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Abstract

Knowledge of the noise distributions is typically key for reliable state estimation. However,
in many applications only the measurement noise can be determined a priori, since only this
correspond to measurable quantities. Moreover, modeling of physical systems often leads to
nonlinear state-space models with dependent noise sources. Here, we design a computation-
ally efficient marginalized particle filter for jointly estimating the state trajectory and the
parameters of the process noise, assuming dependent noise sources. Our approach relies on
marginalization and subsequent update of the sufficient statistics of the process-noise param-
eters. Results and comparisons for a benchmark example indicate that our method gives clear
improvements
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Process-Noise Adaptive Particle Filtering with Dependent Process and
Measurement Noise

Karl Berntorp' and Stefano Di Cairano

Abstract— Knowledge of the noise distributions is typically
key for reliable state estimation. However, in many appli-
cations only the measurement noise can be determined a
priori, since only this correspond to measurable quantities.
Moreover, modeling of physical systems often leads to nonlinear
state-space models with dependent noise sources. Here, we
design a computationally efficient marginalized particle filter
for jointly estimating the state trajectory and the parameters
of the process noise, assuming dependent noise sources. Our
approach relies on marginalization and subsequent update of
the sufficient statistics of the process-noise parameters. Results
and comparisons for a benchmark example indicate that our
method gives clear improvements.

I. INTRODUCTION

Particle filtering is a sampling-based technique for solving
the nonlinear filtering problem. The particle filter (PF) nu-
merically approximates the posterior density function of the
state given the measurement history, by generating random
state trajectories and assigning a weight to them according to
how well they predict the observations. PFs are often based
on the discrete-time state-space model

i1 = flaw, ur, wi),
yr = h(xk, ug, ex),

ey

where o, € R™ is the state, y, € R™ is the measurement,
and uy, is the known input. The characteristics of the process
noise wj; and measurement noise e are often treated as
known and independent of each other, see for example [1],
[2]. However, the noise sources often depend on each other;
for example, the discretization of a continuous-time model
typically introduces a noise dependence, even if the original
system has independent noise [3].

In this paper, we develop a marginalization-based PF [3]
for jointly estimating the state and the unknown, possibly
time varying, parameters of the Gaussian process noise,
when the process noise and the Gaussian measurement
noise are dependent. Employing marginalization is crucial
to reduce the dimensionality and to increase performance of
PFs [4]. To allow for marginalization, our approach relies on
moment matching and propagation of the sufficient statistics
of the noise parameters. We assume that the structure of
the dependence between wy, and ey is known and that the
measurement noise can be decomposed into a dependent and
independent part, respectively, with the characteristics of the
independent part known a priori. Dependence between wy
and e, frequently arises in engineering applications, such as
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in inertial navigation, target tracking, or automotive applica-
tions [3], [5]-[7], often as a consequence of discretization of
a continuous-time system. The noise dependence typically
appears when constructing the model (1) and is therefore
known, which motivates our assumption.

A common approach for solving the joint state and param-
eter estimation is to augment the state vector [8]. Besides
increasing the state dimension, which is undesirable in gen-
eral and particularly for PFs [3], it also requires artificial
dynamics of the parameter evolution. Kalman-type filters
have been proposed for estimating the unknown statistics of
the process and/or measurement noise [9]-[11]. Dependency
between wy_1 and e, when the statistics of both noise
sources are unknown, has been considered in a PF frame-
work in [12]. However, assuming that both noise sources
are unknown might have implications on observability and
identifiability of the model. Furthermore, in many applica-
tions the measurement noise can be determined a priori, for
example from sensor specifications. Another related work
is [13], which considers estimation of independent noise
sources in a similar framework as in this paper. In [14],
estimation of covariances is considered, [15] addresses static
parameter estimation for the exponential family, [16] focuses
on abruptly changing parameters, and [17] introduces particle
learning for estimation of static parameters.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider a structured version of (1) in the form

(2a)
(2b)

i1 = fxp, ur) + g(@w, up)wy,
Yr = h(zy, up) + €.

