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Abstract
Total variation (TV) is a one of the most popular regularizers for stabilizing the solution
of ill-posed inverse problems. This paper proposes a novel proximal-gradient algorithm for
minimizing TV regularized least-squares cost functionals. Unlike traditional methods that
require nested iterations for computing the proximal step of TV, our algorithm approximates
the latter with several simple proximals that have closed form solutions. We theoretically
prove that the proposed parallel proximal method achieves the TV solution with arbitrarily
high precision at a global rate of converge that is equivalent to the fast proximal gradient
methods. The results in this paper have the potential to enhance the applicability of TV for
solving very large scale imaging inverse problems.

IEEE Transactions on Image Processing

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2017
201 Broadway, Cambridge, Massachusetts 02139





A PARALLEL PROXIMAL ALGORITHM FOR ANISOTROPIC TV 1

A Parallel Proximal Algorithm for Anisotropic
Total Variation Minimization

Ulugbek S. Kamilov, Member, IEEE

Abstract—Total variation (TV) is a one of the most popular reg-
ularizers for stabilizing the solution of ill-posed inverse problems.
This paper proposes a novel proximal-gradient algorithm for
minimizing TV regularized least-squares cost functionals. Unlike
traditional methods that require nested iterations for computing
the proximal step of TV, our algorithm approximates the latter
with several simple proximals that have closed form solutions. We
theoretically prove that the proposed parallel proximal method
achieves the TV solution with arbitrarily high precision at a
global rate of converge that is equivalent to the fast proximal-
gradient methods. The results in this paper have the potential
to enhance the applicability of TV for solving very large scale
imaging inverse problems.

Index Terms—Proximal gradient method, total variation reg-
ularization, inverse problems, convex optimization

I. INTRODUCTION

The problem of estimating an unknown signal from noisy
linear observations is fundamental in signal processing. The
estimation task is often formulated as the linear inverse
problem that consists in the minimization of a cost functional.
The latter typically includes a quadratic data-fidelity term, as
well as a regularizer that mitigates the ill-posedness of the
problem by promoting solutions with desirable properties such
as transform-domain sparsity or positivity.

One of the most widely used regularizers in the context of
image reconstruction is total variation (TV). TV was originally
introduced by Rudin et al. [1] as a regularization approach
capable of reducing noise, while preserving image edges. It
is often interpreted as a sparsity-promoting `1-penalty on the
image gradient and has proven to be successful in a wide range
of applications in the context of sparse recovery of images
from incomplete or corrupted measurements [2]–[8].

The minimization of TV regularized cost functionals is
a nontrivial optimization task. The challenging aspects are
the non-smooth nature of the regularization term and the
large amount of data that needs to be processed in a typical
application. Proximal gradient methods [9] such as iterative
shrinkage/thresholding algorithm (ISTA) [10]–[12] and its
accelerated variants [13], [14] are standard approaches to
circumvent the non-smoothness of the TV regularizer and
are among the methods of choice for solving practical linear
inverse problems.

Nonetheless, ISTA–based optimization of TV is compli-
cated by the fact that the corresponding proximal operator does
not have a closed form solution. Practical implementations rely
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on computational solutions that require an additional nested
optimization algorithm for evaluating the TV proximal [15],
[16]. This typically leads to a prohibitively slow reconstruction
when dealing with very large scale imaging problems such as
the ones in 3D computational imaging.

In this paper, we propose a novel approach for solving TV–
based imaging problems that requires no nested iterations. We
consider anisotropic variant of TV and eliminate sub-iterations
by approximating the exact proximal with an alternative that
evaluates several simpler proximal operators that have closed
form solutions. Conceptually, our method builds upon two
distinct lines of prior research on inexact proximal-gradient
algorithms [17]–[20] and cycle spinning [10], [21]–[23]. We
believe that the results presented in this paper are useful to
practitioners working with very large scale problems where
the bottleneck is in the evaluation of the TV proximal.

Two key contributions of this paper are summarized as
follows
• New parallel proximal-gradient method for solv-

ing anisotropic TV regularized reconstruction prob-
lems. The algorithm builds upon fast iterative shrink-
age/thresholding algorithm (FISTA) [15], but avoids sub-
iterations by exploiting a specific decomposition of TV
as an average of several simple regularizers.

• Theoretical analysis of the method proving that it
achieves the TV solution with arbitrarily high precision
at a global convergence rate of O(1/t2), where t denotes
the iteration number. This makes the proposed algorithm
ideal for solving very large-scale image reconstruction
problems, where nested optimization is undesirable. In
addition, we experimentally illustrate possible computa-
tional gains due to our approach on the problems of image
deconvolution and super-resolution.

