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Abstract

For control architectures of autonomous and semiautonomous driving features, we design
a vehicle steering controller with limited preview ensuring that the vehicle constraints are
satisfied, and that any piecewise clothoidal trajectory, that is possibly generated by a path
planner or supervisory algorithm and satisfies constraints on the desired yaw rate and the
change of desired yaw rate, is tracked within a preassigned lateral error bound. The design is
based on computing a non-maximal, yet polyhedral, robust control invariant (RCI) set for a
system subject to bounded disturbances with state-dependent bounds, which also allows to
determine the constraints describing the reference trajectories that can be followed. The RCI
set is then enforced by model predictive control, where the cost function enforces additional
objectives of the vehicle motion.
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Vehicle Tracking Control on Piecewise-Clothoidal Trajectories
by MPC with Guaranteed Error Bounds

S. Di Cairano, U.V. Kalabi¢, K. Berntorp

Abstract— For control architectures of autonomous and semi-
autonomous driving features, we design a vehicle steering con-
troller with limited preview ensuring that the vehicle constraints
are satisfied, and that any piecewise clothoidal trajectory, that is
possibly generated by a path planner or supervisory algorithm
and satisfies constraints on the desired yaw rate and the change
of desired yaw rate, is tracked within a preassigned lateral
error bound. The design is based on computing a non-maximal,
yet polyhedral, robust control invariant (RCI) set for a system
subject to bounded disturbances with state-dependent bounds,
which also allows to determine the constraints describing the
reference trajectories that can be followed. The RCI set is then
enforced by model predictive control, where the cost function
enforces additional objectives of the vehicle motion.

I. INTRODUCTION

For enabling new driver-assistance and autonomous fea-
tures in passenger vehicles adequate control algorithms must
be developed. Several features, such as lane-keeping, auto-
mated lane changing, and eventually autonomous driving,
require steering control algorithms capable of tracking time-
varying reference profiles, representing the desired vehicle
trajectories, with guaranteed performance measures [1]. The
control architectures for such features are often arranged as
shown in Fig.l: a supervisory unit (SU), such as a path
planner or a lane selection algorithm, produces a desired
trajectory; a vehicle steering controller (VC), selects the
steering control actions to track the desired trajectory; an
actuator controller (AC) actuates the steering system.

For proper system operation, each controller must provide
some guarantees to the others. For instance, the AC needs to
guarantee that it can achieve the commands selected by the
VC. The VC must guarantee a tracking error bound along the
desired trajectory, so that the SU can plan a robust trajectory
accounting for such potential tracking error. In general the
tracking error will depend on the reference trajectory, and
hence the error bounds will depend on the classes of desired
trajectories, according to “agreements” such as: “The VC
will ensure performance measure M as long as the SU
generates reference trajectories satisfying property P”.

Constraints on the motion of an idealized vehicle follow-
ing the SU trajectory and on the actual vehicle dynamics
can be used for specifying the class of reference trajectories
and the performance measure. Then, constrained control can
be applied to ensure constraints satisfaction, and hence the
enforcement of the agreement. However, since the perfor-
mance needs to be ensured despite a limited preview of the
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Fig. 1. Example of planning and control stack for driver assistance and
automated driving features

trajectory, which can be extended in different ways as long as
P is satisfied, robust constraint satisfaction for all reference
trajectories within a certain class must be ensured.

An appealing strategy for achieving this is model predic-
tive control (MPC), which has been shown to be effective
in automotive applications [2], [3]. Robust control invariant
(RCI) sets can be exploited to achieve guarantees for MPC,
as done, for instance, in [4] for vehicle stability control, and
in [5] for collision avoidance.

When considering steering control, the shape of the ref-
erence trajectory is related to the shape of the road. Road
segments are often similar to clothoids [1], i.e., spiral curves
where the curvature changes at a constant rate, consistently
with a driver changing the steering wheel angle with a
constant angular rate. Thus, the overall road is well rep-
resented by a piecewise-clothoidal (PWCL) curve, and here
we consider PWCL trajectories with bounded curvature and
curvature rate of change. As a consequence, the trajectories
are subject to state-dependent constraints, i.e., the currently
allowed range of curvature rate depends on the current
curvature. For such trajectories, algorithms for maximal RCI
sets [6] results in non-convex sets [7], hard to compute and
hard to use for real-time control.

