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Abstract

Long short-term memory (LSTM) recurrent neural network based language models are known
to improve speech recognition performance. However, significant effort is required to opti-
mize network structures and training configurations. In this study, we automate the devel-
opment process using evolutionary algorithms. In particular, we apply the covariance matrix
adaptation-evolution strategy (CMA-ES), which has demonstrated robustness in other black
box hyper-parameter optimization problems. By flexibly allowing optimization of various
meta-parameters including layer wise unit types, our method automatically finds a config-
uration that gives improved recognition performance. Further, by using a Pareto based
multiobjective CMA-ES, both WER, and computational cost were reduced jointly: after 10
generations, relative WER and computational time reductions for decoding were 4.1% and
22.7% respectively, compared to an initial baseline system whose WER was 8.7%.
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ABSTRACT

Long short-term memory (LSTM) recurrent neural network based
language models are known to improve speech recognition perfor-
mance. However, significant effort is required to optimize network
structures and training configurations. In this study, we automate
the development process using evolutionary algorithms. In partic-
ular, we apply the covariance matrix adaptation-evolution strategy
(CMA-ES), which has demonstrated robustness in other black box
hyper-parameter optimization problems. By flexibly allowing opti-
mization of various meta-parameters including layer wise unit types,
our method automatically finds a configuration that gives improved
recognition performance. Further, by using a Pareto based multi-
objective CMA-ES, both WER and computational cost were reduced
jointly: after 10 generations, relative WER and computational time
reductions for decoding were 4.1% and 22.7% respectively, com-
pared to an initial baseline system whose WER was 8.7%.

Index Terms— large vocabulary speech recognition, evolution
strategy, long short-term memory, language model, multi-objective
optimization

1. INTRODUCTION

Neural network based language models (NNLMs) are very effective
for improving speech recognition performance [1, 2, 3, 4, 5, 6], and
increasingly many system developers are interested in adopting it.
When developing a speech recognition system using a NNLM, the
major design question is what kind of network structure and training
configuration leads to the best model in terms of recognition per-
formance and computational time. For network structure, important
design questions include the number of layers, the number of units
per layer, and the unit type (e.g. feedforward, recurrent). If a deep
network is desired, there is even more flexibility: for example one
can first use a feedforward layer on the input layer and then concate-
nate a long short-term memory (LSTM) layer on top of it, or vice
versa. For training configurations, important design questions in-
clude the learning algorithm, learning rate, mini-batch size, dropout
ratio [7], and so on. All these meta-parameters interact with each
other in subtle ways, so need to be jointly optimized.

Usually, this meta-parameter optimization is manually per-
formed by humans experts and significant effort is required. It is
a bottle-neck that prohibits wider adoption of NNLMs. On the other
hands, expenses for computer resources are keep decreasing, and ac-
cess to large computers is becoming easy by using cloud computing
services etc. Our goal is to replace the laborious manual effort with

automatic computation by computers. Since neural network training
is often performed off-line, and the trained model is used repeatedly,
it is justifiable to allocate relatively large computational budget for
meta-parameter optimization if it alleviates manual effort.

A simple approach for meta-parameter optimization would be a
grid search. However, it soon becomes intractable as the number of
meta-parameters increase, since the number of the lattice points of
grid search is exponential to the number of meta-parameters. For ex-
ample, when there are 20 types of meta-parameter variables, just try-
ing three values for each variable requires more than 3 billion (32%)
evaluations. Each evaluation is extremely expensive in our case, as
it involves training and scoring a neural network. So grid search is
not tractable even for the fastest computer in the world. We need a
black box meta-parameter optimization framework that intelligently
searches the meta-parameter space under a realistic budget of com-
putational resources.