A. Related Work

The results in this paper are most closely related to the work
on TV–based image reconstruction by Beck and Teboulle [15].
Their approach for solving TV requires an additional nested
FISTA, implemented in the dual form, for evaluating the
proximal. Our aim is to avoid sub-iterations by replacing the
exact TV proximal with a specific approximation that can still
guarantee convergence to the TV solution. While Beck and
Teboulle’s approach considers both isotropic and anisotropic
variants of the TV reguralization, we restrict our attention to
anisotropic TV.

In another related work, Condat [24] proposed a direct algo-
rithm for 1D TV proximal, which can be used to accelerate the
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resolution of 1D TV-regularized inverse problems. Approach
taken in this paper is fundamentally different, where instead
of finding an exact computational solution for evaluating the
proximal, we find a suitable approximation. This, however, al-
lows our method to generalize to inverse problems of arbitrary
number of dimensions.

From the convex optimization perspective, our work is
related to inexact proximal-gradient algorithms that were ex-
tensively studied for various applications. For example, in
the context of online learning, Zinkevich [25] has proposed
an incremental projected-gradient algorithm that minimizes
a smooth cost functional by evaluating its partial gradients.
He has proved that, with a proper adaptation of the step
size, the algorithm reaches the minimizer at a global con-
vergence rate of O(1/

√
t). The algorithm and its analysis

were extended by Duchi and Singer [26] for optimizing cost
functionals containing non-smooth regularizers. Bertsekas [18]
further generalized those results to include algorithms that
combine partial gradient, subgradient, and proximal iterations.
D’Aspremont [17] showed that optimal O(1/t2) complexity of
Nesterov’s algorithm [27] is preserved, when the gradient is
computed only up to a small, uniformly bounded error. More
recently, Schmidt [19] and Devolder et al. [20] have investi-
gated the convergence rates of proximal-gradient algorithms
when proximals are approximated iteratively.

The results in this paper are also related to a technique
called cycle spinning that is commonly used for improving
the performance of wavelet-domain regularization [28]. The
concept was first introduced by Coifman and Donoho [21] for
wavelet-domain denoising. The recursive approach to cycle
spinning was studied by Fletcher et al. [29]. Cycle spinning
was then applied to more-general linear inverse problems
by Figueiredo and Nowak [10]. Currently, it is used in the
majority of waveled-based reconstuction algorithms to obtain
higher-quality solutions with less-blocky artifacts [30]–[33].
Finally, two earlier papers with the author established the
relationship between cycle spinning and TV [22], [23], but
concentrated on different types of optimization algorithms.
Those prior works have inspired the preliminary version
of this paper [34] that concentrated on the standard ISTA
without acceleration. This paper significantly extends [34] by
providing extensive theoretical and empirical justifications of
fast parallel proximal algorithm for TV minimization.

II. BACKGROUND

A. Problem Formulation

We consider a linear inverse problem

y = Hx+ e, (1)

where the goal is to compute the unknown signal x ∈ RN
from the noisy measurements y ∈ RM . Here, the matrix H ∈
RM×N models the response of the acquisition device and the
vector e ∈ RM represents the measurement noise, which is
often assumed to be i.i.d. Gaussian. When the problem (1) is
ill-posed, the standard approach is to formulate the estimation

as the following minimization problem

x̂ = argmin
x∈RN

{C(x)} (2)

= argmin
x∈RN

{D(x) +R(x)} (3)

where

D(x) ,
1

2
‖y −Hx‖2`2 (4)

is the quadratic data fidelity term. Two common variants of
TV are the anisotropic TV regularizer

R(x) , λ‖Dx‖`1 = λ

N∑
n=1

D∑
d=1

|[Ddx]n| (5)

and isotropic TV regularizer

R(x) , λ

N∑
n=1

‖[Dx]n‖`2 = λ

N∑
n=1

√√√√ D∑
d=1

([Ddx]n)2. (6)

Here, D : RN → RN×D is the discrete gradient operator,
λ > 0 is a parameter controlling amount of regularization, and
D is the number of dimensions in the signal. The matrix Dd

denotes the finite difference operation along the dimension d
with appropriate boundary conditions (periodization, Neumann
boundary conditions, etc.).