In this paper we propose a design for the VC steer-
ing controller based on a recently developed method [8]
for constructing convex RCI sets for constrained systems
tracking references with state-dependent constraints while
ensuring a preassigned bound on the tracking error. The
class of references is suitable for modeling PWCL vehicle
trajectories, and the error bound provides a guarantee of
the VC controller performance measure (M), when the
trajectories generated by the SU are in the class of trajectories



satisfying the PWCL curvature and curvature rate bounds
(P). The method can be used to determine which curvature
rate bounds are acceptable, and hence determines at design
time the property P and the control algorithm that enforces
the performance measure M in the “agreement” between the
SU and VC. Actuator constraints are accounted for, to avoid
negative interactions between VC and AC.

In the rest of this paper, in Section II we describe the
model for the vehicle steering control, the physical and
performance constraints, and we formalize the problem that
we aim at solving. In Section III we compute a polyhe-
dral non-maximal RCI set ensuring that the physical and
performance constraints are recursively satisfied, and use it
to determine the feasible rate of curvatures. The RCI set is
used in Section IV for designing an MPC for lateral vehicle
control. Simulation results on different scenarios are reported
in Section V, and conclusions in Section VI.

Notation: The sets of real, nonnegative real, positive real,
and integer, nonnegative integer, positive integer numbers
are denoted by R, Rgy, Ry and Z, Zgy, Z, respectively.
For a« € R", b € R™, we denote the stacked vector by
(a,b) = [a’ V'] € R™"™, Inequalities between vectors are
intended componentwise. For a discrete-time signal x € R™
with sampling period T, x(t) is the value at sampling instant
i, i.e., at time Tit, and xy), denotes the predicted value of =
at sample t + k, i.e., x44 1, based on data at sample ¢, where

xo|p = w(t).

II. VEHICLE TRACKING: MODELING
AND PROBLEM FORMULATION

We model the reference trajectory as generated by a
particle moving at constant speed v, along a curve with
curvature k = 1/Ryp, Rr being the turn radius. This results
in the model for the desired vehicle yaw, ¢qes, and yaw rate,

wdesy

ddes :Um/.{- (1)
We sample (1) with sampling period 7 obtaining,
Yutes(t + 1) =thaes (t) + (1), ©)

where v(t) = wv,Tsk(t) is an exogenous variable that
describes the change of desired yaw rate, or alternatively, the
total change of curvature of the reference trajectory during
T scaled by the velocity v,.. Note that (2) models piecewise
clothoidal trajectories where the change of curvature is
constant in time periods of length (at least) 7.

For normal (not at limit-of-performance) driving, the ve-
hicle dynamics based on the single track model with respect
to a trajectory with yaw rate 14es(t), as shown in Fig. 2, is
described by [1], [9]

Fe(t) = Acwe(t) + Bove(t) + Dod(t), 3)

where the state vector is z. = [e, €, ey €y]’, €y, €y are the
lateral and yaw rate tracking errors, respectively, the input is

trajectory

Fig. 2. Schematics of single track vehicle dynamics model, and vehicle
(Oyen) and desired trajectory (Ogeg) reference frames.

steering angle v, = J, the disturbance is d = z/}des, and
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where m, I, are the vehicle mass and inertia, Cy and C,
are the front and rear lateral tire stiffnesses, and ¢y, ¢, are
the distances from the center of mass of the front and rear
axles.

We formulate (3) in discrete time with sampling period T,
define as control variable the change of the steering angle
u(t) =06(t) — d(t — 1) = Ad(t), and add (2) resulting in

z(t+1) = Az(t+1)+ Bu(t)+ D(d(t) +~(t)) (4a)
dit+1) = d(t)+~(t), (4b)

where x = [z, v]’, v(t) = 0(t — 1).

For ensuring that the difference between the SU trajectory
and the motion of the vehicle is bounded in a preassigned
range, which allows the SU to plan with appropriate safety
margins, we enforce the constraints

< €y S eymax’ (5)

6C'Jmin —

where usually e, . = —e, . When (5) is satisfied, the
vehicle position will be in a “tube” of diameter e, _—e, .
around the reference trajectory. Often, additional constraints
have to be imposed on the vehicle system. In particular, the
steering angle and angular rate are bounded, for both physical
limitations and for safety reasons, as

(Smin S’U S 5maxa
A(Smin SU S A(Smaux-

(6a)
(6b)

Further constraints can be imposed on the state variables
of (4), so that together with (5) they result in the state bounds

Lemin S Te S Temax: (7)

Thus, (6), (7) describe the performance measure M that VC
has to guarantee in the “agreement” between VC and SU.