In the following, we assume that uw; = O and we define
fr = f(zg,ur) for a function f. The measurement noise
in (2b) can be decomposed as e, = grwy, + e, where wy, €
R™ and e, € R", and we set d = n,, + n.. Both w;, and
ey, are Gaussian distributed as wy, ~ N(,umk, Q) and ef ~
N (pe k., Ry), respectively, where the unknown quantities are
defined by 6y, := {pty k, Qr}. The joint Gaussian is written

as wi = [w]  &f]" ~N (s, B) , where

Hw. k
= o , 3
Hk |:/J’e,k + gk“w,k] ( a)
Q. Qrgr ]
Y= |_ _ il . 3b
F LJkQ 9kQrgy + R (3b)

The noise processes are assumed to be individually indepen-
dent. With p(x.x|yo.x ), we mean the posterior density func-
tion of the state trajectory from time index O to time index



Fig. 1. An illustration of the dependence structure of the noise processes.

k given the measurement sequence yo.x := {Yo,..., Yk}
The notation St(p,Y,v) reads the multivariate Student-
t distribution with mean p, scaling Y, and v degrees of
freedom. Similarly, NiW (v, u, A, v) indicates the Normal-
inverse-Wishart distribution with statistics (hyperparameters)
S := (7, , A, v). The notation 2j,,,, means the estimate of
z at time index k given measurements up to time index m,
and |X| is the determinant of the matrix X.

Problem 1: Given (2) and dependent Gaussian noise be-
tween wy and ey as in (3), see Fig. 1, where the unknown
parameters € may be time varying, recursively estimate

p(xk|Yoir), (4a)

We approach Problem 1 by recursively approximating the

joint posterior p(0y, To.x|Yo.x). We rely on the factorization
of the joint posterior into conditional densities as

POk, To:k|Yo:i:) = P(Ok|To:ks Yok )D(To:k [Yoik)- (5)

The second term on the right-hand side of (5) is approx-
imated with a PF. To approximate the distribution of the
parameters in (5), we rely on updating the sufficient statistics
of the parameters. This is possible because we condition on
the state trajectory. In what follows, we will go through the
necessary steps to efficiently solve Problem 1.

III. PARTICLE FILTERING WITH DEPENDENT NOISE
PROCESSES

PFs [1], [12] estimate the density p(@o.k|Yyo.x) by a set of
N weighted trajectories as

N
p(To:k|Yo:r) = szé(w&k — () (6)
i=1

Here, 4(-) is the Dirac delta function and w}, is the associated
importance weight for the ith particle xg,,. The posterior
density can be computed recursively as

p(@o:k|Yo:k) o P(Yk|To:k: Yo:k—1)P(Tk|T0:k—1. Yo:k—1)
p(xok-1|yok—1)- (1)
Since it is hard to obtain samples from (6) directly, sampling

is done from a tractable, user-designed proposal distribution,
with the general form g(x|®o.x—1, Yo.x). Inserting (6) into

(7) and accounting for the proposal, importance weight w?,
is obtained as [12]

(Y| Th s Yok—1)P(XL | Th 115 York—1)
Q(CBZ |$6;k717 yO:k)

Setting q(xk|To:k—1,Yo:k) = P(Tk|To:k—1, Yo:k—1) reduces
the weight update to

wj, X Wy,_q

(®)

Wi, 0 Wiy P(Yk |0k You—1)- (©))
When the process noise w and measurement noise e are
independent (i.e., p(wy, €,,,) = p(wyg)p(e)), (8) transforms
to the well-known update equation
p(yrlz))p(@i| ;1)

q( |y 1, yr)

However, for dependence as in Fig. 1, with known noise
parameters, the factors in the numerator in (8) equal

Wy, X Wi,_q

(10a)
(10b)

p(xk|Tok—1,Yo:k—1) = P(Tr|Tr—1, Y1),
P(Yr|To:k, Yok—1) = p(Yr|Tr)-
From (10b), knowing xj and y; provides full knowledge of
e. Hence, (10a) can be characterized by the conditional dis-
tribution p(wy_1|ex—1). When the parameters of the noise
processes are known, the noise processes can be decorrelated
using Gram-Schmidt orthogonalization [12]. However, for
unknown process noise, such an approach is not possible.
IV. JOINT STATE AND NOISE-PARAMETER ESTIMATION
Regardless whether (8) or (9) is used in the PF weight
update, we need to compute
(11a)
(11b)

p(yk|w6k7 yU:krfl)a
p($;€+1|w6:k7 yO:k)’

where we have time shifted (11b) to be consistent with
(2). The unknown process-noise parameters affect both the
prediction and measurement update steps according to (2),
so both the prediction step and the weight update in the PF
will depend on the parameter estimates.