B. Fast Iterative Shrinkage/Thresholding Algorithm

One popular approach for solving (2) is ISTA

xt ← proxγtR(x
t−1 − γt∇D(xt−1)), (7)

where the gradient of the quadratic term is given by

∇D(x) = HT (Hx− y) (8)

and γt > 0 is a step-size that can be set to γt = 1/L with
L , λmax(H

TH) to ensure convergence [14]. Iteration (7)
combines the gradient-descent step with a proximal operation
defined as

proxγR(z) , argmin
x∈RN

{
1

2
‖x− z‖2`2 + γR(x)

}
. (9)

The proximal operator (9) corresponds to the regularized
solution of the denoising problem where H is an identity.

Although elegant and simple, it is well known that ISTA
only achieves a suboptimal convergence rate of O(1/t). Its
accelerated version FISTA can be described as follows

xt ← proxγtR(u
t−1 − γt∇D(ut−1)) (10a)

qt ←
(
1 +

√
1 + 4q2t−1

)
/2 (10b)

ut ← xt + (qt−1 − 1)/qt)(x
t − xt−1) (10c)

with u0 = x0 and q0 = 1. Method (10) preserves the
simplicity of ISTA (7), but provides a significantly better
rate of convergence as summarized in the following theorem
from [14].
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Theorem 1. Assume a fixed step size γt = γ ∈ (0, 1/L]
and let {xt}t=1,2,... be the sequence of estimates generated
by FISTA. Then for any t ≥ 1, we have that

C(xt)− C(x∗) ≤ 2

γ(t+ 1)2
‖x0 − x∗‖2`2 , (11)

where x∗ is a minimizer of C.

The change in convergence rate from O(1/t) to O(1/t2) be-
comes crucial when solving very large scale inverse problems,
where one tries to reduce the amount of matrix-vector products
with H and HT.

Application of ISTA and FISTA is straightforward for
regularizers such as `1-penalty that admit closed form proxi-
mal operators (9). However, many other popular regularizers
including TV do not have closed form proximals and require
an additional iterative algorithm for solving (9). This adds
significant computational overhead to the estimation process,
which we shall eliminate for the anisotropic TV in the next
section.

III. PROPOSED APPROACH

In this section, we present our main results. We start by
introducing the proposed approach and then follow up by
analyzing its convergence.

A. General formulation

We turn our attention to a more general optimization prob-
lem

x̂ = argmin
x∈RN

{C(x)} , (12)

where the cost functional is of the following form

C(x) = D(x) +R(x) = D(x) + 1

K

K∑
k=1

Rk(x). (13)

The precise connection between (13) and TV-regularized
cost functional will be discussed shortly. We assume that
the data-fidelity term D is convex and differentiable with
a Lipschitz continuous gradient. This means that there ex-
ists a constant L > 0 such that, for all x, z ∈ RN ,
‖∇D(x)−∇D(z)‖`2 ≤ L‖x− z‖`2 . We also assume that
each Rk is a continuous, convex function that is possibly
nondifferentiable and that the optimal value C∗ is finite and
attained at x∗ (which is not necessarily unique).

We consider fast parallel proximal algorithms that have the
following form

xt ← 1

K

K∑
k=1

proxγtRk
(ut−1 − γt∇D(ut−1)) (14a)

qt ←
(
1 +

√
1 + 4q2t−1

)
/2 (14b)

ut ← xt + (qt−1 − 1)/qt)(x
t − xt−1), (14c)

with u0 = x0 and q0 = 1. Here, proxγtRk
is the proximal

operator associated with γtRk. We are specifically interested
in the case where the proximals proxγtRk

have closed forms,

W1 W2 W3 W4

Fig. 1. Decomposition of a 4 × 4 image into 4 orthogonal wavelets
{Wk}k∈[1,...,4] with periodic boundary conditions. Arrows indicate pixels
used for computing averages and differences for the transforms.

in which case they are preferable to the computation of the
full proximal proxγtR.

We now establish a connection between (13)
and TV-regularized cost. Define a linear transform
W : RN → RN×D×2 that consists of two sub-operators:
the averaging operator A : RN → RN×D and the discrete
gradient D as in (5), both normalized by 1/

√
2. The averaging

operator consists of D matrices Ad that denote the pairwise
averaging along the dimension d. Accordingly, the operator
W is a union of scaled and shifted discrete Haar wavelet
and scaling functions along each dimension [28]. Since
we consider all possible shifts along each dimension the
transform is redundant and can be interpreted as the union of
K = 2D, scaled, orthogonal tranforms

W =

W1

...
WK

 . (15)

Figure 1 illustrates the grouping of differences and averages
into 4 wavelets for a 2D image. The transform W and its
pseudo-inverse