Since the input and input rate are bounded, the VC will
be able to achieve only a certain range of yaw rates and to
react to only a certain range of changes in desired yaw rate,
before violating (7), which include (4). Thus, the reference
trajectory by the SU generated with dynamics (2) must
enforce the constraints,

_dmax S d S dma)m —Ymax S Y S “Ymax (8)

that, for constant v,, can be related to bounds on the
curvature, and curvature step change, i.e., dpmax = Vs Kmaxs
Ymax = UzlsRmax. Note that (2), (8) define the property
‘P on the reference trajectory for which the VC has to en-
sure (6), (7), being the performance measure M, according to
the agreement between VC and SU. While d,ax is related to
the achievable steady state yaw rate where (6), (7) are strictly
satisfied, and hence to the physical vehicle constraints, y,ax
determines the transients of the reference trajectories for
which (5) must be guaranteed, and hence parametrizes P.

Thus, the objective of the VC is to ensure that (4) satis-
fies (6), (7) for any reference trajectory satisfying (2), (8).
Let X, U, D be the sets of states x, inputs u, disturbances
d satisfying (6), (7) and d € [—dmax, dmax], Tespectively.

Problem 1: Given (4), and trajectories generated satisfy-
ing (2), (8), determine ~y,ax, a (possibly dynamic) controller
h(z, ze,d, {vs i\[:?)l), where z. is the controller internal
state, and a set of initial error and reference states Sy C X' x
D such that (i) if at time ¢, (2(¢), d(t)) € So, constraints (6),
(7) are satisfied for any ¢ > ¢, (i7) the controller locally
guarantees offset-free tracking for reference trajectories with
constant yaw rate. O

As suggested in [9], for solving Problem 1 one could solve
in receding horizon the finite horizon problem

N-1
151(11‘1)1 F(xyy) + Z L(wpg, wge) (9a)
) k=0
site Tpgre = @y Uk dige) (9b)
dir1jt = digje + Vit (%)
(6), (7). (9d)
T = 2(t), e =v(E+EK), (%)

where N € Z, is the prediction horizon, f is a shorthand
for (4), F' and L are a terminal and a stage cost, and y(t+k),
k € Zjg,n—1) denotes the preview on the change of the
reference trajectory, U(t) = [uq,...,un—1), and U*(t)
denotes the optimal solution of (9). Then, the applied control
input is u(t) = ug,. Indeed, if (9) admits a solution for any
time ¢t and for any reference trajectory d(-) being generated
according to (2), (8), the constraints (6), (7) are always
satisfied. However, it is well known [10] [5, Remark 6.1] that
the recursive feasibility of (9) is not guaranteed, especially
with partial preview on ().

When the future values along the entire prediction horizon
of d are known and there is a feasible solution at time £, a
sufficient condition for recursive feasibility is that for x|,
dpny¢ there exists an input u that ensures the satisfaction
of (6), (7), for every vy satisfying (2), (8). Next, we design

additional constraints for (4) ensuring such property.

III. INVARIANT SET DESIGN FOR PIECEWISE
CLOTHOIDAL TRAJECTORY TRACKING

The property of a set being “maintainable” is formalized
in the following definitions, see, e.g., [6], for more details.

Definition 1: Given z(t + 1) = f(z(t), u(t),y(t)) where
re€X CRueld CR™and v € G C R? are the
state, input and disturbance vectors, respectively, C C X is
a robust control invariant (RCI) set if

2 €C= Jus €U : fap,ur, ) CC, Vyr € G, Vt € Zoy.

A set is the maximal RCI C* in X if for any RCI C C X,
C* D C. The robust admissible input (RAI) set for C is

Cu(z) ={uel: f(z,u,v) €C, Vy € G}.

When G = {0}, C and C,, are called control invariant (CI)

and admissible input (Al) set, respectively. O
The maximal RCI is the fixed point of the set sequence

{5 } k=0, where Qf = X, and Q} = Pre(Q;,G) N Q5

Pre(S,G) 2 {x ¢ R" : uc U, f(z,u,y) CS,Vy € G},

i.e., Pre computes the set of states that can be moved to the
S € R™ in one step, robustly to disturbances in G.