There is a large literature on meta-heuristic optimization such as
genetic algorithm (GA) [8] that have demonstrated success in many
practical engineering problems. These include the design of bul-
let trains [9], airplanes [10], and antennas [11]. In speech recog-
nition, several researchers have applied GA to discrete- and GMM-
HMM acoustic models [12, 13, 14]. Previously, we have investi-
gated several black box optimization frameworks to optimize meta-
parameters of feedforward deep neural network (DNN) based acous-
tic models [15, 16, 17]. In the experiments, we found that covariance
matrix adaptation-evolution strategy (CMA-ES) [18, 19, 20] gener-
ally works better than GA and Bayesian optimization (BO) [21, 22],
in that it finds better models with smaller or similar number of sys-
tem evaluations. We also found that CMA-ES is convenient to use
due to its simple initialization.

In this study, we apply CMA-ES to optimize meta-parameters
of NNLMs. Compared to our previous work [15, 16, 17], which
focused on acoustic modeling and meta-parameter optimization of
feedforward deep neural networks, this work focuses on language
modeling and considers a network that can have a heterogeneous
structure consisting of feedforward, recurrent, and LSTM layers, as
well as many more varieties of learning algorithms. By applying
CMA-ES and analyzing its results, we also reveal best practices and
insights about the factors that affect word error rate (WER) and com-
putational time for NNLMs, which have not been thoroughly inves-
tigated before.

Experiments are performed by applying the NNLMs on top of
high performance recognition systems that are publicly available as
the Kaldi [23] recipes. Both single-objective optimization based on
WER and multi-objective optimization based on WER and compu-



tational time are investigated.

In the following, we review CMA-ES and its multi-objective ex-
tension in Section 2, then describe the NNLMs used in this work in
Section 3. Section 4 describes meta-parameters subject to the opti-
mizations. Experimental setup and results are in Sections 5 and 6.
Section 7 concludes with future work.

2. CMA-ES META-PARAMETER OPTIMIZATION

2.1. CMA-ES

CMA-ES is a population based meta-heuristics optimization ap-
proach. Similar to GA, it encodes possible solutions as genes. The
differences of CMA-ES from GA are that it uses fixed length real
valued vector « as a gene and a full covariance Gaussian distribu-
tion as the gene distribution instead of directly using a set of genes
to represent their distribution. In CMA-ES, we assume that we can
evaluate the value of the objective function f(z), but do not assume
the availability of an analytic functional form of the objective func-
tion f () and its differentiability.

In our case, f(x) represents the performance of the recognition
system using an NNLM trained with meta-parameters x, which en-
codes network structure (e.g. # of layers) and training configurations
(e.g. learning rate).

More specifically, CMA-ES estimates parameters 6 of a Gaus-
sian distribution for @ such that the distribution is concentrated in a
region with high values of f(x) as shown in Eq. (1).
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To efficiently solve the problem, natural gradient based gradient as-
cent [24] is used by taking a natural gradient of E[f(x)|6] with re-
spect to 8. The expectation in the natural gradient can be approxi-
mately computed by using Monte Carlo sampling with the function
evaluation y, = f(xx) as shown in Eq. (2).
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where x, is a sample drawn from the previously estimated distribu-
tion A (:|6,,_1), and F' is the Fisher information matrix. The set of
sampled genes {x1,x1, - ,xx } corresponds to a population of a
generation, and the iteration of the gradient ascent steps corresponds
to the iteration of the generations of GA. It is expected superior in-
dividuals increase in the population as the iteration proceeds.

The parameters 6 of the Gaussian distribution consists of a mean
vector p and a covariance matrix 3. We can obtain analytical forms
of their updates fi,, and 3, by substituting the concrete Gaussian
form into Eq. (2), leading to:
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where T is the matrix transpose. Note that, as in [18], yx in Eq. (2)
is approximated in Eq. (3) as a weight function w(yy,), defined as:
max{0,log(K/2+1) —log(R(yx))} 1
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Fig. 1. Neural network based language model.

where R(yx) is a ranking function that returns the descending order
of y, among y1.x (i.e., R(yx) = 1 for the highest y, R(yx) = K
for the smallest y, etc.). This equation only considers the order of v,
which makes the updates less sensitive to evaluation measurements
(e.g., to prevent from the different results using word accuracies and
the negative sign of error counts). Intuitively, CMA-ES works by
iteratively sampling @ from a Gaussian distribution, whose mean
and covariance is determined by a weighting of previous generations
of x.