To solve Problem 1, we will first describe how to compute
the first term on the right-hand side in (5), assuming that
we know the state trajectory. This is then followed by a
procedure for computing (11), which allows us to compute
the posterior of the state trajectory in (5).

A. Parameter Estimation

According to (11), knowing both the state and measure-
ment trajectory leads to full knowledge about wy.;. Hence,
the posterior for the noise parameters in (5) can be rewritten
using Bayes’ rule as

P(Ok|xo:k, Yo:rx) = p(Or|Wo:k)

& p(wg|Ok)p(Or|Wo.—1). (12)

The posterior of the parameters in (12) is composed of a
Gaussian likelihood p(w|6;) and a prior p(@g|wo.—1),
similar to the measurement update in the PF. Therefore, we
can utilize conjugate priors.



Definition 1: Given a likelihood, the conjugate prior is the
prior distribution such that the prior and posterior are in the
same family of distributions.

Lemma 1 provides an explicit expression of the conjugate
prior for Gaussian likelihoods [18].

Lemma 1: For multivariate Normal data @ € R with
unknown mean g and covariance 3, a Normal-inverse-
Wishart distribution defines the conjugate prior p(p, Xg) :=
NlW(’yMk /lk\ka Ak|k7 Vk|k)’ through the hierarchical model

Bk Bx ~ N (s i e S )
Bp ~ iW (g, Apir)
o |2k|*%(Vk|k,+d+1)e(*%tr(Ak\kzgl)’

where tr(-) is the trace operator.

The computation of the statistics in Lemma 1 can be done
in several ways. In this work, we use the statistics Sy :=
(Vk|k > B> Akojies Viejie) (see [13] and references therein)

Vk|k—1
Velk = (13a)
MR T Vilk—1
Bk = Bk—1 T Vr|kZks (13b)
Vklk = Vglk—1 + 1, (13¢)
1
Ay = Mgy + ———— 212, (13d)
K|k k|k—1 T s 42
Z) = Wy — fp|p—1- (13e)

For slowly time-varying parameters, the prediction step con-

sists of
1
Vklk—1 = X’Yk—uk—h

Brje—1 = Br—1)k—1, (14)
Vklk—1 = A\Vk—1|k—15

Agjk—1 = Mp_1jk—1,

where A € [0,1] provides exponential forgetting. Further-
more, for a Normal-inverse-Wishart prior, the predictive
distribution of the data w is a Student-t,

T+ Yrp—1

—_— A 1—d+1].
Vhpr —d+ 1 klk—1> Vk|k—1 + )

St (ﬂkuc—h

Suppose now that the predictive distribution p(6y|wg.x—1)
in (12) is Normal-inverse-Wishart. Hence,

(O |wo.—1) =

NiW (Vejk—1, Brjk—15 Akjp—1, Vijk—1)-  (15)

Using (12), (15), and Lemma 1, results in that the posterior
is also Normal-inverse Wishart,

P(Ok|zok, Yor) = NIW (Ve|ks Boirs Akks Vi) (16)
Note that only the parameters of wy are unknown, so (13)

and (14) are only applied to the process noise, that is, w €
R™ in Lemma 1, which decreases the dimensionality.

Finally, to find (4b) in Problem 1, we marginalize out the
state trajectory as

P(Ok|yo:x) = /p(9k|w0:k7yO:k)p(wO:k|yO:k)dwO:k

N

~ Z wzp(euxéka yO:k‘)7
i=1

A7)

which has complexity O(N'), where p(0y|x{ .. yo.x) is given
by (16). The unknown parameters can be extracted from (17);
for instance, the minimum mean-square estimate of ft,,  is

N
Pk = Zwlkﬂiu,kw'
i=1
B. State Estimation

To estimate the state, we need to determine expressions
for (11). Lemma 2 provides the basic version of a useful
result on transformation of variables in densities.