For linear systems subject to polyhedral constraints and
disturbances bounded in a fixed range, Pre is computed
by solving linear programs and projections of polyhedra.
However, for (4), subject to (6), (7), the disturbance v must
satisfy (8). Thus, the range of disturbances is dependent
on a state component of (4), i.e, v € G(d). For this
case, [7] showed that the maximal RCI set is the union of
polyhedra and hence is in general non-convex. To this end,
a different algorithm that does not compute C* but rather a
polyhedral RCI C C C* is exploited here.

To start, consider a given value for 7y,.x. We need to
construct a polyhedral RCI set for (4) where the state is
(z,d), subject to (6), (7), and where the disturbance ~y
satisfies (8). Since (8) must always be satisfied, the following
holds.

Proposition 1: For every t € Zoy, d(t) € C;, y(t) €
Cz(d), where Cj is the maximal CI set for (2) with (t) as a
control input, subject to (8), and Cj’;(d) is the corresponding
Al set. Furthermore, C = {d : d € [—dmax;, dmax]}- O

Proposition 1 follows from the trajectories always sat-
isfying (8), and the maximal RCI being the largest set
where recursive constraint satisfaction is guaranteed. The last
statement is due to (4b), (8) being a constrained integrator.

We modify the approach for tracking constrained reference
trajectories in [8] for the case where the system is subject to a
time-varying measured disturbance, resulting in Algorithm 1,
where G = {7 —Ymax <7 < Vmax}-

Algorithm 1 (Computation of C):

1: Qo= {(2,d) : 2 € X,d € R}, Qg = Qo N (R" x C})),
2: k=0,

3: do_

4 Qg1 ={(z,d) : Juel,(Ar + Bu+ D(d+~),d +
'y) € Qp, Vv € g}



5000 Qg1 = Qe N

6: Qpr1 = Qg1 N (Rn X C;)

7. k+—k+1

8: while Qp # Q1 and Qp # 0
9: if Qp =0, fail, else, C = Q.

The key differences with the algorithm for C* [6] is that
in Algorithm 1 robustness is sought with respect to v € G,
rather than to v € C3(d), and that two set sequences are
built. The sequence ()}, ignores the constraints on d, both in
the initialization and in the iterations. This allows to keep
the computation simple, yet alone will cause d to possibly
grow to infinity, and the RCI set to be empty. However, the
sequence (2, is also built, where all values of d outside C}
are removed. This results in enforcing the constraints on d
and ignoring the values d ¢ Cj;, which prevents the RCI to
become empty due to the relaxation on €, by stopping the
iterations if changes occur only outside Cj;. The set obtained
from Algorithm 1 can be proved to be RCI.

Theorem 1: Consider (4) subject to (6), (7), and let v(t) €
C7(d(t)), such that (8) is always satisfied. Let the set se-
quence {2} from Algorithm 1 converge in a finite number
of steps k* to a non-empty set. Then, 2x- = C is a RCI
set for (4) subject to (6), (7). Furthermore, C is a (convex)
polyhedron. O

The proof for Theorem 1 are similar to those in [8], and
hence omitted due to limited space.

The RCI computed by Algorithm 1 guarantees that if
(z(t),d(t)) € C, for every admissible d(¢ + 1), i.e., for any
admissible v(t), there exists u(t) such that (z(t + 1), d(t +
1)) € C C X x C}, i.e., any state trajectory can be extended
to satisfy constraints for any admissible reference trajectory.
From Theorem 1, C is polyhedral, and expressed as

HZ [+ d] < KZ. (10)

Furthermore, Algorithm 1 can be modified to handle poly-
topic uncertainties (both multiplicative and additive) in the
vehicle model (4) by simply changing the computation of
Qk+1 as shown in [6].

Remark 1: Alternative RCI constructions may be consid-
ered, which however appears unrealistic. First, one may ig-
nore the road curvature dynamics. Thus, d € [—dmax, dmax]
is the disturbance in (4a). While C* is polyhedral, assum-
ing that the road curvature changes arbitrarily between its
minimum and maximum value is extremely conservative,
thus imposing limitations on dp,,x for the RCI to exist, and
hence limiting the allowed vehicle maneuvers. Second, one
may ignore the constraints d € [—dmax, dmax]. However, in
this way d is allowed to grow to arbitrarily large values
due to (4b), and since the vehicle steering is limited it
will be impossible to track all the admissible references,
resulting in an empty RCI set. Ad-hoc solutions ignoring d €
[—dmax; dmax), and using asymptotically stable dynamics in
place of (4b), must be tested by trial and error, have no
physical motivation, and no guarantee to work in practice. H