2.2. Multi-objective CMA-ES using the Pareto frontier

In addition to high accuracy, objectives such as fast training time
are also important in practice. Assume that we wish to maximize
J objectives F(x) £ [fi(z), f2(z),. .., fs(x)] with respect to
jointly. As objectives may conflict, we adopt a notion of optimality
known as Pareto optimality [25]: First, if f;(zx) > fj(zw) Vj =
1,..,J and fj(zr) > fj(xy ) for at least one objective 7, then we
say that i, dominates s and write F'(xy) > F(x,). Given a set
of candidate solutions, x, is Pareto-optimal iff no other xj/ exists
such that F(zy/) > F(xg).

Given a set of candidates, there are generally multiple Pareto-
optimal solutions; this is known as the Pareto frontier. Note that an
alternative approach is to combine multiple objectives into a single
objective via an weighted linear combination: ; 8; f;(x), where
>_;B; = land B; > 0. The advantage of the Pareto definition is
that weights 3; need not be specified and it is more general, i.e., the
optimal solution obtained by any setting of 3; is guaranteed to be
included in the Pareto frontier.

CMA-ES can be extended to optimize multiple objectives by
modifying the rank function R(y) used in Eq. (4). Given a set of
solutions {x }, we first assign rank = 1 to those on the Pareto fron-
tier. Then, we exclude these rank 1 solutions and compute the Pareto
frontier again for the remaining solutions, assigning them rank 2.
This process is iterated until no {@ } remain, and we obtain a rank-
ing of all solutions according to multiple objectives in the end.

3. NEURAL NETWORK LANGUAGE MODELS
Figure 1 shows an example of a recurrent neural network (RNN)
language model having 1 hidden layer that models word probability

as shown in Eq. (5).

P(wii1|we, h(t)) %)
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The input is a vector of 1-of-K representation of a current word
w; where K is the vocabulary size of NNLM. The word vector is
mapped to a real valued vector by a projection layer placed at the
input of the network. The hidden state h(t) is calculated from the
current input w () and the previous state h(t—1), and the contextual
information of the past inputs is stored in the layer. At the final out-
put layer y(t), word occurrence probability P(w¢41|w1, ..., w:) is
calculated by a softmax function having parameters W and b.

The parameters of a RNN are trained using back propagation-
through-time (BPTT) so that the context dependency is modeled.
However, RNNs cannot effectively use long context information due
to the vanishing and exploding gradient problem [26]. To address
the problem, LSTM RNN that consists of LSTM blocks has been
proposed. A LSTM block has a memory cell and three gates (input,
forget and output) to control the value stored in the memory cell [27].
By replacing the unit in recurrent hidden layer of an RNN language
model with the LSTM block, a LSTM based language model is ob-
tained. Since all the activation functions in the LSTM block are
differentiable, LSTM neural network can be trained by BPTT in the
same way as simple RNN.

4. META-PARAMETERS SUBJECT TO THE
OPTIMIZATION

To build NNLM, several types of meta-parameters require optimiza-
tion. In this study, the following meta-parameters are optimized. The
complete list of these meta-parameters is given in Table 2.

4.1. Network structure related meta-parameters

To define a network structure, the type of network blocks (e.g., RNN,
LSTM, Feedforward (FF)), the number of layers, and the number of
units per layer need to be specified as meta-parameters. The layer
size of the input and output layers corresponds to the vocabulary
size. Since the softmax function is expensive to evaluate when the
layer size is large, the vocabulary size has a large influence on the
computational cost. To improve the flexibility of the network design,
we allow different layers in a single network to have different block
types.

4.2. Training configuration related meta-parameters

There are several variations in the back propagation algorithm re-
garding how to update network weights and bias. The choice of
the update methods affects the training time and recognition per-
formance, and it is a meta-parameter. In this study, we con-
sider four update methods; SGD with momentum, RMSprop with
momentum[28], ADADELTA[29]), and ADAM[30].