Lemma 2: Let X be a random variable with probability
density function p(x). Let y = g(x) be one-to-one for which
g '(y) exists with a continuous Jacobian J(y) = 8%—71.
Then, the random variable Y = g(X) has the probability

density function

p(y) = (y)lp(g~" (y)).
Proof: See [19]. |
To compute (11a), we first note that from (2) and the noise
dependence, knowledge of x, and yj characterizes €.
Using Lemma 2, adapted to our scenario, with |J(yg)| = 1,

P(Yk|To:ks Yo:k—1) = P(€x(Yr, Tk)|To:k—1, Yo:k—1)

= p(er(Yr, xk)|€0:k—1)- (18)

We marginalize out the noise parameters using the law of
total probability as

P(Yk|®o:ks Yoik—1) = /p(yk\f)k,wk)

- p(Ok|To:—1,Yo:k—1) dOk.  (19)

If we for a moment concentrate on gpwy and ignore ey
in p(yr|Ok, k), (19) is the integral of the product of a
Gaussian distribution and a Normal-inverse-Wishart distri-
bution. Hence, p(€y(yk, Tk)|€o0.x—1) in (18) is a Student-t
distribution [18]

p(er(Yr, o) €0k—1) = St(fki—1, Akjp—1, Trji—1), (20)

with Ug;_1 = Vgr—1 — ne + 1 and mean and scaling as

Prlk—1 = Gkl k|k—1

< L4 k-1 _
~7g

_T
Apjp—1 = kN k| k—1G) -

Vk|k—1
However, in our case, € is partially known through the
Gaussian e, which implies that (19) is a mixture of a
Gaussian and a Student-t, whose density is computed as an
infinite series [20]. To obtain an algorithm suitable for online
implementations, we rely on Approximation 1.



Approximation 1: p(€y(y,xr)|€0:x—1) is distributed ac-
cording to (20) with mean fig ;1 and scale Ag pr—1 as

Pekk—1 = Grlw k|k—1 T Hek

~ T+ Yer—1 _
Az -1 = L L iAo kio—19x +
Vk\kq

Uglk—1 — 2 R
2D
Approximation 1 implies moment matching of a known
Gaussian with a Student-t and can be interpreted as a
robustification of the measurement noise, by choosing the
smallest common degree of freedom [21]. Proposition 1
justifies the approximation.
Proposition 1: As k — oo, (20) converges to a Gaussian
with precision determined by the forgetting factor .
Proof: From (13) and (14), kli_)rrgo Vel = 1/(1 — X). The

result immediately follows from that lim St(p,A,v) =
V—r0o0

Vk|k 1

N (p, A) and that the sum of Gaussians is a Gaussian. W
We compute (11a) by replacing the mean in (20) with
hi + fig kx—1. To compute (11b), from Lemma 2,

P(@pt1[Ton Your) < (g (@1 — Fi)lToik, Youk)
= p(g;, (@rr1 — fr)l€o)

= p(wi(Try1)|€0:1), (22)

where g,j is the pseudo-inverse of gi. By marginalizing out
the noise parameters in (11b) and combining with (22),

p(wi(@ri1)|€0:k) = St(faf, Af, vi)- (23)

Theorem 1 provides the hyperparameters in (23).
Theorem 1: The hyperparameters in (23) are given by

~ %

- e
A = o el k—1 + i k-1 A7 g1 2k

T
Vk|k:—l —d + 1 + ZkAf Klk— 1Zk (
w,k|k—1
Vklk—1 — Me + 1
11 T T
- dkAw,k\k—1Ag,kw_lAw,k\kqdk)v

Vi = Vglk—1 — N + 1,

(24)

Be=e—flegpr
Proof: First, given Approximation 1, the joint predictive

distribution of wy, and & is a Student-t. Now, for £ € R™

and z, € R% jointly distributed according to a Student-t,

o 1231 A A
en-s([2] [ 2] )

by using the factorization p(xi|zs) = p(x1,22)/p(22), it
can be shown [22] that the conditional density is given by
p(xi|xe) = St(x1|p1)2, Avj2, v1)2), (25)
where
Vijg =V +da,

Bz = p1+ AaAg (22 — po),

o A—l _ T
Ap =7 (T2 — p2)Agy (T2 — p2) (An
v+ dsg
~ ApAGAT).