W† =
1

K
[WT

1 . . .W
T
K ] (16)

satisfy the following two properties of Parseval frames [35]

argmin
x∈RN

{
1

2
‖z−Wx‖2`2

}
= W†z (for all z ∈ RKN )

and

W†W = I. (17)

One can thus express the anisotropic TV regularizer as the
following sum

R(x) = λ
√
2

K∑
k=1

∑
n∈Hk

|[Wkx]n|, (18)

where Hk ⊆ [1 . . . N ] is the set of all detail coefficients of the
transform Wk. Then, the proposed parallel proximal algorithm
for TV can be expressed as follows

zt ← xt−1 − γtHT (Hxt−1 − y
)

(19a)

xt ← 1

K

K∑
k=1

WT
kT (Wkz

t;
√
2Kγtλ), (19b)
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and fast parallel proximal algorithm can be expressed as

zt ← ut−1 − γtHT (Hut−1 − y
)

(20a)

xt ← 1

K

K∑
k=1

WT
kT (Wkz

t;
√
2Kγtλ) (20b)

qt ← (1 +
√

1 + 4q2t−1)/2 (20c)

ut ← xt + (qt−1 − 1)/qt)(x
t − xt−1), (20d)

with u0 = x0 and q0 = 1. Here, T is the component-wise
shrinkage function

T (y; τ) , max(|y| − τ, 0) y|y| , (21)

which is applied only on scaled differences Dzt.
The algorithm in (19) is closely related to a technique called

cycle spinning [21] that is commonly used for improving the
performance of wavelet-domain denoising. In particular, when
H = I and γt = 1, for all t = 1, 2, . . . , the algorithm yields
the solution

x̂←W†T (Wy;
√
2Kλ), (22)

which can be interpreted as the traditional cycle spinning
algorithm restricted to the the Haar wavelet-transform.

B. Theoretical convergence

The convergence results in this section assume that the
gradient of D and subgradients of Rk are bounded, i.e., there
exists G > 0 such that for all k and t, ‖∇D(xt)‖`2 ≤ G and
‖∂Rk(xt)‖`2 ≤ G. The following proposition that we prove
in the appendix establishes the convergence of the fast parallel
proximal algorithm.

Proposition 1. Assume a fixed step size γt = γ ∈ (0, 1/L].
Then, we have that

C(xt)− C(x∗) ≤ 2

γ(t+ 1)2
‖x0 − x∗‖2`2 + 4γG2. (23)

Proof: See Appendix.

Proposition 1 states that for a constant step-size, convergence
can be established to the neighborhood of the optimimum,
which can be made arbitrarily close to 0 by letting γ → 0.
Additionally, the global convergence rate of fast parallel prox-
imal algorithm matches that of FISTA. Note that the result
here extends the preliminary work [34] that established the
convergence of the standard parallel proximal algorithm (19).

IV. NUMERICAL EXAMPLES

The main purpose of this section is to empirically demon-
strate the convergence of our fast parallel proximal algorithm
(FPPA) and validate our theoretical contribution in Propo-
sition 1. We additionally present some comparisons of TV
against some other state-of-the-art methods on the problem
of single image super-resolution. All the simulations were
performed with MATLAB on an Apple iMac with a 4 GHz
Intel Core i7 processor and 32 GBs of memory.
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Fig. 2. Four examples from the standard image dataset Set14. From left
to right: Man, Baboon, Barbara, and Coastguard.
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Fig. 3. Recovery of test images from blurry and noisy measurements. The
relative cost accuracy (C(xt)−C(x∗))/C(x∗) is plotted against the iteration
number for 3 distinct step-sizes γ. The top dotted line corresponds to the
theoretical upper bound (11), while the bottom one plots the evolution of the
relative cost accuracy of the exact TV-FISTA. This plot illustrates the accuracy
of FPPA relative to the minimizer of the TV cost functional.

A. Empirical Validation of Proposition 1

To empirically validate the convergence of the algorithm,
we consider an image deblurring problem where the blur is a
5 × 5 Gaussian of variance 2 and where the blurry image is
contaminated with an additive white Gaussian noise (AWGN)
of 30 dB SNR. We evaluate the performance on a standard
image dataset Set14, used in the previous works [36]–[38].
Following these works, only the luminance component of color
images was considered. Some examples from the dataset are
illustrated in Figure 2.

