAS
by 2.0x on average. For N=1000, the 2d—bs1024 achieves 7.45
Gflop/s throughput, which is 1.3x higher than cuBLAS. The 1D
version of matrix-vector multiplication 1d—bs1024 achieves 1.9x
speedup on average. Our motivation for developing a 1D SGEMV
kernel will be explained in the next section.

Table 3: Top-3 stalling factors for the SGEMYV kernels.

Matrix size 500 x 500

cuBLAS | 2d-bs128 | 2d-bs1024 | 1d-bs1024
stall_exec 37.61% - 24.84% 9.49%
stall_memory | 33.20% 25.58% - 72.44%
stall_texture - 31.32% - -
stall_sync 16.37% - 26.36% 7.07%
stall_other - 36.72% 20.12% -

Matrix size 1000 x 1000

cuBLAS | 2d-bs128 | 2d-bs1024 | 1d-bs1024
stall_exec 46.27 % - 23.59% 8.78%
stall_memory | 41.66% 26.98% 37.48% 77.01%
stall_texture - 31.67% - -
stall_sync - - 17.93% 4.29%
stall_other 4.81% 36.52% - -

4.3 Kernel Fusion
For each step of the QP solvers, multiple arithmetic operations

are performed. Some of them are called frequently in each iteration,
such as matrix-vector multiplication. Depending on the convergence
speed, the number of iterations can be significantly large. This
is not an issue for the CPU BLAS subroutines since the calling
overhead is low. However, it is a potential bottleneck for the GPU
implementation. Therefore, for most of the benchmarked cases
shown in Figure 5, the cuBLAS implementation is inferior to the
OpenBLAS implementation on the CPU.

To reduce the kernel launch overhead, multiple BLAS routines
are merged and computed within a single kernel. This technique is
known as kernel fusion[25]. However, the data dependency between

| —— CUELAS —— abslE I8 ——— 1o-bs1024 | 12

GFLOPS
O B N W e GO @

T T T T T
S00 600 70O BOO 900 1000
Matrix Size (NxN)

T T
1100 200 300 400

W CLbis @ 205108 - 20 belied w10 tsloed

W Cubias @ 200128 - 20 s lied @ Lo bsl0ed

S00xS00

1000x 1000

Figure 7: Comparison of the custom kernels with cuBLAS kernels for SGEMYV on Jetson TX1.

steps will introduce the need for explicit or implicit thread synchro-
nization. One possible solution is using a local barrier instead of
global synchronization. In this case, one single block is launched to
execute the fused computation. The aforementioned 1D SGEMV
kernel is applied under such circumstances. For instance, the dot
product of two vectors after matrix-vector multiplication can be
merged into a single kernel call. Ideally, all the subroutines can be
fused in such a way that the data movement and memory footprint is
significantly reduced. In Table 4, we show the number CUDA API
calls before and after applying kernel fusion. The API calls include
the BLAS routines, memory copy, and custom kernels.

Table 4: The CUDA API calls before and after fusing kernels.

cuBLAS | mpcGpu
ADMM-Init 4 1
ADMM-Iter 16 1
PQP-Init 9 9
PQP-Iter 24 1

4.3.1 ADMM Performance Optimization

For the ADMM solver, both the initialization and iteration steps
can be merged into one GPU kernel. For ADMM-Init, since there
are no parallel reduction operations, the 2D SGEMYV kernels are
applied for better performance. For ADMM-Iter, multiple schemes
have been investigated.

K1: 1D SGEMV kernel.

K2: 2D SGEMV kernel + parallel reduction + data transfer
K3: K2 using persistent thread block (ptb) method [26]
K4: K1 with loops inside the kernel

We consider K1 a greedy-fusion scheme since it aggressively
merges all the steps into a single kernel. K2 uses the adaptive-fision
scheme where separate kernels are called for different types of opera-
tions. In Table 5, a real world example with a matrix size of 325x325
is benchmarked. There are a total of 2282 iterations. By separating
the reduction operation from other kernel calls, K2 achieves the
lowest combined average runtime per call at 36.2us. The persistent
thread block method in K3 did not have much effect. Launching 1
monolithic block in K7 attains 59.9% occupancy compared to 90.0%
for K2. Running the iteration loop inside the kernel slows down the
performance significantly for K4. Compared to K/, K4 brings about
5.3x instructions per warp, 4.9x executed control-flow instructions
and 12.4x miscellaneous instructions executed by non-predicated
threads. Based on these observations, the adaptive-fusion scheme
used in K2, appears to be the most effective.