Then, the hyperparameters (24) follow from (25) by utilizing
(20), (21), yielding

V=vpp—1 —d+1, d2=ne,
M1 = Moy k|k—1,
A1 = Ay k-1,
A1z = gy k-1,
Azo = Ag 1,

Ty — M2 = € — He klk—1-

|
Next, (11b) is found by replacing the mean in (23) with
Sr + [i;,. To summarize, (11a) and (11b), and therefore (8)
(or (9) if (11b) is used directly as proposal density) can be
computed by evaluation of (20), (21), and (23).
To obtain an approximation of the filtering distribution
(4a) in Problem 1, we extract the last state to obtain

Zwké T —ZL’k

Remark 1: Both (26) and (17) overlook a potential path-
degeneracy problem, but taking into account different paths
leads to an algorithm that is intractable in many online
implementations, which is the focus here. Furthermore, for
sufficient mixing in the dynamic model (2), errors in the state
are forgotten exponentially in time and ensures convergence
of (26) as N — oo [1]. For (17), the use of exponential
forgetting suppresses the path-degeneracy problem, which
causes issues for estimation of static parameters [13].

p(zk|yo:r) (26)

C. Summary of the Algorithm

If (11b) is used as proposal the algorithm simplifies, since
samples are first generated from (23), and then used in
the dynamic model (2a) to create ] ,. Furthermore, the
samples can be used directly in (13e) to update the statistics
Sk|k- If a general proposal is used, we need to use (22) to
update the statistics Sy, which increases complexity. The
algorithm is summarized in Algorithm 1 for the simplified
setting, with (11b) as proposal.

V. NUMERICAL EVALUATION

We use a common benchmark problem [3], [6], [13],
consisting of scalar nonlinear dynamics with a squared
measurement relation,

x 25x
xk+1:7k+1+k + 8 cos (1.2k) + wy, (27a)
a3
=k 4 ep. 27b
Yk =30 + e (27b)

The noise sources are dependent and Gaussian distributed,
with initial parameters set as (0 = 1, X0 =4, te,o =0,
Yeo = 3, and Xy o = 0.5%,,0. We execute 100 Monte-
Carlo simulations and use the time average of the root-mean-
square error (RMSE). Because of the quadratic term in (27b),
the resulting filtering posterior is in general bimodal [6],
limiting the use of linear/linearized filters.



Algorithm 1 Filtering with Dependent Noise

Initialize: Set {z(};L, ~ po(zo), {wp},
{S(Z)}ivzl = {78a /1’217,0’ AZ;,m Vé}

1: for k< 0to T do

2: forie {1,...,N} do

3 Update weight &} using (20) and (21):
W = wj,_1P(Yr|€0:k—-1)

4: Update noise statistics S,il . using (13).

5: end for

6:  Normalize weights as w}\,; = (sz /(N @),

7. Compute Neg = 1/(3 i, (wi)?)

8: if Neg < Nipnr then

9: Resample particles and copy the corresponding
statistics. Set {wi}¥, = 1/N.

10: end if

11: Approximate state posterior with (26).

12: Approximate parameter posterior with (17).

13: foric{l,...,N} do

14: Predict noise statistics S,i 1k using (14).

15: Sample w;, from (23) using (24).

16: Predict state xj, ; using (2a).

17: end for

18: end for

We compare Algorithm 1 with a state-augmented PF
(AUGPF) and the method in [13]. All of these methods
have computational complexity O(NV). The method in [13]
assumes independent noise sources. Hence, the comparison
shows the benefits of accounting for noise dependence in this
particular problem. In AUGPF, the state vector is augmented
to also include the unknown parameters of the process noise.
The unknown mean is modeled as a Gaussian random walk,
and the inverse-Gamma distribution is used to propagate
the unknown variance, p(X, k, Zwr—1) = iI'(a, 8). The
deviation of the random walk is set to 3% of the value
of the true parameter, and «, 3 are set such that the mean
value is held constant and the deviation of the distribution is
3% of the previous value [13]. These values were set as
a tradeoff between small average error, fast convergence,
and reasonably small variability of the estimates over 100
Monte-Carlo executions. All algorithms are initialized with
the same values. The mean of the initial state and the initial
covariance, respectively, are xg = 5, Py = 5, which is also
used to generate the ground truth. All algorithms assume
that the initial values of the mean and variance of the process
noise are fiy,,0 = 3, 2,0 = 9.