The simulation results on all 14 images are summa-
rized in Table I. There we compare FPPA against the
exact TV-FISTA [15], which computes the TV proxi-
mal iteratively in the dual domain. For FPPA, we con-
sider 3 different step-sizes γ = 1/L, γ = 1/(4L), and
γ = 1/(16L), where L = λmax(H

TH) is the Lipschitz constant,
and report three quantities: (a) the relative cost accuracy
(C(xt)− C(x∗))/C(x∗), (b) the relative peak signal-to-noise
ratio (PSNR) in dB with respect to the TV solution x∗, and (c)
the speedup factor. The images xt and x∗ are computed with
FFPA and the exact TV-FISTA, respectively, and C is the TV-
regularized least-squares cost. The regularization parameter λ
was manually selected for the optimal PSNR performance of
TV. To ensure the convergence, we deliberately select the same
strict stopping rules for all the algorithms; they are run for a
maximum of tmax = 104 iterations with an additional stopping
criterion based on measuring the relative change of the solution
in two successive iterations

‖xt − xt−1‖`2
‖xt−1‖`2

≤ 10−5. (24)

The maximal number of inner iterations for the proximal of
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TABLE I
THE RELATIVE COST, PSNR WITH RESPECT TO THE TV SOLUTION, AND THE SPEEDUP FACTOR FOR THE IMAGES FROM SET14.

Set14 γ = 1/L γ = 1/(4L) γ = 1/(16L)
Images Cost Accuracy PSNR rel. TV Time Cost Accuracy PSNR rel. TV Time Cost Accuracy PSNR rel. TV Time

Baboon 0.0035 48.40 ×16 0.0009 58.45 ×10 0.0002 65.52 ×7
Barbara 0.0062 48.01 ×19 0.0016 57.24 ×11 0.0004 65.89 ×7
Bridge 0.0089 45.66 ×20 0.0023 55.14 ×12 0.0006 64.89 ×8
Coastguard 0.0081 46.81 ×14 0.0021 55.95 ×8 0.0005 65.23 ×5
Comic 0.0087 43.32 ×13 0.0023 52.65 ×8 0.0006 62.13 ×5
Face 0.0290 43.84 ×13 0.0083 51.70 ×7 0.0022 61.21 ×5
Flowers 0.0097 47.13 ×12 0.0026 56.32 ×8 0.0007 65.42 ×5
Foreman 0.0130 43.03 ×15 0.0037 51.23 ×9 0.0010 60.38 ×5
Lenna 0.0260 41.06 ×22 0.0080 48.67 ×12 0.0021 57.70 ×8
Man 0.0084 47.61 ×17 0.0022 56.88 ×10 0.0006 66.22 ×7
Monarch 0.0200 43.73 ×19 0.0058 51.85 ×12 0.0015 60.96 ×8
Pepper 0.0130 44.31 ×19 0.0038 52.66 ×12 0.0010 61.84 ×8
Ppt3 0.0160 41.69 ×16 0.0047 49.50 ×9 0.0012 58.03 ×6
Zebra 0.0160 41.49 ×13 0.0044 50.29 ×8 0.0011 59.95 ×5
Average 0.0133 44.72 ×16 0.0038 53.47 ×10 0.0009 62.53 ×6
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TV-FISTA was set to 100, also with a stopping criterion (24).
Figure 3 illustrates the evolution of the relative cost accuracy

at every iteration of FPPA. It also reports the theoretical upper
bound on the performance of FISTA in (11), as well as the

actual evolution of the relative cost accuracy at every iteration
of TV-FISTA. Figures 4 and 5 show the evolution of the cost
C and PSNR, respectively, in the first 100 iterations of the
algorithms. These figures highlight the convergence of FFPA
and TV-FISTA within those 100 iterations, which indicates
that the stoping criterion selected above was sufficiently strict.
Finally, Figures 6 and 7 offer visual and quantitative evaluation
of the final estimated images for Man and Baboon.

Proposition 1 suggests that the gap (C(xt) − C(x∗)) is
proportional to the step-size and shrinks to 0 as the step-size
is reduced. Such behavior is clearly observed both in Table I
and Figure 3. This suggests that our theoretical result is also
valid in practice. On average, the relative cost accuracy for
Set14 is about 1.33% at γ = 1/L, and decreases further
for γ = 1/(4L) and γ = 1/(16L). Additionally, we note
that the solution of our algorithm is very close to that of
TV-FISTA visually and quantitatively. This implies that, while
requiring no nested iterations, FPPA can potentially approx-
imate the solution of TV with arbitrarily accurate precision
at O(1/t2) convergence rate of FISTA. Note also that FPPA
is substantially faster that the standard approach that requires
sub-iterations. For example in our simulations, FPPA achieved
an average speed-up of 16 for γ = 1/L on the Set14 images.