Table 5: Profiling summary for ADMM iteration.

Kernel Type | Calls | Time(%) | Avg/ Call
K1 1d sgemv 2282 98.9% 83.8us
K2 2d sgemv 2282 88.1% 32.8us
reduction 2282 9.2% 3.4us
K3 2d + ptb 2282 | 88.5% 34.1us
reduction 2282 9.0% 3.5us
K4 1d + loop 1 100.0% 8.4s

4.3.2 PQP Performance Optimization

The performance of the initialization stage of the PQP solver is
dominated by the SGEMM routine. cuBLAS provides significant
performance improvement over the CPU versions, as shown in
Figure 5 (c). For POP-Init, cuBLAS is applied to leverage the GPU
computing power on TX1.

There are seven computing steps during the initialization stage
of PQP (see Figure 1). These steps are not all data-dependent.
We can take advantage of Concurrent Kernel Execution (CKE) to
parallelize the computation of the independent steps [27, 28, 29].
After adopting CKE using CUDA streams, we observed 2-15%
improvement on GTX 970, as illustrated in Figure 8 (a). On TX1,
however, 2-37% performance degradation is observed in Figure 8 (b).
Concurrent kernel execution performance depends on the availability
of device resources. The TX1 has 2 streaming multiprocessors
compared to 13 on the GTX 970. The launched CUDA streams are
serialized on TX1 with a significant launching overhead. Therefore,
we use the default stream for all the POP-Init steps.

[W it W Il CKE] [W init W Iinil-CKE |

+2%

Runtime (ms)
o & @ “

-37%
L]

100 500
Matrix Size (NxN)

(b) TX1

500
Matri Size (NxN)
(&) GTX 970

Figure 8: Concurrent kernel execution performance on GTX 970
and TX1 for PQP-Init.

For the iteration step of the PQP solver, there are four different
execution paths as listed below.

e PQP-Iter-Accel: Run the acceleration step.

o PQP-Iter-Accel-CheckTerm: Run the acceleration step and
check termination.

o PQP-Iter-PQOP: Run the pqp step.

gz 73]

Runtime {ms)

Funtime gms)

FRuritime jms)

o
o

T T T T T T 71T ’ T T T T T T 7T
400 500 600 700 B00 900 100 100 200 300 400 500 600 700 B00 900 10C
Maxix Size (NxN) Matrix Size NxN)

(a) Accel Step (b) Pgp Step

o

100 200 300 400 500 600 700 BOO 900 100
Matix Size (NxN)

(c) Accel + CheckTerm

100 200 300 400 500 600 700 8O0 900 1000
Matrix Size (W)

(d) Pgp + CheckTerm

Figure 9: Performance of the greedy-fusion and adaptive-fusion scheme for PQP-iter. Zero Copy is applied to the adaptive-fusion during the

checkTerm step.

o PQP-Iter-PQP-CheckTerm: Run the pgp step and check ter-
mination.

The computation for each execution path can be merged into one
single kernel call. The CUDA memory copy to update the predicted
outcome is avoided by switching the data buffers between two
consecutive iterations. On the TX1, Zero Copy [30] is supported
with the integrated GPU sharing the host memory (see Table 2).
Leveraging this feature, we can reduce the data communication in
the checkTerm step.

In Figure 9, we present the results after adopting the greedy-fusion
and adaptive-fusion schemes for these execution paths. Iteration in-
side the kernel is avoided due to the significant performance impact.
For PQP-Iter-Accel in Figure 9(a), merging all the steps used by
the greedy-fusion scheme shows 50% better performance than the
adaptive-fusion scheme when N=100. As the matrix size increases,
adaptive-fusion achieves better performance than greedy-fusion.
On average, a speedup of 1.6x and 1.3x is obtained by adopting
adaptive-fusion for the Accel and Pgp step, respectively.