For given (4) (6), (7) and (2), (8), Algorithm 1 may fail
and C = (). This indicates that constraint satisfaction, i.e.,
the performance metric M, cannot be guaranteed for all the

allowed reference trajectories, i.e., the current choice for P.
Exploiting this, Algorithm 1 can be used to determine P,
by determining the set of acceptable values for vyax, i.€.,
Timax = {Ymax : C # 0}. Let

Tmax = WXy an

St Ymax =7 = C#0,

then T'yax = [0,¥,,0y)- While apparently complicated, (11)
can be solved by bisection. With reference to Fig.1, given the
performance metrics M (by SU) and the vehicle constraints,
the RCI set and the trajectory properties P for which M can
be guaranteed are designed at the same time.

I'V. MODEL PREDICTIVE CONTROL FOR CLOTHOIDAL
TRAJECTORY TRACKING

Next, the RCI set from Section III is used for guaranteeing
recursive feasibility of (9). We achieve integral action, which
is practically useful in real implementations for ensuring zero
steady state lateral error, by adding to (4)

Cey(t + 1) = Cey (k) + Tsey ().
Then, we define as stage cost
L(&u)=2'Qz+ W Ru, z=[ey éy () = E-&, (13)

where Q, R > 0, { = [2/ (]’ is the state of (4a) augmented
with the integral (., of the lateral error, and we remember
that u = Aé. In (13) we do not weigh the yaw error, because
it is not possible to drive both lateral error and yaw error
to zero, while the vehicle is cornering. In fact, the desired
yaw rate (2) is designed for a slip-less dynamics while the
vehicle slips. Hence, the vehicle yaw needs to be larger
than the desired yaw. However, the lateral error is the key
performance measure.

The terminal cost F' is designed from the solution P of
the Riccati equation for (4a) with d = 0, (12), and weight
matrices Q¢ = E'QE and R, resulting in

(12)

F(§) =¢'Pe. (14)
Thus, from (4), (6), (7), (10), (12), (13), (14),
N—-1
min vy Ponge+ D S E'QBSk + iy, Ruyy (152)
k=0

st Ehgrpe = Aeipe + Beugye + De(dipe + vipe) (15b)
A1)t = dije + Vit (15¢)
ZTemin < Lek|t < Temax, K € Z[l,va—l](lsd)

Omin < Ukt < Omax, k € Z[1,NP\,—1] (15¢)
Admin < Ukt < Abmax, k € Z[O,N—l] (15%)
Hoolayy, diy) < K, k€ Zin,, vy (15g)
To|k = :L‘(t), Ykt = ﬁ/t(t + k)v (15h)

where (15b) groups (4a), (12), Npy € Z1 N is the reliable
preview horizon, i.e., the number of steps along which the
changes in desired yaw rate 4:(¢t + k) predicted at time ¢
will coincide with the actual future changes in desired yaw



rate v(t+ k). Since the SU usually provides a long reference
trajectory, often N, = N, i.e., the entire preview is reliable,
and (15g) becomes a terminal set constraint. However, for
the cases where the actual future reference may be different
from the predicted one, enforcing the RCI constraints (15g),
with IV, being the smallest value of k such that possibly
A (t + k) # v(t + k), ensures that feasibility is maintained,
as long as (8) always holds.

Theorem 2: Given Ymax € I'max and Ny, € Z1,n)» con-
sider the control law u(t) = ug, = he(2(t), Gey (t), {F:(t +
k)}so), where U*(t) = [ug,...u}_y,] is the optimal
solution of (15). For every t € Z, let (t) and 4:(t + k) be
such that (8) is satisfied and 4, (¢t + k) = (¢t + k) for every
k € Zjo,n,,)- Then, for all (x(0),d(0)) € C, (15) is feasible
for every t € Zo4 for (4) in closed-loop with h.. O

Theorem 2 follows from enforcing the RCI set in (15)
which is invariant for any trajectory satisfying P. The details
of the proof are omitted due to limited space.

By (14), the MPC is equivalent to LQR when d = 0
and the constraints are inactive, which results in guaranteed
local stability in an invariant set containing the maximum
constraint admissible set [6] of the LQR subject to the MPC
constraints. From Theorem 2, the next result follows.