B. Discussion on TV-based Imaging

Minimization of TV regularized cost functionals is one of
many approaches for reconstructing images from their linear
measurements. A vast majority of these approaches rely on
some form of prior information or constraints for regularizing
the image formation process [39]. Depending on the type of
prior information, algorithms can be loosely classified into
several categories including traditional linear methods [40],
Bayesian and statistical methods [35], [41]–[44], optimization
based methods with pre-specified regularizers [45]–[48], patch
based methods exploiting similarities in a given image [49]–
[52], methods based on dictionary learning [53]–[55], su-
pervised learning approaches based on deep convolutional
networks (CNNs) [37], [38], [56]–[61].
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Fig. 6. Recovery of Man from blurry and noisy measurements at 30 dB input SNR. The values in the top-right corner correspond to the PSNR in dB. (a)
original; (b) measurements; (c) the TV-FISTA solution; (d) γ = 1/L; (e) γ = 1/(4L); (f) γ = 1/(16L). Even for γ = 1/L the solution of the fast parallel
proximal algorithm is visually and quantitatively close to the TV result. It takes about 37, 62, 96, and 639 seconds to obtain (c), (d), (e), and (f), respectively.

It has been widely reported that powerful patch-based
methods based on the BM3D algorithm outperform TV on
certain image restoration problems such as deblurring and
denoising [47], [52]. Similar improvements were observed by
another class of powerful methods based on deep convolu-
tional networks [37], [57]. Nonetheless, each reconstruction
approach has a distinct set of advantages and drawbacks that
influences its applicability to various imaging problems. For
example, patch-based methods rely on the block-matching
procedure for grouping similar image patches. This implies
that these methods require a suitable initial estimate of the
image for a reliable block-matching, which makes them ideal
for image denoising or deblurring [52], but makes their
generalization to arbitrary imaging problems difficult. On the
other hand, CNN based methods have a simple structure as
a succession of convolutions. These methods, therefore, enjoy
lower computational complexity for reconstruction compared
to the patch-based methods. However, they typically require
a separate training procedure over a sufficiently large image
dataset. For example, Dong et al. [56] report that it took about
three days to train their SR-CNN model on 24800 sub-images
of size 32× 32, extracted from 91 training images. Similarly,
Chen and Pock [38] report 20.8 hours of training on 400
images of size 180 × 180. Additionally, model parameters
in such imaging methods are highly optimized for a given
problem, which implies that a slight modification in the
acquisition system requires complete retraining of the network.

Finally, while large training datasets are easy to generate for
certain class of problems such as, for example, image super-
resolution, they are harder to obtain for other applications such
as bio-microscopy or medical imaging.

Compared to more advanced methods such as BM3D [52]
or SR-CNN [37], TV based imaging does not rely on a suit-
able initialization for block-matching or require an additional
training procedure. This makes it straightforward to apply to
a larger set of imaging problems including image restora-
tion [3], [15], depth imaging [62], [63], magnetic resonance
imaging (MRI) [5], [64], computer tomography (CT) [33],
phase-contrast tomography [65], optical microscopy [66]–[68],
and inverse wave scattering [69]. In particular, TV imaging
algorithms are particularly well-suited for very large-scale 3D
imaging problems, where training and block-matching become
prohibitively expensive. In such applications, it becomes cru-
cial to have access to fast optimization algorithms for TV such
as the one proposed here.

TV has been extensively compared in several prior works
and a comprehensive comparison falls beyond the scope of
this paper. Nonetheless, Table II summarizes its performance,
in terms of PSNR (dB) and running time (sec), on image super-
resolution over a dataset Set14. Specifically, we exactly re-
produce the image upscaling problem that was also considered
in previous works [37], [38], [54]. We report the results of
both FPPA and TV-FISTA, as well as the results of a simple
bicubic interpolation, Hessian Schatten-Norm Regularization
(HS2) [47], and SR-CNN [37]. FPPA, TV-FISTA, and HS2
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were run for 20 iterations with PSNR optimal regularization
parameters. The computation of the proximals of TV-FISTA
and HS2 was limited to 5 sub-iterations. We relied on the
MATLAB implementations of HS2 and SR-CNN that was
provided by the authors. Since none of the methods were
optimized for speed, the running times are expected to further
improve after a careful code optimization.