Depending on the choice of the algorithm, some configurations
are needed such as the learning rate 7 and the momentum ~y. Equa-
tions 6, 7, 8, and 9 summarizes the update formulas of SGD with
momentum, RMSprop with momentum, ADADELTA, and ADAM,
respectively. In the equations, 6 is the parameter in the neural net-
work at current time ¢, and Gy = OL/00; is the gradient of the
objective function L. The variables 7, 7, ¢1, ¢2, ¢3, p, € 01 02 03
04 are their meta-parameters.

In this study, the learning rate for the SGD with momentum
method is initially set to “initial learn rate”. After several iterations
of training epochs specified by “learn decay epoch”, the learning rate
is decayed for every epoch with a factor “learn decay”. The learning
rates of the other methods are automatically determined as explained

Table 1. CSJ and AMI data used for the experiments.

[ [ CSJ [ AMI ]
Training set AM 512 hours 78 hours
LM | 7.5M words | 1.4 M words
Development set 7 hours 9 hours
Evaluation set 5 hours 9 hours

in the equations. The update of NN parameters is based on a mini-
batch whose size is specified by “minibatch size”. The dropout ratio
is also tuned.
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4.3. Other parameters

In practice, a limited-vocabulary NNLM is interpolated with a full-
vocabulary N-gram language model for improved performance. The
interpolation weight “NNLM weight” is also a meta-parameter. For
LSTM, properly initializing the forget gate bias is important [31],
and we treat it as a meta-parameter.

5. EXPERIMENTAL SETUP

We performed two sets of experiments using the Corpus of Spon-
taneous Japanese (CSJ) [32] and the individual headset microphone
(IHM) subset of the AMI meeting speech transcription corpus [33].
Both of them are large vocabulary continuous speech recognition
tasks. Table 1 summarizes the amount of data used for the experi-
ments. The development set is used to evaluate WERs used as the
objective function of the evolutions, and the evaluation set is used for



Table 2. Meta-parameters investigated in this work.

[ Description Domain [ Initial value [ CSJ optimized [ AMI optimized ]
vocabulary size O0<z 10k 25743 5587
# of hidden layers O<z 2(3) 1 1
# of layer units 0<=z 300 407 476
NNLM weight 0<z<l1 0.50 0.55 0.55
acoustic weight 0<z 14.00 14.52 11.72
minibatch size 0<z 32 213 52
dropout ratio O<r<1 0.50 0.30 0.50
initial learn rate 0<z<l1 1 0.99 0.98
learn decay O<r<1 0.5 0.40 0.53
learn decay epochs 1<z 6 14 13
momentum O0<e<1 10710 7.3x107° 1.3x107°
gradient clipping O<z 5 6.0 11.4
unit type {LSTM, RNN, FF} LSTM LST™M LSTM
# of proj. layer units 0<z 300 563 399
initial forgetgate bias O0<z 1 1.23 0.45
{SGD, ADAM,
optimizer type ADADELTA, SGD SGD SGD
RMSprop}
ADAM 0<z 10°° 1.07 x 10°° 1.25 x 10~
ADAM o O<a<l1 0.9 0.92 0.92
ADAM o> 0<z<l1 0.999 0.999 0.999
ADAM o3 r<l1 1-10° [1-60x107 [1-14x10°
ADAM o4 0<z 10°° 5.0x10°° 1.3x107°
RMSprop ¢ x <1 0.95 0.94 0.95
RMSprop ¢ 0<z<1 1077 7.94 x 107° 9.14x 107°
RMSprop ¢s3 0<z 1077 1.40 x 1077 1.76 x 1077
RMSprop 0<z <1 0.90 0.88 0.91
ADADELTA € 0<uz 1077 7.50 x 10" 9.73 x 1077
ADADELTA p <1 0.95 0.92 0.96

final evaluation. To evaluate the NNLM, we first generated a N-best
list with 100 hypotheses for each task using the publicly available
high performance speech recognition recipe included in the Kaldi
toolkit. The acoustic models used to generate the N-best lists were
DNNs estimated by the sequential training. The NNLMs were then
used to rescore the N-best lists, where they were linearly interpolated
with 3-gram language models. While the vocabulary size for NNLM
was subject to the optimization, it was fixed for the 3-gram model,
and it was 72k for the CSJ task and 50k for the AMI task.