Figs. 24 show the resulting parameter estimates for
500 particles. Clearly, Algorithm 1 (Fig. 2) provides more
accurate and less biased estimates than when not accounting
for the dependence (Fig. 4). The standard deviation over the
executions, shown by the size of the vertical bars (20) in the
figures, indicate that the variability between different Monte-
Carlo executions are much larger for AUGPF (Fig. 3).

Fig. 5 provides a comparison of the time-averaged RMSE

0 T
0 1000

Fig. 2.  Estimated mean and standard deviation of the process noise
using Algorithm 1, averaged over 100 Monte-Carlo simulations using 500
particles, with A = 0.99. The vertical bars indicate the 2 standard deviations
of the estimates.

T T T
2000 3000 4000 k

0 T
0 1000

Fig. 3. Estimated mean and standard deviation of the process noise using
AUGPF, averaged over 100 Monte-Carlo executions using 500 particles.

T T T
2000 3000 4000 k

of the estimated standard deviation for different number
of particles. There is a clear performance increase in the
variance estimation by accounting for the dependence. The
conclusions for the mean value in Fig. 6 are similar. Both
Fig. 5 and the state error in Fig. 6 indicate that irrespective
of the number of particles, Algorithm 1 performs best.
Table I provides the corresponding average execution time
for one Monte-Carlo trial in a MATLAB implementation.
Care should be taken when interpreting the execution time,
since it is highly implementation and program-language
dependent. Nevertheless, to get the same time-averaged state

0 T T T T -
0 1000 2000 3000 4000 k

Fig. 4. Estimated mean and standard deviation of the process noise using
the approach in [13], averaged over 100 Monte-Carlo executions using 500
particles, with A = 0.99.
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Fig. 5. Time-averaged RMSE of the standard deviation of the process noise
versus the number of particles, averaged over 100 Monte-Carlo executions.
Values are obtained using 100, 500, 1000, 5000 particles.
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Fig. 6. Time-averaged RMSE of the state versus the number of particles,
averaged over 100 Monte-Carlo executions. Values are obtained using 100,
500, 1000, 5000 particles.

RMSE (Fig. 6) as when using 500 particles in Algorithm 1,
AUGPF and the method in [13] need well more than 5000
particles, corresponding to an execution time of 2-3.5 times
that of Algorithm 1. Thus, the increase in execution time is
more than compensated for by the performance increase, in
this example.

VI. CONCLUSION

We developed a PF-based method for jointly estimating the
state and learning the parameters of the underlying Gaussian
process noise. The method is applicable to nonlinear state-
space models where the parameters of the process noise are
unknown and there is a dependence between the process
noise and the measurement noise. As pointed out, this is
a situation that arises naturally in many applications.

The proposed method relies on conjugate priors and
moment matching to obtain a computationally efficient

TABLE I
AVERAGE EXECUTION TIMES IN SECONDS FOR ONE MONTE-CARLO
EXECUTION IN MATLAB FOR DIFFERENT NUMBER OF PARTICLES.

N 100 500 1000 5000
AUGPF 1.5 2.3 3.2 9.2
[13] 2.8 4 54 15

Algorithm 1 3 44 6 16.8

marginalized particle filter, and by using exponential for-
getting in the parameter prediction, the problem of path
dependence is significantly suppressed. A numerical study
demonstrated the significance of the approach.

REFERENCES

[1] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and
smoothing: Fifteen years later,” in Handbook of Nonlinear Filtering,
D. Crisan and B. Rozovsky, Eds. Oxford University Press, 2009.

[2] F. Gustafsson, “Particle filter theory and practice with positioning
applications,” IEEE Aerosp. Electron. Syst. Mag, vol. 25, no. 7, pp.
53-82, 2010.