Zero Copy is adopted during the checkTerm step, as shown in Fig-
ure 9 (c) (d). For PQP-Iter-Accel-CheckTerm, the adaptive-fusion
scheme with Zero Copy achieves an average 1.7x speedup over the
greedy-fusion scheme. The benefit of the Zero Copy decreases as the
matrix size increases. For PQP-Iter-PQP-CheckTerm, an average
of 1.7x speedup over the greedy-fusion scheme is also observed by
adaptive-zp (adaptive-fusion with zero copy).

4.4 Performance Consolidation

The combined performance of all optimization techniques is pre-
sented in Figure 10 in terms of runtime per iteration. For ADMM-Init,
the mpcGpu exceeds the single-threaded cpu-1 after N=100, with
an average 5.8x speedup. The cpu-openblas is most efficient when
N <200,after which mpcGpu is superior. On average, it achieves
2.2x and 2.4x speedup compared to cpu-openblas and cuBLAS,
respectively.

As illustrated in Figure 10 (b), The CPU OpenBLAS implemen-
tation is the fastest when N <300. For N>300 mpcGpu obtains
an average of 3.8x speedup over cpu-1, 1.4x speedup over cpu-
openblas, and 4.6x speedup over cuBLAS.

For PQP-Init, mpcGpu utilizes cuBLAS and achieves 501.6x
speedup over cpu-1 and 19.3x speedup over cpu-openblas on aver-
age. For PQP-Iter-Accel, mpcGpu is 3.1x faster than cpu-1, 1.1x
faster than cpu-openblas and 2.6x faster than cuBLAS. With the
check termination step, mpcGpu outperforms cpu-1, cpu-openblas
and cuBLAS by 3.7x, 1.3x and 3.0x, respectively. The performance
impact on PQP-Iter-PQP using the 1D and 2D SGEMV kernels are
shown in Figure 10 (f) and (g). The 2D version is 1.3x faster than the
1D version. For PQP-Iter-PQP, our implementation attains an av-
erage of 3.0x speedup over cpu-1, 2.1x speedup over cpu-openblas
and 2.5x speedup over cuBLAS. For PQP-Iter-PQP-CheckTerm,
our mpcGpu performs 2.7x better than cpu-1, 1.4x better than cpu-

openblas and 2.7x better than cuBLAS. It is observed that, when
N>200, the mpcGpu runs faster than the CPU counterparts.

Finally, we evaluated the runtime of the optimized PQP and
ADMM algorithms on 10 real world MPC examples ranging in size
from 70 to 980. The problem sizes are odd because it is not always
possible to formulate a real MPC problem that results in a particular
problem size. In order to make a fair comparison, the number of
iterations was fixed at 1000 for all cases. The results are summarized
in Figure 11. The OpenBLAS CPU version is superior when the
problem size is smaller than about 300 for ADMM and 200 for
PQP. After that, the GPU version has the shortest runtime. In the
best case, for ADMM, mpcGpu achieves 46.6x speedup over the
single-threaded CPU version (cpu-1), and 2.7x over the optimized
CPU OpenBLAS version. For PQP, mpcGpu attains a maximum
speedup of 41.2x relative to cpu-1 and 4.2x relative to openBLAS.

Figure 12 illustrates the same data in terms of achievable MPC
controller frequency. Over the range of problem sizes, mpcGPU
achieves an update rate between 10 Hz and 1.7 Hz for PQP and 14
Hz and 3.4 Hz for ADMM.