Table 2 lists meta-parameters subject to CMA-ES based op-
timization. Before the experiments, we roughly tuned the meta-
parameters by hand using the CSJ data, and used the configuration
as an initial value for CMA-ES. The same initial values shown in
the third column in the table were used for the two tasks. Therefore,
the initial gene is already somewhat optimal for the CSJ task, but
is not tuned at all for the AMI task. Both of the settings are likely
situations in real-world system development.

While the number of meta-parameters changes according to
the number of layers, we need a fixed-dimensional gene vector for
CMA-ES. For this, we specified the maximum number of possible
layers and included all the meta-parameters in the gene. When an
actual layer size specified by the gene is smaller than the maximum,
the remaining meta-parameters were simply ignored. Depending on
the meta-parameters, a mapping from a real number to a desired do-
main is needed to translate the gene values to the actual configu-
rations. For meta-parameters such as learning decay need a value

ranging (0,1), and we used the sigmoid function 1/(1 + e(—z)).
Similarly, we used ceil (10”) for positives integers (e.g. the num-
ber of layers), 10” for positive real values (e.g. acoustic weight),
and mod (ceil (abs (z) X n),n) for multiple choices (layer type)
where n is the number of choices. The maximum number of hidden
layers were set to six and 10 for the single and multi-objective opti-
mizations. The dimension of the gene vector was 21 for the single-
objective optimization, and 37 for the multi-objective optimization.

Experiments were performed using the TSUBAME 2.5 super-
computer that equips with NVIDIA K20X GPGPUs '. The popu-
lation sizes were 20 and 30 for the single and multi-objective opti-
mizations, respectively, and they were run in parallel. NNLMs were
implemented using the Chainer toolkit ? [34]. The optimized config-
urations are available at our web site.’

6. RESULTS

We run three experiments for the CSJ task: Single-obj is single-
objective optimization on WER with meta-parameters in the first 12
rows of Table 2. Other meta-parameters are held constant at their
initial values, e.g. LSTM was used for all the layers. Single-obj
(Fixed vocab) is single-objective optimization on WER, but with a

"http://www.gsic.titech.ac.jp/en
’http://chainer.org/
3http://www.ts.ip.titech.ac.jp
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Fig. 3. Changes in the training time for the CSJ task across CMA-ES
generations

fixed neural network vocabulary size of 10k. Multi-obj is multi-
objective optimization on WER and training time *, with all meta-
parameters in Table 2. This means it allows layer-wise unit type
optimization. Additionally, a supplementary experiment Multi-obj
(hid3) is performed to see the influence of the initialization, where
the configuration is the same as Multi-obj excepting that the initial
number of hidden layers is set to three.

Figure 2 shows how evaluation set WER varies with the num-
ber of generations. The results are based on the best individuals that
were chosen at each generation based on the development set WER.
Without rescoring, the original WER was 9.35%. Rescoring with the
NNLM of the initial generation reduces the baseline WER to 8.66%.
In all the three conditions, WER reduced further as the generation
proceeded. The differences from the baseline at 10th generation
were all statistically significant with significance level p = 0.1%
under the MAPSSWE significance test [35]. After 10 iterations, the
WER of the three conditions were 8.28%, 8.31%, and 8.30%, respec-
tively. Multi-obj (hid3) gave similar WER of 8.27% as Multi-obj.
While the unit type was adjustable in the multi-objective optimiza-
tion condition, the networks that gave the lowest level WER actually
consisted of purely LSTM layers as shown in Figure 4, confirming
the effectiveness of LSTMs.