Corollary 1: For any choice Ymax € I'max, the corre-
sponding C, the controller u(t) = he(x(t),&(t), {H(t +
k)}N-H) and Sy = C in Theorem 2 solve Problem 1. [

An additional important property of the control law A,
is that (15) results in a quadratic program that can be
solved even on platforms with minimal capabilities. Also,
the integral action (12) and the cost function (13), (14) do
not affect the enforcement of the constraints and hence the
performance metrics M, but only which trajectory is selected
among those recursively satisfying M. This reduces the
tuning time, and prioritizes the “hard” performance objective
M with respect to other “soft” objectives.

V. SIMULATIONS

We use as simulation vehicle a mid-size SUV on a dry
asphalt road. In the simulations the vehicle speed is 80km/h,
i.e., 22.22m/s, and the discrete-time model (4a) has sampling
with period 75 = 0.05s. The bounds in (5), (6) are dy,ax =
—O0min = 0.165[rad], Adpmax = —Admin = 0.420[rad/s], and
€ymax = —Cymin = 0-3m. In (7) we include the additional
constraints |é1| < 2.5, |ea] < 0.25, |é2] < 1, that, however,
are basically always inactive in the reported simulations.

We consider as reference trajectory model (2) subject
to (8), where dn.x = 0.5[rad/s] and we determine I'yax
by (11), obtaining 7,,,,. = 0.05203. This is relatively time
inexpensive since Algorithm 1 executes in less than 1 minute,
as opposed to the one searching for C* [7], which did not
converge in 12 hours. Here, we choose to proceed with
Ymax = 0.05 and the corresponding C, thus enlarging the
sets of feasible trajectories on which the controller optimizes
the cost function. A physical interpretation of the values of
Ymax and dpyax can be obtained in terms of corresponding
maximum yaw rate, and curvature and turn radius, and cor-
responding rates of change that are allowed. For the values
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Fig. 3. Double lane change with maximum curvature rate of change.

used in simulations, from d;,.x We obtain that the minimum
turn radius at 80km/h is 44.44m, and from 7,,x We have
that while turning with 100m radius, the admissible radius
rate of change is slightly above 20m/s. In all simulations, the
vehicle slip angles remain in the linear region, ensuring the
validity of model (4). We solved (15) by the method in [11]
that in all the simulations presented next, always required
less than 3ms.

We have also verified that if the entire d is taken as
the uncertainty, i.e., without introducing ~, for the given
value of dpax, C* = (. This occurs because d jumping
arbitrarily between d,,,,x and —d,ax causes the tracking error
to violate its bounds before the controller can compensate.
Significantly reducing d,,.x results in a non-empty C* but
the allowed turn radius range is also reduced, i.e., some
maneuvers allowed by the controller developed here and
simulated next would no longer be admissible.

The controller h. uses Npevw = N. The simulation
reported in Fig.3 shows the results for a double lane change
with maximum rate of change Viax, —Vmax and where N =



4. Indeed, it is shown in Fig.3 that the tracking constraints,
as well as the steering and steering rate constraints are
satisfied, despite the short horizon. Fig.4 shows a trajectory
with multiple changes in turning direction, each up to the
allowed maximum desired yaw rate dyax, —dmax, achieved
with maximum rate of change, Vinax, —Ymax. Fig.4(a) shows
the behavior for the controller with N = 10. The results of
Fig.4(b) have been obtained with the controller implemented
with NV = 2, and tracking error weights reduced by 3 orders
of magnitude, resulting in a cost function aiming at pointwise
minimizing the change of steering and hence conflicting
with the objective of tracking the changing reference. While
obviously the tracking and actuation performance in Fig.4(b)
is affected, all the constraints are still satisfied. Without using
the RCI, the maneuver in Fig.4(b) is infeasible unless N > 8.
Even for the initial cost function tuning, i.e., Fig.4(a), without
RCI the maneuver is infeasible unless N > 6.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a method to design a vehicle steering
controller and to determine the parameters of the piecewise-
clothoidal the reference trajectories, so that for any trajectory
generated with such parameters, the tracking error is within
a preassigned bound, and hence the uncertainty in path
planning can be bounded accordingly. Future works will
investigate thoroughly the cases when the parameters, such
as vehicle velocity, are varying and uncertainties affect the
vehicle dynamics, and will integrate the steering control with
a previously designed path planner method [12] that can
generate constrained PWCL reference trajectories according
to the parameters determined determined together with the
steering control law.
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