S. RELATED WORK

Model Predictive Control is a widely applied control method for
anticipating future events for a short time horizon [31]. ADMM and
PQP are two popular approaches to solving the convex optimiza-
tion problem at the heart of MPC [10, 32, 9]. The PQP algorithm
proposed by Brand et al.obtained a speedup of 5-10x against the Mat-
lab quadratic Programming solver quadprog on the Intel Core™?2
CPU [33]. Frison and Jgrgensen proved that the ARM Cortex CPU
are suitable for embedded MPC [34]. A FPGA architecture with
reduced precision fix-point arithmetic for ADMM is designed by
Jerez et al. [35]. With the advent of general purpose computing on
GPUs, GPU-accelerated interior point methods for convex optimiza-
tion problems have been proposed by Gade-Nielsen et al. [36]. On
the NVIDIA Tesla C2050, their GPU kernels achieve 6x speedup
compared to the corresponding Matlab version running on the Intel
Core i7 930 CPU. Regarding to optimizing dense matrix-vector mul-
tiplication on GPUs, KBLAS reports an 50%-60% impromentment
on the state-of-the-art GPU BLAS libraries [37]. Optimizing GPU
kernels for these iterative solvers is non-trivial. Several optimization
principles for iterative solvers are proposed by Tarjan et al. [38].
Applying large kernels, memory reuse, kernel execution overlapping
and persistent thread blocks, their GPU implementation achieves
more than 200x speedup over Matlab for the MGVF application.

Runfime jms)

FRusime (ms)

T

100 200 300 400 SO0 600 700 0D 800 1000
Matnx Sizo (NxN)

(a) ADMM-Init

100 200 300 400 500 600 700 8OO 900 1000

Mairix Size (NxH)

(b) ADMM-lter

100 200 300 400 S00 600 700 BOO 900 1000
Mairix Size (Nxh)

(c) PQP-Init

T T T T T T T
100 200 300 400 S00 GO0 70O 800 900 1000
Matiix Size (e}
(d) PQP-Iter-Accel

B goue—s— amm—a— mpcon)] P8— qui—s— qette—s— atls—e— nuGpjf—e— qul—s— quom—s— otie—a— moGPy
100 10 10

I

Rungime {ms)

Rungme {ms)

T T T T T T 7T
100 200 300 400 500 GO0 70O HOD S00 1000
Matnix Size (NxN)

(e)PQP-lter-Accel-CheckTerm

Figure 10:

Ll —TTT T T T

100 200 300 400 500 600 700 800 900 1000

Matrix Size (NN}

(1) PQP-Iter-PQP-1D

=TT T T T T T
100 200 300 400 500 GO0 700 BO0 900 1000

Matrix Size (NxN)

(g) PQP-ter-PQP-2D

T T T T T T
100 200 300 400 SO0 600 70O 8O0 S00 1000
Matnx Size (NxN)

(h) PQP-lter-PQP-CheckTerm

Performance after adopting efficient SGEMV and kernel fusion on Jeston TX1.

| —8— cpu-l —+— openblas —— mpcGpu |

100000
10000
£1000 1
@
£ 100
£
g 10
1 Ll L] Ll T Ll T T T
79 195 260 325 455 520 650 715 819 975
Problem Size
(a) ADMM
L_—S—cpel —e—opeblas > mpcom]
100000
10000
v 2
E I -
@
£ 100
E 1,/.'/,'
g 10
1 T T T Ll L T T T
70 140 210 350 490 560 630 714 840 980
Problem Size
(b) PQP

Figure 11: The performance of mpcGpu on Jetson TX1 for the
ADMM and PQP solver. The runtime is in logarithmic scale.

6. CONCLUSION AND FUTURE WORK

This work demonstrates that GPU computing can be leveraged
to achieve higher performance in embedded MPC applications. We
have optimized the SEGMYV operation for small matrix sizes by ap-
plying a combination of advanced CUDA programming techniques.

Our GPU implementations of PQP and ADMM have achieved
41.2x-46.6x speedups relative to single threaded CPU implemen-
tations and 2.7x-4.2x speedups relative to optimized OpenBLAS
implementations. As we stated in the introduction, advanced MPC
applications require QP solutions in milliseconds or microseconds.
Clearly, the TX1 can not achieve those update rates. However, there
may be some MPC applications that are better suited to GPU ac-
celeration. These may include systems with slower dynamics and
or systems with larger problem sizes. In future work, we plan to
develop a performance model to tune MPC solvers on different ar-
chitectures and adaptively select the best runtime version according

| —— cpu-1 —— apenblas —r— mpcGpu |
100 4
w~ 10
z
= 1 -
g
]
g 01
iy
0‘01 T L] T T T T L} T 1
79 195 260 325 455 520 650 715 819 975
Problem Size
(a) ADMM
| —8— cpul —+— openblas —H— mpcGpu I
10
=
L
e
3
c
g
2 01
@
w
0.01 T L Ll Ll Ll LE LE LE 1
70 140 210 350 490 560 630 714 840 980
Problem Size
(b) PQP