The very first observation is that FPPA closely approximates
the TV-FISTA solution at the fraction of the running time (0.04
dB difference for about ×3 reduction in time). Additionally,
both TV methods yield images that are within 0.4 dB com-
pared to the powerful SR-CNN. As TV does not require an
extensive model training procedure, this indicates that it can
be a simpler, but an effective, alternative to SR-CNN when
training is not practical or possible.

V. CONCLUSION

The fast parallel proximal method, which was presented
in this paper, is beneficial in the context of anisotropic
TV regularized image reconstruction, especially when the
computation of the TV proximal is costly. We presented a
mixture of theoretical and empirical evidence demonstrating
that the method can accurately approximate the TV solution
at the competitive global convergence rates without resorting
to expensive sub-iterations. Future work will aim at extending
the theoretical analysis presented here to isotropic variant
of TV and by applying the methods to practical large scale

imaging problems. Additionally, it would be beneficial to study
the method when γt is decreased progressively, which could
mitigate the stalling effect when γ is fixed to a small value.

VI. APPENDIX

A. Review of Convex Analysis

Before embarking on the actual proof of Proposition 1, it is
convenient to summarize a few facts that will be used next.

A subgradient of a convex function C at x is any vector
∇̃C(x) that satisfies the inequality

C(y) ≥ C(x) + 〈∇̃C(x),y − x〉, (25)

for all y. When C is differentiable, the only possible choice for
∇̃C is the gradient ∇C. The set of subgradients of C at x is the
subdifferential of C at x, denoted ∂C(x). The condition that
∇̃C be a subgradient of C at x can then be written ∇̃C(x) ∈
∂C(x).

We also remind another fundamental property of a smooth
and continuously differentiable function D with a Lipschitz
continuous gradient and Lipschitz constant L. For any γ ∈
(0, 1/L], such functions satisfy

D(x) ≤ D(y) + 〈∇D(y),x− y〉+ 1

2γ
‖x− y‖2`2 , (26)

and all x,y
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TABLE II
UPSCALING BY FACTOR ×3 PERFORMANCE IN TERMS OF PSNR AND RUNTIME FOR THE IMAGES FROM SET14.

Set14 Bicubic FPPA TV HS2 SR-CNN
Images PSNR (dB) Time (s) PSNR (dB) Time (s) PSNR (dB) Time (s) PSNR (dB) Time (s) PSNR (dB) Time (s)

Baboon 23.21 0.004 23.53 0.533 23.53 1.760 23.54 4.079 23.60 3.874
Barbara 26.25 0.004 26.77 0.918 26.77 3.606 26.75 8.098 26.66 6.744
Bridge 24.40 0.003 24.94 0.556 24.94 1.946 24.96 4.340 25.07 4.219
Coastguard 26.55 0.003 27.03 0.233 27.03 0.659 27.04 1.623 27.20 1.757
Comic 23.12 0.003 23.92 0.233 23.91 0.604 23.90 1.426 24.39 1.694
Face 32.82 0.003 33.35 0.201 33.38 0.501 33.59 1.202 33.58 1.505
Flowers 27.23 0.004 28.53 0.370 28.37 1.800 28.36 2.842 28.97 2.763
Foreman 31.18 0.003 33.17 0.222 33.05 0.679 32.84 1.642 33.35 1.742
Lenna 31.68 0.004 32.73 0.564 32.69 2.032 32.94 4.335 33.39 4.057
Man 27.01 0.003 27.84 0.714 27.76 1.977 27.78 4.469 28.18 4.223
Monarch 29.43 0.005 31.71 0.881 31.54 3.232 30.75 7.729 32.39 6.529
Pepper 32.39 0.005 33.91 0.532 33.69 1.962 33.55 4.465 34.35 4.353
Ppt3 23.71 0.004 25.21 0.703 25.57 2.758 24.86 6.226 26.02 5.531
Zebra 26.63 0.003 28.36 0.485 28.22 1.765 27.95 3.911 28.87 3.848

Average 27.54 0.004 28.64 0.510 28.60 1.806 28.49 4.028 29.00 3.774

The proximal operator is defined as

x = proxγR(z) (27a)

argmin
x∈RN

{
1

2
‖x− z‖2`2 + γR(x)

}
(27b)

where γ > 0 and R is a convex continuous function. The
proximal operator is characterized by the following inclusion,
for all x, z ∈ RN

x = proxγR(z)⇔
z− x

γ
∈ ∂R(x). (28)

B. Proof of Proposition 1

We consider the following algorithm, which is perfectly
equivalent to the fast parallel proximal algorithm (14)

ut ← (1− 1/qt)x
t−1 + (1/qt)v

t−1 (29a)

xt ← 1

K

K∑
k=1

proxγRk
(ut − γ∇D(ut)) (29b)

vt ← xt−1 + qt(x
t − xt−1), (29c)

where x0 = v0, q0 = 1, and qt satisfies

q2t − qt ≤ q2t−1, (30)

for all t = 1, 2, . . . . To see the equivalence of (29) to the fast
parallel proximal algorithm (14), first set qt as in (14b) and
then eliminate the auxiliary variables {vt} by plugging (29c)
into (29a).