Figure 3 shows training time of the networks. While the
achieved WERs were similar for the three conditions, there were
large differences in computational time. When single-objective op-

“4Here we used training time as an objective. It is correlated with decoding
time, which can easily be added as a third objective if needed.

Table 3. Computational time for decoding for the CSJ task using
NNLM obtained at 10th generation.

[ Baseline [ Single-obj [ Single-obj(Fix voc) [ Multi-obj |
[ 2.2E3 (sec) | 2.5E3 (sec) | 1.9E3 (sec) [ 1.7E3 (sec) ]
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Fig. 5. Relative changes of some of the meta-parameters from the
initial generation observed for the single-objective optimization.
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Fig. 6. Relative changes of some of the meta-parameters from the
initial generation observed for the multi-objective optimization.

timization was performed with the adjustable vocabulary size condi-
tion (Single-obj), CMA-ES drastically increased vocabulary size to
optimize WER because training time was not considered. The vo-
cabulary size at 10th generation was 17k, which was 1.7 times larger
than the initial size of 10k. Interestingly, with a fixed vocabulary
size condition (Single-obj (Fixed vocab)), there was no major in-
crease in computation time. When multi-objective optimization was
performed, a neural network with the lowest computational time was
obtained while keeping the WER comparable to the others. Part of
the source of the reduction was the reduced number of hidden layers.
It was decreased to 1 while it was 2 in the other two conditions. At
the 10th generation, the relative reduction of the computational time
was 76.1% compared to the baseline. The computational time for
rescoring the evaluation set was 2.2k seconds for the baseline, and
2.5k, 1.9k, and 1.7k seconds for the three conditions at 10th genera-
tion, respectively, as shown in Table 3.

Figure 5 and Figure 6 show how we can analyze the results of
CMA-ES to derive insights about the meta-parameters. They show
relative percent change of several meta-parameters from their ini-
tial values for Single-obj and Multi-obj conditions, respectively ,
with positive indicating an increase in value and negative indicat-
ing a decrease. In the single-obj experiment, the number of hidden
layers was always higher than the initial value (2 layers), while it
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decreased in the multi-obj experiment. In the multi-obj experiment,
CMA-ES decided to increase the “minibatch size”, which likely led
to the efficient use of GPUs and faster training times.As for the up-
date methods, SGD with momentum was selected in both of the ex-
periments at the 10th generation. The optimized results of all the
meta-parameters for the CSJ task is summarized in the fourth col-
umn of Table 2.

Based on the result of the CSJ task, we applied the multi-
objective optimization to the AMI task where the WER before the
rescoring was 25.4% . The result is shown in Table 7. The initial
generation WER was 24.4%. After 12 generations, WER reduced to
23.1%. At the same time, the computational time was also reduced
to 57.3% of the initial generation. These results indicate that CMA-
ES based meta-parameter optimization works well for this task as
well, even when using initial values tuned for other tasks.

The last column in Table 2 shows the optimized meta-parameters
for this task. Compared to the CSJ results, some meta-parameters
have similar optimized values across the task, but some are not. Es-

SThis is the result without using the Fisher corpus.

pecially, the vocabulary size and mini-batch size are largely differ-
ent. This is maybe partly because of the different coverages of the
topics, and partly because of the amount of training data.

7. CONCLUSION

To automate the development of NNLMs for large vocabulary
speech recognition, we have applied CMA-ES based meta-parameter
optimization. We show that CMA-ES consistently improves WER
on two very different datasets (CSJ and AMI), despite using the same
initial values for meta-parameters. Further, we analyze how NNLM
meta-parameters evolved by comparing single-objective and multi-
objective optimization. We demonstrate that by using the multi-
objective optimization, not only the WER but also the computational
time was reduced from the initial generation at the same time.

Future work includes scaling up the evolution using a huge cor-
pus containing billions of words. One strategy is to parallelize the
BPTT to reduce the turn-around time on parallel computers. The
other is to introduce a multi-stage strategy to the evolution process
to reduce the computation itself, where first a subset of the training
data is used for intensive evolution and then full data is utilized for
the finishing.
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