Figure 12: Achievable MPC controller frequency for the mpcGpu
implementations of ADMM and PQP.

to the problem size. In addition, significant work on deterministic
scheduling of real-time GPU applications will be required before
GPUs can be leveraged in real-time systems.

7. REFERENCES

[1] S. Di Cairano, “An industry perspective on MPC in large
volumes applications: Potential Benefits and Open
Challenges,” in Proc. 4th IFAC Nonlinear Model Predictive
Control Conference, (Noordwijkerhout, The Netherlands),
pp. 52-59, 2012.

S. Di Cairano, D. Yanakiev, A. Bemporad, I. Kolmanovsky,
and D. Hrovat, “Model predictive idle speed control: Design,
analysis, and experimental evaluation,” IEEE Tr. Contr. Sys.
Technology, vol. 20, no. 1, pp. 84 -97, 2012.

S. Di Cairano, H. Park, and 1. Kolmanovsky, “Model
predictive control approach for guidance of spacecraft

(2]

[3]

(4]

(]

(6]

(71

[8

—_—

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

rendezvous and proximity maneuvering,” Int. J. Rob.
Nonlinear Control, 2012.

S. Boyd and L. Vandenberghe, Convex optimization.
Cambridge University Press, 2004.

J. Nocedal and S. Wright, Numerical optimization. Springer
verlag, 1999.

S. Richter, C. Jones, and M. Morari, ‘“Real-time
input-constrained mpc using fast gradient methods,” in Proc.
48th IEEE Conf. on Dec. and Control, (Shangai, China),

pp. 7387-7393, 2009.

A. Bemporad and P. Patrinos, “Simple and certifiable
quadratic programming algorithms for embedded control,” in
Proc. 4th IFAC Nonlinear Model Predictive Control
Conference, (Noordwijkerhout, The Netherlands), 2012.

M. Kogel and R. Findeisen, “Fast predictive control of linear
systems combining Nesterov’s gradient method and the
method of multipliers,” in Proc. 51st IEEE Conf. on Dec. and
Control, (Orlando, FL), pp. 501-506, 2011.

S. Di Cairano and M. Brand, “On a multiplicative update dual
optimization algorithm for constrained linear mpc,” in 52nd
IEEE Conference on Decision and Control, pp. 1696-1701,
IEEE, 2013.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and
Trends®) in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.
A. U. Raghunathan and S. Di Cairano, “Optimal step-size
selection in alternating direction method of multipliers for
convex quadratic programs and model predictive control,” in
Proceedings of Symposium on Mathematical Theory of
Networks and Systems, pp. 807-814, 2014.

A. U. Raghunathan and S. Di Cairano, “Infeasibility detection
in alternating direction method of multipliers for convex
quadratic programs,” in 53rd IEEE Conference on Decision
and Control, pp. 5819-5824, IEEE, 2014.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, “GPU Computing,” Proceedings of the
IEEE, vol. 96, no. 5, pp. 879-899, 2008.

J. Nickolls and W. J. Dally, “The GPU Computing Era,”
Micro, IEEE, vol. 30, no. 2, pp. 56-69, 2010.

NVIDIA, “NVIDIA GeForce GTX 1080 Whitepaper,” 2016.
Top500, “List of top 500 supercomputers.”
https://www.top500.0rg/lists/2016/06/,
2016.

R. C. Whaley and J. J. Dongarra, “Automatically tuned linear
algebra software,” in Proceedings of the 1998 ACM/IEEE
conference on Supercomputing, pp. 1-27, IEEE Computer
Society, 1998.