[31 ——, Statistical Sensor Fusion.
shuset/Studentlitteratur, 2010.

[4] T. B. Schon, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle
filters for mixed linear nonlinear state-space models,” IEEE Trans.
Signal Processing, vol. 53, pp. 2279-2289, 2005.

[5] F. Gustafsson and S. Saha, “Particle filtering with dependent noise,”
in 13th Int. Conf. Information Fusion, Edinburgh, UK, July 2010.

[6] K. Berntorp, “Particle filtering and optimal control for vehicles and
robots,” Ph.D. dissertation, Department of Automatic Control, Lund
University, Sweden, May 2014.

[71 ——, “Joint wheel-slip and vehicle-motion estimation based on iner-
tial, GPS, and wheel-speed sensors,” IEEE Trans. Contr. Syst. Technol.,
vol. 24, no. 3, pp. 1020-1027, 2016.

[8] J. Liu and M. West, “Combined parameter and state estimation in
simulation-based filtering,” in Sequential Monte Carlo Methods in
Practice, ser. Statistics for Engineering and Information Science,
A. Doucet, N. de Freitas, and N. Gordon, Eds. Springer New York,
2001, pp. 197-223.

[9]1 R. Mehra, “On the identification of variances and adaptive Kalman
filtering,” IEEE Trans. Automat. Contr., vol. 15, no. 2, pp. 175-184,
1970.

[10] S. Sérkkd and A. Nummenmaa, “Recursive noise adaptive Kalman fil-
tering by variational Bayesian approximations,” IEEE Trans. Automat.
Contr., vol. 54, no. 3, pp. 596-600, 2009.

[11] X. Rong Li and Y. Bar-Shalom, “A recursive multiple model approach
to noise identification,” IEEE Trans. Aerosp. Electron. Syst., vol. 30,
no. 3, pp. 671-684, 1994.

[12] S. Saha and F. Gustafsson, “Particle filtering with dependent noise
processes,” IEEE Trans. Signal Processing, vol. 60, no. 9, pp. 4497—
4508, 2012.

[13] E. Ozkan, V. Smidl, S. Saha, C. Lundquist, and F. Gustafsson,
“Marginalized adaptive particle filtering for nonlinear models with
unknown time-varying noise parameters,” Automatica, vol. 49, no. 6,
pp. 1566-1575, 2013.

[14] P. Djuric and J. Miguez, “Sequential particle filtering in the presence
of additive Gaussian noise with unknown parameters,” in /[EEE Int.
Conf. Acoustics, Speech, Signal Process., Orlando, Fl, May 2002.

[15] G. Storvik, “Particle filters for state-space models with the presence of
unknown static parameters,” IEEE Trans. Signal Processing, vol. 50,
no. 2, pp. 281-289, 2002.

[16] C. Nemeth, P. Fearnhead, and L. Mihaylova, “Sequential Monte Carlo
methods for state and parameter estimation in abruptly changing
environments,” [EEE Trans. Signal Processing, vol. 62, no. 5, pp.
1245-1255, 2014.

[17] C. Carvalho, M. S. Johannes, H. F. Lopes, and N. Polson, “Particle
learning and smoothing,” Statistical Science, vol. 25, no. 1, pp. 88—
106, 2010.

[18] K. P. Murphy, “Conjugate Bayesian analysis of the Gaussian distribu-
tion,” UBC, Tech. Rep., 2007.

[19] C. R. Rao, Linear Statistical Inference and its Applications.
2001.

[20] C. Berg and C. Vignat, “On the density of the sum of two independent
Student t-random vectors,” Statistics & Probability Letters, vol. 80,
no. 13, pp. 1043-1055, 2010.

[21] M. Roth, E. Ozkan, and F. Gustafsson, “A Student’s t filter for heavy
tailed process and measurement noise,” in IEEE Int. Conf. Acoustics,
Speech and Signal Processing, Vancouver, Canada, 2013.

[22] M. Roth, “On the multivariate t distribution,” Linkoping University,
Tech. Rep. 3059, 2012.

Lund, Sweden: Utbildning-

Wiley,



	Title Page
	page 2

	/projects/www/html/publications/docs/TR2016-148.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