We start by using (26) to find an upper bound for D at xt

D(xt) ≤ D(ut)+ 〈∇D(ut),xt−ut〉+ 1

2γ
‖xt−ut‖2`2 . (31)

We then define an intermediate quantity
xtk , proxγRk

(ut−1 − γ∇D(ut−1)). The optimality
conditions for (29b) imply that there must equst K
subgradient vectors ∇̃Rk(xtk) ∈ ∂Rk(xtk) such that

xtk = ut − γ(∇D(ut) + ∇̃Rk(xtk)). (32)

This implies that

xt = ut − γ(∇D(ut) + gt), (33)

where

gt ,
1

K

K∑
k=1

∇̃Rk(xtk). (34)

The relationships (32) and (33) together with bounds on the
subgradients implies that

‖xt − xtk‖`2 = ‖γ(gt − ∇̃Rk(xtk))‖`2 ≤ 2γG. (35)

We then bound Rk at any z ∈ RN as follows

Rk(z)
(a)

≥Rk(xtk) + 〈∇̃Rk(xtk), z− xtk〉 (36a)

= Rk(xtk) + 〈∇̃Rk(xtk), z− xt〉 (36b)

+ 〈∇̃Rk(xtk),xt − xtk〉
(b)

≥Rk(xt) + 〈∇̃Rk(xt),xtk − xt〉 (36c)

+ 〈∇̃Rk(xtk), z− xt〉+ 〈∇̃Rk(xtk),xt − xtk〉
= Rk(xt) + 〈∇̃Rk(xtk), z− xt〉 (36d)

+ 〈∇̃Rk(xtk)− ∇̃Rk(xt),xt − xtk〉,

where in (a) and (b) we used the convexity of Rk. By
rearranging (36), we obtain for any z ∈ RN

Rk(xt) ≤ Rk(z)− 〈∇̃Rk(xtk), z− xt〉 (37a)

+ 〈∇̃Rk(xtk)− ∇̃Rk(xt),xtk − xt〉
(a)

≤Rk(z)− 〈∇̃Rk(xtk), z− xt〉+ 4γG2, (37b)

where in (a) we used Cauchy-Schwarz inequality followed
by (35). By averaging (37) over k and using (33), we obtain

R(xt) (38)

≤ R(z) + 1

γ
〈ut − γ∇D(ut)− xt,xt − z〉+ 4γG2,
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for any z ∈ RN . We next add bounds (31) and (38) and use
the convexity of D to obtain

C(xt) ≤ C(z) + 1

γ
〈xt − ut, z− xt〉 (39)

+
1

2γ
‖xt − ut‖2`2 + 4γG2,

for all z ∈ RN . By evaluating (39) at z = xt−1 and z = x∗

and taking the convex combination of the bounds, we obtain

C(xt)− (1− 1/qt)C(xt−1)− (1/qt)C(x∗) (40)

= [C(xt)− C(x∗)]− (1− 1/qt)[C(xt−1 − C(x∗))

≤ 1

γ
〈xt − ut,

1

qt
x∗ +

(
1− 1

qt

)
xt−1 − xt〉

+
1

γ
‖xt − ut‖2`2 + 4γG2

=
1

2γq2t

(
‖vt−1 − x∗‖2`2 − ‖vt − x∗‖2`2

)
+ 4γG2, (41)

where in the last step we completed the squares and used the
definition of the auxiliary variables {vt} in (29a) and (29c).
We thus get the following recursive relationship

γq2t (C(xt)− C(x∗)) +
1

2
‖vt − x∗‖2`2 (42)

≤ γ(q2t − qt)(C(xt−1)− C(x∗)) +
1

2
‖vt−1 − x∗‖2`2

+ 4q2t γ
2G2. (43)

By using the bound (30), using a particular qt = (t + 1)/2,
and iterating over t, we get

C(xt)− C(x∗) ≤ 2

γ(t+ 1)2
‖x0 − x∗‖2`2 + 4γG2. (44)

This completes the proof.
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