Z. Xianyi, W. Qian, and Z. Yunquan, “Model-driven level 3
blas performance optimization on loongson 3a processor,” in
Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th
International Conference on, pp. 684—691, IEEE, 2012.

E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum,

A. McKenney, J. Du Croz, S. Hammerling, J. Demmel,

C. Bischof, and D. Sorensen, “Lapack: A portable linear
algebra library for high-performance computers,” in
Proceedings of the 1990 ACM/IEEE conference on
Supercomputing, pp. 2-11, IEEE Computer Society Press,
1990.

NVIDIA, “Basic Linear Algebra Subroutines (cuBLAS),”
2016.

[21]

(22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek,

S. Tomov, and I. Yamazaki, “Accelerating numerical dense
linear algebra calculations with gpus,” Numerical
Computations with GPUs, pp. 1-26, 2014.

V. Volkov, “Better performance at lower occupancy,” in
Proceedings of the GPU Technology Conference, GTC,

vol. 10, 2010.

J. Demouth, “Shuffle: Tips and Tricks,” GPU Technology
Conference, 2013.

NVIDIA, “Command-line Profiler,” 2016.

J. Filipovi¢, M. Madzin, J. Fousek, and L. Matyska,
“Optimizing cuda code by kernel fusion: application on blas,”
The Journal of Supercomputing, vol. 71, no. 10,

pp- 3934-3957, 2015.

K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent
threads style gpu programming for gpgpu workloads,” in
Innovative Parallel Computing (InPar), 2012, pp. 1-14, IEEE,
2012.

S. Rennich, “Cuda C/C++ Streams and Concurrency,”’
NVIDIA GPU Computing Webinars, 2012.

F. Wende, T. Steinke, and F. Cordes, “Multi-threaded Kernel
Offloading to GPGPU Using Hyper-Q on Kepler Architecture,”
Tech. Rep. ZIB-Report 14-19, Zuse Institute Berlin, Zuse
Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany, Jun
2014.

L. Yu, Y. Ukidave, and D. Kaeli, “GPU-accelerated HMM for
Speech Recognition,” in 2014 43rd International Conference
on Parallel Processing Workshops, pp. 395-402, IEEE, 2014.
ArrayFire, “Zero Copy on Tegra K1.” http:
//arrayfire.com/zero-copy-on-tegra-k1l/.
M. Morari and J. H. Lee, “Model predictive control: past,
present and future,” Computers & Chemical Engineering,
vol. 23, no. 4, pp. 667-682, 1999.

M. Annergren, A. Hansson, and B. Wahlberg, “An admm
algorithm for solving DS 1 regularized mpc,” in 2012 IEEE
51st IEEE Conference on Decision and Control (CDC),

pp. 4486-4491, IEEE, 2012.

M. Brand, V. Shilpiekandula, C. Yao, S. A. Bortoff,

T. Nishiyama, S. Yoshikawa, and T. Iwasaki, “A parallel
quadratic programming algorithm for model predictive
control,” IFAC Proceedings Volumes, vol. 44, no. 1,

pp. 1031-1039, 2011.

G. Frison and J. B. Jgrgensen, “Mpc related computational
capabilities of armv7a processors,” in Control Conference
(ECC), 2015 European, pp. 3414-3421, IEEE, 2015.

J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides,

E. C. Kerrigan, and M. Morari, “Embedded online
optimization for model predictive control at megahertz rates,”
IEEE Transactions on Automatic Control, vol. 59, no. 12,

pp- 3238-3251, 2014.

N. F. Gade-Nielsen, J. B. Jgrgensen, and B. Dammann, “MPC
toolbox with GPU accelerated optimization algorithms,” in
10th European Workshop on Advanced Control and Diagnosis,
2012.

A. Abdelfattah, D. Keyes, and H. Ltaief, “Kblas: an optimized
library for dense matrix-vector multiplication on gpu
accelerators,” ACM Transactions on Mathematical Software
(TOMS), vol. 42, no. 3, p. 18, 2016.

D. Tarjan, K. Skadron, and P. Micikevicius, “The art of
performance tuning for CUDA and manycore architectures,”
Birds-of-a-feather session at SC, vol. 9, 2009.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2017-033.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

